
1 User manual for Scilab2C

This section describes steps to be followed for using ‘Scilab2C’. Pre-requisites are
mentioned followed by procedure to install ‘Scilab2C’.

1.1 Installation

1.1.1 Prerequisites

There are few prerequisites or some packages must be pre installed before we can
use ‘Scilab2C’. These are:

• Scilab >=5.5.1.

• Scilab-Arduino toolbox (If using ‘Scilab2C’ to generate code for Arduino)

• Arduino makefile (https://github.com/sudar/Arduino-Makefile). Install us-
ing ‘sudo apt-get install arduino-mk’.

• BCM2835 C library for RasberryPi (http://wiringpi.com/)

• RasberryPi tools (For cross compiling code for RasberryPi)

Detailed instructions for installing these packages are in section ‘Installing
supporting packages’

1.1.2 Installing Scilab2C

Before we can use ‘Scilab2C’ extension, we need to install latest version of Scilab2C.
Follow following procedure to get latest source code from github repo.

• Open terminal window. (Ctrl+Shift+T is shortcut).

• Change current directory to ‘/path/to/scilab/share/scilab/contrib’. Nor-
mally it is in ‘/usr/share/’ if installed using system interface. Replace
‘/path/to/’ by actual path to folder ‘scilab’. For example, if you have in-
stalled Scilab using system interface (‘apt-get’ on Ubuntu), then run follow-
ing command in terminal:
cd /usr/share/scilab/share/scilab/contrib

• Clone the git repo using following command:
git clone https://github.com/siddhu8990/Scilab2C.git

• Make sure a directory named ‘Scilab2C’ is present in ‘contrib’ folder.

1

• Open the Scilab.

• Run ‘builder.sce file present in ‘Scilab2C/2.3-1 using ‘exec’. This generates
binary files from source files.
exec(‘/path/to/Scilab2C/2.3-1/builder.sce’)

• In ‘Home/.Scilab/scilabx.x.x’ make a new file ‘.scilab’ if it does not exist
already. (You may need to enable ‘Show hidden files’ from ‘View’ menu to
see .Scilab folder’. Open ‘.scilab using suitable editor. Add following line in
this file:
exec(‘/path/to/Scilab2C/2.3-1/loader.sce’)

This will load the ‘scilab2c’ everytime scilab is started.

1.1.3 Installing supporting packages

Most of the supporting packages or libraries which are required are provided with
the toolbox. But they were compiled using latest source code available at release
of toolbox. If you want to use latest libraries, steps to compile the same are listed
below. You can follow these steps and replace old files with newly generated ones.

• ‘scilab-arduino toolbox’ Latest version of ‘scilab-arduino toolbox is avail-
able through ‘Atoms’, toolbox installer module for Scilab.

• RasberryPi tools

– Make a folder named ‘RasberryPi tools’ somewhere on the harddisk.

– Open terminal and change directory to ‘RasberryPi tools’. Clone ‘Tools’
repo using ‘git clone https://github.com/raspberrypi/tools.git’.

– Add location of toolchain to your ‘PATH’ variable.
‘export PATH=$PATH:/location/of/tools/folder/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin’

• WiringPi C library for RaspberryPi

– Download latest source code from ‘https://git.drogon.net/?p=wiringPi’.
Extract source files at some suitable location.

– Copy these source files to RaspberryPi at suitable location. Follow
instructions given for installation.

– not complete

• Cross compiling Lapack and Blas for RasberryPi

– Download latest source code for Lapack from ‘http://www.netlib.
org/lapack/’. Extract source files at some suitable location.

2

https://git.drogon.net/?p=wiringPi
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

– Open file ‘make.inc.example’ given in Lapack folder using some editor.

– Edit following items as shown:

∗ FORTRAN = arm-linux-gnueabihf-gfortran

∗ LOADER = arm-linux-gnueabihf-gfortran

∗ CC = arm-linux-gnueabihf-gcc

∗ ARCH = arm-linux-gnueabihf-ar

∗ RANLIB = arm-linux-gnueabihf-ranlib

– Since we are cross compiling for some other platform, normal way com-
piling will not work.

