From db464f35f5a10b58d9ed1085e0b462689adee583 Mon Sep 17 00:00:00 2001 From: Siddhesh Wani Date: Mon, 25 May 2015 14:46:31 +0530 Subject: Original Version --- src/fortran/lapack/ztrsyl.f | 365 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 365 insertions(+) create mode 100644 src/fortran/lapack/ztrsyl.f (limited to 'src/fortran/lapack/ztrsyl.f') diff --git a/src/fortran/lapack/ztrsyl.f b/src/fortran/lapack/ztrsyl.f new file mode 100644 index 0000000..d2e0ecc --- /dev/null +++ b/src/fortran/lapack/ztrsyl.f @@ -0,0 +1,365 @@ + SUBROUTINE ZTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, + $ LDC, SCALE, INFO ) +* +* -- LAPACK routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER TRANA, TRANB + INTEGER INFO, ISGN, LDA, LDB, LDC, M, N + DOUBLE PRECISION SCALE +* .. +* .. Array Arguments .. + COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ) +* .. +* +* Purpose +* ======= +* +* ZTRSYL solves the complex Sylvester matrix equation: +* +* op(A)*X + X*op(B) = scale*C or +* op(A)*X - X*op(B) = scale*C, +* +* where op(A) = A or A**H, and A and B are both upper triangular. A is +* M-by-M and B is N-by-N; the right hand side C and the solution X are +* M-by-N; and scale is an output scale factor, set <= 1 to avoid +* overflow in X. +* +* Arguments +* ========= +* +* TRANA (input) CHARACTER*1 +* Specifies the option op(A): +* = 'N': op(A) = A (No transpose) +* = 'C': op(A) = A**H (Conjugate transpose) +* +* TRANB (input) CHARACTER*1 +* Specifies the option op(B): +* = 'N': op(B) = B (No transpose) +* = 'C': op(B) = B**H (Conjugate transpose) +* +* ISGN (input) INTEGER +* Specifies the sign in the equation: +* = +1: solve op(A)*X + X*op(B) = scale*C +* = -1: solve op(A)*X - X*op(B) = scale*C +* +* M (input) INTEGER +* The order of the matrix A, and the number of rows in the +* matrices X and C. M >= 0. +* +* N (input) INTEGER +* The order of the matrix B, and the number of columns in the +* matrices X and C. N >= 0. +* +* A (input) COMPLEX*16 array, dimension (LDA,M) +* The upper triangular matrix A. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* B (input) COMPLEX*16 array, dimension (LDB,N) +* The upper triangular matrix B. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,N). +* +* C (input/output) COMPLEX*16 array, dimension (LDC,N) +* On entry, the M-by-N right hand side matrix C. +* On exit, C is overwritten by the solution matrix X. +* +* LDC (input) INTEGER +* The leading dimension of the array C. LDC >= max(1,M) +* +* SCALE (output) DOUBLE PRECISION +* The scale factor, scale, set <= 1 to avoid overflow in X. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* = 1: A and B have common or very close eigenvalues; perturbed +* values were used to solve the equation (but the matrices +* A and B are unchanged). +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE + PARAMETER ( ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL NOTRNA, NOTRNB + INTEGER J, K, L + DOUBLE PRECISION BIGNUM, DA11, DB, EPS, SCALOC, SGN, SMIN, + $ SMLNUM + COMPLEX*16 A11, SUML, SUMR, VEC, X11 +* .. +* .. Local Arrays .. + DOUBLE PRECISION DUM( 1 ) +* .. +* .. External Functions .. + LOGICAL LSAME + DOUBLE PRECISION DLAMCH, ZLANGE + COMPLEX*16 ZDOTC, ZDOTU, ZLADIV + EXTERNAL LSAME, DLAMCH, ZLANGE, ZDOTC, ZDOTU, ZLADIV +* .. +* .. External Subroutines .. + EXTERNAL DLABAD, XERBLA, ZDSCAL +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN +* .. +* .. Executable Statements .. +* +* Decode and Test input parameters +* + NOTRNA = LSAME( TRANA, 'N' ) + NOTRNB = LSAME( TRANB, 'N' ) +* + INFO = 0 + IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'C' ) ) THEN + INFO = -1 + ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'C' ) ) THEN + INFO = -2 + ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN + INFO = -3 + ELSE IF( M.LT.0 ) THEN + INFO = -4 + ELSE IF( N.LT.0 ) THEN + INFO = -5 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -7 + ELSE IF( LDB.LT.MAX( 1, N ) ) THEN + INFO = -9 + ELSE IF( LDC.LT.MAX( 1, M ) ) THEN + INFO = -11 + END IF + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'ZTRSYL', -INFO ) + RETURN + END IF +* +* Quick return if possible +* + IF( M.EQ.0 .OR. N.EQ.0 ) + $ RETURN +* +* Set constants to control overflow +* + EPS = DLAMCH( 'P' ) + SMLNUM = DLAMCH( 'S' ) + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) + SMLNUM = SMLNUM*DBLE( M*N ) / EPS + BIGNUM = ONE / SMLNUM + SMIN = MAX( SMLNUM, EPS*ZLANGE( 'M', M, M, A, LDA, DUM ), + $ EPS*ZLANGE( 'M', N, N, B, LDB, DUM ) ) + SCALE = ONE + SGN = ISGN +* + IF( NOTRNA .AND. NOTRNB ) THEN +* +* Solve A*X + ISGN*X*B = scale*C. +* +* The (K,L)th block of X is determined starting