/* * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab * Copyright (C) 2008 - INRIA - Arnaud TORSET * * This file must be used under the terms of the CeCILL. * This source file is licensed as described in the file COPYING, which * you should have received as part of this distribution. The terms * are also available at * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt * */ #include #include #include #include "floor.h" static void dfloorsTest(void) { assert ((fabs( dfloors(-2) - (-2))/fabs(dfloors(-2)))<1e-16); assert ((fabs( dfloors(-1.9) - (-2))/fabs(dfloors(-1.9)))<1e-16); assert ((fabs( dfloors(-1.8) - (-2))/fabs(dfloors(-1.8)))<1e-16); assert ((fabs( dfloors(-1.7) - (-2))/fabs(dfloors(-1.7)))<1e-16); assert ((fabs( dfloors(-1.6) - (-2))/fabs(dfloors(-1.6)))<1e-16); assert ((fabs( dfloors(-1.5) - (-2))/fabs(dfloors(-1.5)))<1e-16); assert ((fabs( dfloors(-1.4) - (-2))/fabs(dfloors(-1.4)))<1e-16); assert ((fabs( dfloors(-1.3) - (-2))/fabs(dfloors(-1.3)))<1e-16); assert ((fabs( dfloors(-1.2) - (-2))/fabs(dfloors(-1.2)))<1e-16); assert ((fabs( dfloors(-1.1) - (-2))/fabs(dfloors(-1.1)))<1e-16); assert ((fabs( dfloors(-1.0) - (-1))/fabs(dfloors(-1.0)))<1e-16); assert ((fabs( dfloors(-0.9) - (-1))/fabs(dfloors(-0.9)))<1e-16); assert ((fabs( dfloors(1.0) - (1))/fabs(dfloors(1.0)))<1e-16); assert ((fabs( dfloors(1.1) - (1))/fabs(dfloors(1.1)))<1e-16); assert ((fabs( dfloors(1.2) - (1))/fabs(dfloors(1.2)))<1e-16); assert ((fabs( dfloors(1.3) - (1))/fabs(dfloors(1.3)))<1e-16); assert ((fabs( dfloors(1.4) - (1))/fabs(dfloors(1.4)))<1e-16); assert ((fabs( dfloors(1.5) - (1))/fabs(dfloors(1.5)))<1e-16); assert ((fabs( dfloors(1.6) - (1))/fabs(dfloors(1.6)))<1e-16); assert ((fabs( dfloors(1.7) - (1))/fabs(dfloors(1.7)))<1e-16); assert ((fabs( dfloors(1.8) - (1))/fabs(dfloors(1.8)))<1e-16); assert ((fabs( dfloors(1.9) - (1))/fabs(dfloors(1.9)))<1e-16); assert ((fabs( dfloors(2.0) - (2))/fabs(dfloors(2.0)))<1e-16); } static void zfloorsTest(void) { doubleComplex in, out; /* tests allant de -2 + i a -1 + 2*i, les reels décroissants de 0.1, les imaginaires croissant de 0.1 + 1 test supplementaire : -0.9 + 0.9*i*/ in=DoubleComplex(-2,1); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.9,1.1); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.8,1.2); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.7,1.3); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.6,1.4); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.5,1.5); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.4,1.6); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.3,1.7); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.2,1.8); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.1,1.9); out = zfloors(in); assert ((fabs( zreals(out) - (-2))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (1))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-1.0,2.0); out = zfloors(in); assert ((fabs( zreals(out) - (-1))/fabs(zreals(out)))<1e-16); assert ((fabs( zimags(out) - (2))/fabs(zimags(out)))<1e-16); in=DoubleComplex(-.9,.9); out = zfloors(in); assert ((fabs( zreals(out) - (-1))/fabs(zreals(out)))<1e-16); assert (fabs( zimags(out))<1e-16); } static void dflooraTest(void) { int i; double in[10]={1.2, 2.0,-2.0,-3.1,-4.5,6.1,4.1,4.9,-0.7, 0.5}; double res[10]={1,2,-2,-4,-5,6,4,4,-1,0}; double out[10]; dfloora(in,10,out); for (i=0;i<10;i++) if (out[i]!=0) assert(fabs(out[i]-res[i])/fabs(out[i]) < 1e-16); else assert(fabs(out[i]-res[i]) <1e-16); } static void zflooraTest(void) { int i; double inR[10]={1.2, 2.0,-2.0,-3.1,-4.5,6.1,4.1,4.9,-0.7, 0.5}; double inI[10]={5.4,1.8,1.4,-4.0,-2.7,-0.3,1.5,1.4,7.3,-4.6}; double resR[10]={1,2,-2,-4,-5,6,4,4,-1,0}; double resI[10]={5,1,1,-4,-3,-1,1,1,7,-5}; doubleComplex out[10],*in; in=DoubleComplexMatrix(inR,inI,10); zfloora(in,10,out); for (i=0;i<10;i++){ if (zreals(out[i])!=0) assert( fabs(zreals(out[i])-resR[i])/fabs(zreals(out[i])) < 1e-16); else assert(fabs(zreals(out[i])-resR[i]) <1e-16); if (zimags(out[i])!=0) assert( fabs(zimags(out[i])-resI[i])/fabs(zimags(out[i])) < 1e-16); else assert(fabs(zimags(out[i])-resI[i]) <1e-16); } } static int testFloor() { printf("\n>>>> Double Floor Tests\n"); dfloorsTest(); zfloorsTest(); dflooraTest(); zflooraTest(); return 0; } int main() { assert(testFloor() == 0); return 0; }