– Open terminal window and change current directory to laplack direc-
tory.

– We will need to compile BLAS, CBLAS and Lapack separately and in
same order.

– Change current directory to /path/to/lapack/BLAS/SRC and run ‘make’.
This will generate ‘librefblas.a’ in Lapack folder.

– Now change current directory to /path/to/laplack/CBLAS and run
‘make’. This will generate ‘libcblas.a’ in Lapack folder.

– Now change current directory to /path/to/laplack/SRC and run ‘make’.
This will generate ‘liblapack.a’ in Lapack folder. Now replace the gener-
ated lib files in ’src/c/hardware/rasberrypi/libraries’ in ‘scilab2c’ source
folder.

• GNU Scientific Library (GSL) for RasberryPi

– Before going further, make sure that you have installed ‘RasberryPi
tool’ following the instructions given here.

– Get latest source code for GSL from ftp://ftp.gnu.org/gnu/gsl/.

– Extract source code at some suitable location on harddrive.

– Open the terminal window and change current directory to the location
where source is extracted.

– Execute following command
./configure -host=arm CC=arm-linux-gnueabihf-gcc ar=arm-linux-gnueabihf-ar

--enable-static

– Then execute ‘make libgsl.la’ to cross compile the library. Don’t do
‘make install’ as it is noramlly next step.

– Library ‘libgsl.a’ is created in folder ‘.libs’. By default this folder is
hidden.

3

ftp://ftp.gnu.org/gnu/gsl/

– Now replace the generated lib file in ‘src/c/hardware/rasberrypi/li-
braries’ in ‘scilab2c’ source folder.

– We need to set a environment variable ‘C INCLUDE PATH’ so that
arm compiler can find required files while compiling the code. For doing
this, type following in the terminal:
export C INLUDE PATH="/path/to/gsl2.1/folder"

Replace /path/to/gsl2.1/folder by actual path on your machine.

1.2 Using Scilab2C for C code generation

Scilab2C extension in Scilab can be used for generating C code from a Scilab script.
Currently it supports four target platforms:

• Standalone C code: General C code which can be compiled using any
compiler

• Arduino : Arduino sketches can be generated using Scilab scripts written
using ‘Scilab-Arduino toolbox’ (A scilab-arduino extension is required)

• AVR : C code can be generated for using hardware peripherals of AVR
microcontroller

• Raspberry Pi : C code for using hardware peripherals of Raspberry Pi can
be generated

You can follow following steps for generating C code using Scilab2c extension
for required target platforms.

1.2.1 Generating standalone C code

1. Write the Scilab script first which is to be converted to C. Scilab code can
contain single file or many files, but each file must be a Scilab function.
There must be one main Scilab file in case project contains many files, from
which execution of code starts. All Scilab files must be in a single folder.

2. Before a Scilab file can be translated to a c code, some function annotations
should be added manually. Function annotations gives information about
no. of inputs/outputs, their types etc. Refer ‘Function annotations’ for
more details.

3. Type ‘sci2c gui’ or ‘scilab2c’ in scilab console. This will prompt the GUI of
Scilab2C toolbox as shown in figure. 1

4

Figure 1: GUI for ‘Scilab2C’

4. Click ‘Browse’ next to ‘Main file name’ textbox, browse to location of main
scilab file and select it. (Refer figure 2)

5. If Scilab code contains many files, select folder containing these file by click-
ing ‘Browse’ next to ‘Sub-functions’ textbox.

6. Create a new folder somewhere on the disk, preferably in same folder con-
taining Scilab files. Select this newly created folder by clicking ‘Browse’ next
to ‘Directory name’ textbox. (Refer figure 3). Generated C code files are
stored in this folder.

7. Choose appropriate options from ‘Options’ box. Different options are ex-
plained below:

(a) Run mode : If only directory structure is to be generated in output
directory, select ‘Generate library’. If only conversion of scilab files is
to be done, select ‘Translate’. In case both are to be done, select ‘All’.