from +* bottom-left corner column by column by +* +* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) +* +* Where +* M L-1 +* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. +* I=K+1 J=1 +* + DO 30 L = 1, N + DO 20 K = M, 1, -1 +* + SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA, + $ C( MIN( K+1, M ), L ), 1 ) + SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 ) + VEC = C( K, L ) - ( SUML+SGN*SUMR ) +* + SCALOC = ONE + A11 = A( K, K ) + SGN*B( L, L ) + DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) ) + IF( DA11.LE.SMIN ) THEN + A11 = SMIN + DA11 = SMIN + INFO = 1 + END IF + DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) ) + IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN + IF( DB.GT.BIGNUM*DA11 ) + $ SCALOC = ONE / DB + END IF + X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 ) +* + IF( SCALOC.NE.ONE ) THEN + DO 10 J = 1, N + CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 ) + 10 CONTINUE + SCALE = SCALE*SCALOC + END IF + C( K, L ) = X11 +* + 20 CONTINUE + 30 CONTINUE +* + ELSE IF( .NOT.NOTRNA .AND. NOTRNB ) THEN +* +* Solve A' *X + ISGN*X*B = scale*C. +* +* The (K,L)th block of X is determined starting from +* upper-left corner column by column by +* +* A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) +* +* Where +* K-1 L-1 +* R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] +* I=1 J=1 +* + DO 60 L = 1, N + DO 50 K = 1, M +* + SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 ) + SUMR = ZDOTU( L-1, C( K, 1 ), LDC, B( 1, L ), 1 ) + VEC = C( K, L ) - ( SUML+SGN*SUMR ) +* + SCALOC = ONE + A11 = DCONJG( A( K, K ) ) + SGN*B( L, L ) + DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) ) + IF( DA11.LE.SMIN ) THEN + A11 = SMIN + DA11 = SMIN + INFO = 1 + END IF + DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) ) + IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN + IF( DB.GT.BIGNUM*DA11 ) + $ SCALOC = ONE / DB + END IF +* + X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 ) +* + IF( SCALOC.NE.ONE ) THEN + DO 40 J = 1, N + CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 ) + 40 CONTINUE + SCALE = SCALE*SCALOC + END IF + C( K, L ) = X11 +* + 50 CONTINUE + 60 CONTINUE +* + ELSE IF( .NOT.NOTRNA .AND. .NOT.NOTRNB ) THEN +* +* Solve A'*X + ISGN*X*B' = C. +* +* The (K,L)th block of X is determined starting from +* upper-right corner column by column by +* +* A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) +* +* Where +* K-1 +* R(K,L) = SUM [A'(I,K)*X(I,L)] + +* I=1 +* N +* ISGN*SUM [X(K,J)*B'(L,J)]. +* J=L+1 +* + DO 90 L = N, 1, -1 + DO 80 K = 1, M +* + SUML = ZDOTC( K-1, A( 1, K ), 1, C( 1, L ), 1 ) + SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC, + $ B( L, MIN( L+1, N ) ), LDB ) + VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) ) +* + SCALOC = ONE + A11 = DCONJG( A( K, K )+SGN*B( L, L ) ) + DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) ) + IF( DA11.LE.SMIN ) THEN + A11 = SMIN + DA11 = SMIN + INFO = 1 + END IF + DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) ) + IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN + IF( DB.GT.BIGNUM*DA11 ) + $ SCALOC = ONE / DB + END IF +* + X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 ) +* + IF( SCALOC.NE.ONE ) THEN + DO 70 J = 1, N + CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 ) + 70 CONTINUE + SCALE = SCALE*SCALOC + END IF + C( K, L ) = X11 +* + 80 CONTINUE + 90 CONTINUE +* + ELSE IF( NOTRNA .AND. .NOT.NOTRNB ) THEN +* +* Solve A*X + ISGN*X*B' = C. +* +* The (K,L)th block of X is determined starting from +* bottom-left corner column by column by +* +* A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) +* +* Where +* M N +* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)] +* I=K+1 J=L+1 +* + DO 120 L = N, 1, -1 + DO 110 K = M, 1, -1 +* + SUML = ZDOTU( M-K, A( K, MIN( K+1, M ) ), LDA, + $ C( MIN( K+1, M ), L ), 1 ) + SUMR = ZDOTC( N-L, C( K, MIN( L+1, N ) ), LDC, + $ B( L, MIN( L+1, N ) ), LDB ) + VEC = C( K, L ) - ( SUML+SGN*DCONJG( SUMR ) ) +* + SCALOC = ONE + A11 = A( K, K ) + SGN*DCONJG( B( L, L ) ) + DA11 = ABS( DBLE( A11 ) ) + ABS( DIMAG( A11 ) ) + IF( DA11.LE.SMIN ) THEN + A11 = SMIN + DA11 = SMIN + INFO = 1 + END IF + DB = ABS( DBLE( VEC ) ) + ABS( DIMAG( VEC ) ) + IF( DA11.LT.ONE .AND. DB.GT.ONE ) THEN + IF( DB.GT.BIGNUM*DA11 ) + $ SCALOC = ONE / DB + END IF +* + X11 = ZLADIV( VEC*DCMPLX( SCALOC ), A11 ) +* + IF( SCALOC.NE.ONE ) THEN + DO 100 J = 1, N + CALL ZDSCAL( M, SCALOC, C( 1, J ), 1 ) + 100 CONTINUE + SCALE = SCALE*SCALOC + END IF + C( K, L ) = X11 +* + 110 CONTINUE + 120 CONTINUE +* + END IF +* + RETURN +* +* End of ZTRSYL +* + END -- cgit