(b) Target platform : To generate standalone C code, select ‘Standalone C’
from dropdown. (Refer figure 4)

(c) Copy Scilab code into C: Select ‘Yes’ or ‘No’ accordingly.

(d) Tool to compile generated C code: Select appropriate option depending
upon platform on which generated code will be complied.

8. Confirm everything again and then press ‘Convert’ button. (Refer figure 5)

5

Figure 2: Select ‘main’ scilab file for conversion

Figure 3: Select output folder

6

Figure 4: Select ‘Standalone C’ from dropdown

Figure 5: Select output folder

7

9. After clicking ‘Convert’, Scilab code will be run in Scilab, to check for any
errors. If code runs successfully, a prompt will occur asking if you want to
continue to code conversion or not. Select ‘Yes’. If Scilab code doesnt run
correctly then code conversion is stopped there itself. Correct the Scilab
code and follow the steps again.

10. After selecting ‘Yes’ for code conversion, code conversion starts. If code
conversion is done successfully, you will see the message in command window.

11. Generated code can be seen in output folder. By default a makefile is gen-
erated which uses ‘GCC’ compiler to compile the C code. You can compile
this code using ‘make’. Open output folder in terminal and type ‘make’ and
press Enter. Once code is compiled successfully, it is run in terminal and
output can be seen in terminal window. Check the output for correctness.
If code did not behave as expected, correct the Scilab code and follow the
process again.

1.2.2 Generating code for Arduino

1. Write the Scilab script first which is to be converted to C. Scilab code can
contain single file or many files, but each file must be a Scilab function.
There must be one main Scilab file in case project contains many files, from
which execution of code starts. All scilab files must be in a single folder.
You can verify working of Scilab script by runnig it on an Arduino board.
Modify the script untill code behaves as expected. Once script is finalised,
remove the commands ‘open serial’ and ‘close serial’.

2. Type ‘sci2c gui’ or ‘scilab2c’ in scilab console. This will prompt the GUI of
Scilab2C toolbox as shown in figure 1

3. Click ‘Browse’ next to ‘Main file name’ textbox, browse to location of main
scilab file and select it. (Refer figure 2)

4. If scilab code contains many files, select folder containing these file by clicking
‘Browse’ next to ‘Sub-functions’ textbox.

5. Create a new folder somewhere on the disk, preferably in same folder con-
taining scilab files. Select this newly created folder by clicking ‘Browse’ next
to ‘Directory name’ textbox. (Refer figure 3)

6. Choose appropriate options from ‘Options’ box. Different options are ex-
plained below:

8

Figure 6: Select ‘Standalone C’ from dropdown

(a) Run mode : If only directory structure is to generated in output direc-
tory, select ‘Generate library’. If only conversion of scilab files is to be
done, select ‘Translate’. In case both are to be done, select ‘All’.

(b) Target platform : To generate C code for arduino, select ‘Arduino’ from
dropdown. (Refer figure 6)

(c) Copy scilab code into C: Select ‘Yes’ or ‘No’ accordingly.

(d) Tool to complie generated C code: Select appropriate option depending
upon platform on which generated code will be complied.

7. Confirm everything again and then press ‘Convert button. (Refer figure 5)

8. Code conversion will start, promting different messages in command window.
If conversion completes successfully, prompt will occur in command window
indicationg the same.

9. Generated code can be seen in output folder. A separate folder named ‘Ar-
duino’ is created, which contains a makefile and an arduino sketch file −
sci2c arduino.ino.

10. Open ‘Makefile’ using suitable text editor. Change following parameters
according to board and connection:

(a) BOARD TAG

(b) ARDUINO PORT

9

11. Open the terminal and change current directory to the directory containing
modified Arduino sketch and then compile by typing ‘make’ in terminal.

12. If code is compiled successfully, you can upload it to arduino using ‘make
upload’ command.

13. If code doesnot behave as expected, modify Scilab code and follow the steps
again.

1.2.3 Generating code for AVR

1.2.4 Generating code for Raspberry Pi

1.3 Function Annotations

Each scilab function/file should start with the function annotation section having
following structure:

//SCI2C : NIN=
//SCI2C : NOUT=
//SCI2C : OUT(1) .TP=
//SCI2C : OUT(1) . SZ(1)=
//SCI2C : OUT(1) . SZ(2)=
//SCI2C : OUT(2) .TP=
//SCI2C : OUT(2) . SZ(1)=
//SCI2C : OUT(2) . SZ(2)=
. . .
//SCI2C : OUT(NOUT) .TP=
//SCI2C : OUT(NOUT) . SZ(1)=
//SCI2C : OUT(NOUT) . SZ(2)=
//SCI2C : DEFAULT PRECISION= DOUBLE

Although a minimum flexibility is available in the function annotation, we suggest
observing anyway the following annotation rules:

• Each annotation line must start with //SCI2C: tag. This makes possible
to hide annotations to Scilab interpreter and makes also possible to run the
code without error generation.

• The first line of the Scilab file to be translated must start with the number
of input arguments annotation //SCI2C: NIN=.

• The number of output annotations must be equal to NOUT.

• No blank lines should be inserted in the annotation section.

10

• The = symbol used in the assignment cannot be separated from the annota-
tion specifier:

– The following annotation is correct: //SCI2C: OUT(2).TP= ...

– The following annotation is wrong: //SCI2C: OUT(2).TP = ...

• To be sure that the annotation of the user code has been correctly interpreted
by Sci2C please check the .ann file generated by Sci2C when the .sci file is
read. Supposing that we are translating file myfun.sci, the user should access
the myfun.ann file generated by Sci2C in order to check that it contains the
right annotations.

Each of the above tag is explained below:

1. NIN
NIN specifies the number of input arguments that the function can handle.
This tag is useful for Sci2C functions that can handle different number of
input arguments, whereas it is not useful for User2C functions because they
must work with a fixed number of input arguments. NIN annotation tag
makes use of the following syntax:

//SCI2C: NIN= number

where:
number is a number specifying the number of input arguments.

2. NOUT
NOUT specifies the number of output arguments the function can handle.
This tag is useful for Sci2C functions that can handle different number of
output arguments, whereas it is not useful for User2C functions because they
must work with a fixed number of output arguments. NOUT annotation tag
makes use of the following syntax:

//SCI2C: NOUT= number

where:
number is a number specifying the number of output arguments.

3. TP
This tag specifies the type (and precision) of the returned output arguments.
The annotation section must contain a number of TP annotation tags equal
to the number of output arguments. TP annotation tag makes use of the
following syntax:

11

//SCI2C: OUT(k).TP= type expression

where:
k is a sequential number (from 1 to NOUT) indicating that we are annotat-
ing the type and precision of the k-th output argument.
type expression is an expression that specifies the type and precision of the
k-th output argument. Type expression can be a composition of the type
annotation functions listed below. In the following list, for each type anno-
tation function it is specified its number of input and output arguments, and
the result returned:

• FA TP S: NInArgs = 0, NOutArgs=1; when this function is invoked it
means that the output argument is of s type (real, float single precision).

• FA TP D: NInArgs = 0, NOutArgs=1; when this function is invoked
it means that the output argument is of d type (real, float double pre-
cision)..

• FA TP C: NInArgs = 0, NOutArgs=1; when this function is invoked
it means that the output argument is of c type (complex, float single
precision).

• FA TP Z: NInArgs = 0, NOutArgs=1; when this function is invoked
it means that the output argument is of z type (complex, float double
precision).

• FA TP UINT8: NInArgs = 0, NOutArgs=1; when this function is
invoked it means that the output argument is of u8 type (unsigned, 8
bit precision).

• FA TP UINT16: NInArgs = 0, NOutArgs=1; when this function is
invoked it means that the output argument is of u16 type (unsigned,
16 bit precision).

• FA TP INT8: NInArgs = 0, NOutArgs=1; when this function is in-
voked it means that the output argument is of i8 type (signed, 8 bit
precision).

• FA TP INT16: NInArgs = 0, NOutArgs=1; when this function is
invoked it means that the output argument is of i16 type (signed, 16
bit precision).

• FA TP USER: NInArgs = 0 NOutArgs=1; when this function is in-
voked it means that the output argument must be specified by the
user in the Scilab code. More specifically, the type and precision can be

12

specified in the Scilab code by using the following data annotation func-
tions: float, double, floatcomplex, doublecomplex (see section dedicated
to data annotation for more details).

• IN(m).TP: NInArgs = 0 NOutArgs=1; when this function is invoked
it will return the type and precision of the m-th input argument.

4. SZ
This tag specifies the size of the returned output arguments. The annotation
section must contain a number of SZ annotation tags equal to twice the
number of output arguments, this is because for each output argument two
SZ annotations are required, the first one specifying the number of rows and
the second one specifying the number of columns of the output argument.
SZ annotation tag makes use of the following syntax:

//SCI2C: OUT(k).SZ(1)= size expression
//SCI2C: OUT(k).SZ(2)= size expression

where: k is a sequential number (from 1 to NOUT) indicating that we are
annotating the size of the k-th output argument. .SZ is assumed to be a
2-element string array indicating the number of rows (.SZ(1)) and columns
(.SZ(2)) of the k-th output argument. Number of rows and columns can
be specified by using numbers or symbols. size expression is an expression
that specifies the size of the k-th output argument. Size expression can be
a composition of the size annotation functions listed below. For each size
annotation function it is specified its number of input and output arguments,
and the result returned:

• FA SZ 1: NInArgs = 1, NOutArgs=1; this function extracts the first
element of a two-element string array. It is useful to extract the num-
ber of rows from the size of an input argument as shows the following
example:

//SCI2C: OUT(k).SZ(2)= FA SZ 1(IN(m).SZ)

In this annotation we are indicating that the number of columns (.SZ(2))
of the k-th output argument is equal to the number of rows of the m-th
input argument. An equivalent annotation is the following one:

//SCI2C: OUT(k).SZ(2)= IN(m).SZ(1)

• FA SZ 2: NInArgs = 1, NOutArgs=1; this function extracts the sec-
ond element of a two-element string array. It is useful to extract the
number of columns from the size of an input argument as shows the
following example:

13

//SCI2C: OUT(k).SZ(1)= FA SZ 2(IN(m).SZ)

In this annotation we are indicating that the number of rows (.SZ(1))
of the k-th output argument is equal to the number of columns of the
m-th input argument. An equivalent annotation is the following one:

//SCI2C: OUT(k).SZ(1)= IN(m).SZ(2)

• FA SZ OPDOTSTAR: NInArgs = 2, NOutArgs=1; this function ac-
cepts two input .SZ string arrays and returns a .SZ string array which
specifies the size of the output argument returned by the .∗ operator.
This is a useful function to annotate functions that work with two input
arguments and return a single output argument whose size is a function
of the sizes of the input arguments according to the rules used for the
.∗ operator. For example for “./”, “.∗” “.̂” operators the following size
annotations can be adopted:

//SCI2C: OUT(1).SZ(1)=
FA SZ 1(FA SZ OPDOTSTAR(IN(1).SZ,IN(2).SZ))

//SCI2C: OUT(1).SZ(2)=
FA SZ 2(FA SZ OPDOTSTAR(IN(1).SZ,IN(2).SZ))

• FA SZ OPHAT: NInArgs = 2, NOutArgs=1; this function is an alias
for FA SZ OPDOTSTAR. This is because ˆ and .∗ operators have the
same behaviour for what concerns the size of the output argument.

• FA SZ OPMINUS: NInArgs = 2, NOutArgs=1; this function is an
alias for FA SZ OPDOTSTAR. This is because “−” and “.∗” opera-
tors have the same behaviour for what concerns the size of the output
argument.

• FA SZ OPPLUSA: NInArgs = 2, NOutArgs=1; this function is an
alias for FA SZ OPDOTSTAR. This is because “+” and “.∗“ opera-
tors have the same behaviour for what concerns the size of the output
argument.

• FA SZ OPSTAR: NInArgs = 2, NOutArgs=1; this function accepts
two input .SZ string arrays and returns a .SZ string array which spec-
ifies the size of the output argument returned by the ∗ operator. This
is a useful function to annotate functions that work with two input ar-
guments and return a single output argument whose size is a function
of the sizes of the input arguments according to the rules used for the
∗ operator. See the following example:

//SCI2C: OUT(1).SZ(1)=
FA SZ 1(FA SZ OPSTAR(IN(1).SZ,IN(2).SZ))

14

//SCI2C: OUT(1).SZ(2)=
FA SZ 2(FA SZ OPSTAR(IN(1).SZ,IN(2).SZ))

• FA ADD: NInArgs = 2, NOutArgs=1; this function accepts two input
strings returns a string which contains the sum of the two input strings
according to the following rules:

FA ADD(’3’,’43’) = ’46’
FA ADD(’symbol1’,’43’) = ’symbol1+43’

FA ADD(’symbol1’,’symbol2’) = ’symbol1+symbol2’

As shown in the examples above FA ADD performs a sum of the two
input strings when both strings contain numbers, otherwise the out-
put string will be a composition of the two input strings with the ”+“
symbol. This function is used to annotate functions that generate out-
puts whose size is given by adding the sizes of the input arguments.
Let’s consider, as example, the OpRc operator which implements the
row concatenation (”[,]“). Row concatenation is shown in the following
example:
A = [1 2 3; 3 4 5];
B = [4 5; 1 1];
C = [A,B]
According to the code above C is equal to [1 2 3 4 5; 3 4 5 1 1]
In terms of size, the number of rows of C is equal to the number of rows
of A (or B) and the number of columns of C is equal to the number of
columns of A plus the number of columns of B. It follows that the right
annotation for the OpRc operator is:

//SCI2C: NIN= 2 //SCI2C: NOUT= 1 //SCI2C: OUT(1).TP=
FA TP MAX(IN(1).TP,IN(2).TP) //SCI2C: OUT(1).SZ(1)=

IN(1).SZ(1) //SCI2C: OUT(1).SZ(2)=
FA ADD(IN(1).SZ(2),IN(2).SZ(2))

• FA SUB: NInArgs = 2, NOutArgs=1; this function has the same be-
haviour of FA ADD, but it performs a subtraction between the two
input arguments.

• FA MUL: NInArgs = 2, NOutArgs=1; this function has the same
behaviour of FA ADD, but it performs a multiplication between the
two input arguments.

• FA DIV: NInArgs = 2, NOutArgs=1; this function has the same be-
haviour of FA ADD, but it performs a division between the two input
arguments.

15

• FA MAX: NInArgs = 2, NOutArgs=1; this function has the same
behaviour of FA ADD, but computes the maximum between the two
arguments. When the two input arguments don’t specify a number,
the output argument will be equal to the first input argument. See the
following examples:
FA MAX(’3’,’55’) = ’55’
FA MAX(’3’,’a’) = ’3’
FA MAX(’cccc’,’a’) = ’cccc’
FA MAX(’cccc’,’88888888888888’) = ’cccc’

• FA INT: NInArgs = 1, NOutArgs=1; this function truncates to int
the input argument only if the input argument is a string specifying a
number. See the following examples:
FA INT(’3.444’) = ’3’
FA INT(’-3.444’) = ’-3’
FA INT(’ciao’) = ’ciao’

16

	User manual for Scilab2C
	Installation
	Prerequisites
	Installing Scilab2C
	Installing supporting packages

	Using Scilab2C for C code generation
	Generating standalone C code
	Generating code for Arduino
	Generating code for AVR
	Generating code for Raspberry Pi

	Function Annotations

