From db464f35f5a10b58d9ed1085e0b462689adee583 Mon Sep 17 00:00:00 2001
From: Siddhesh Wani
Date: Mon, 25 May 2015 14:46:31 +0530
Subject: Original Version

---
 src/fortran/lapack/dgerqf.f | 213 ++++++++++++++++++++++++++++++++++++++++++++
 1 file changed, 213 insertions(+)
 create mode 100644 src/fortran/lapack/dgerqf.f

(limited to 'src/fortran/lapack/dgerqf.f')

diff --git a/src/fortran/lapack/dgerqf.f b/src/fortran/lapack/dgerqf.f
new file mode 100644
index 0000000..3dc2265
--- /dev/null
+++ b/src/fortran/lapack/dgerqf.f
@@ -0,0 +1,213 @@
+      SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      INTEGER            INFO, LDA, LWORK, M, N
+*     ..
+*     .. Array Arguments ..
+      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  DGERQF computes an RQ factorization of a real M-by-N matrix A:
+*  A = R * Q.
+*
+*  Arguments
+*  =========
+*
+*  M       (input) INTEGER
+*          The number of rows of the matrix A.  M >= 0.
+*
+*  N       (input) INTEGER
+*          The number of columns of the matrix A.  N >= 0.
+*
+*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
+*          On entry, the M-by-N matrix A.
+*          On exit,
+*          if m <= n, the upper triangle of the subarray
+*          A(1:m,n-m+1:n) contains the M-by-M upper triangular matrix R;
+*          if m >= n, the elements on and above the (m-n)-th subdiagonal
+*          contain the M-by-N upper trapezoidal matrix R;
+*          the remaining elements, with the array TAU, represent the
+*          orthogonal matrix Q as a product of min(m,n) elementary
+*          reflectors (see Further Details).
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A.  LDA >= max(1,M).
+*
+*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
+*          The scalar factors of the elementary reflectors (see Further
+*          Details).
+*
+*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
+*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+*  LWORK   (input) INTEGER
+*          The dimension of the array WORK.  LWORK >= max(1,M).
+*          For optimum performance LWORK >= M*NB, where NB is
+*          the optimal blocksize.
+*
+*          If LWORK = -1, then a workspace query is assumed; the routine
+*          only calculates the optimal size of the WORK array, returns
+*          this value as the first entry of the WORK array, and no error
+*          message related to LWORK is issued by XERBLA.
+*
+*  INFO    (output) INTEGER
+*          = 0:  successful exit
+*          < 0:  if INFO = -i, the i-th argument had an illegal value
+*
+*  Further Details
+*  ===============
+*
+*  The matrix Q is represented as a product of elementary reflectors
+*
+*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
+*
+*  Each H(i) has the form
+*
+*     H(i) = I - tau * v * v'
+*
+*  where tau is a real scalar, and v is a real vector with
+*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
+*  A(m-k+i,1:n-k+i-1), and tau in TAU(i).
+*
+*  =====================================================================
+*
+*     .. Local Scalars ..
+      LOGICAL            LQUERY
+      INTEGER            I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
+     $                   MU, NB, NBMIN, NU, NX
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           DGERQ2, DLARFB, DLARFT, XERBLA
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          MAX, MIN
+*     ..
+*     .. External Functions ..
+      INTEGER            ILAENV
+      EXTERNAL           ILAENV
+*     ..
+*     .. Executable Statements ..
+*
+*     Test the input arguments
+*
+      INFO = 0
+      LQUERY = ( LWORK.EQ.-1 )
+      IF( M.LT.0 ) THEN
+         INFO = -1
+      ELSE IF( N.LT.0 ) THEN
+         INFO = -2
+      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+         INFO = -4
+      END IF
+*
+      IF( INFO.EQ.0 ) THEN
+         K = MIN( M, N )
+         IF( K.EQ.0 ) THEN
+            LWKOPT = 1
+         ELSE
+            NB = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
+            LWKOPT = M*NB
+         END IF
+         WORK( 1 ) = LWKOPT
+*
+         IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN
+            INFO = -7
+         END IF
+      END IF
+*
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'DGERQF', -INFO )
+         RETURN
+      ELSE IF( LQUERY ) THEN
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      IF( K.EQ.0 ) THEN
+         RETURN
+      END IF
+*
+      NBMIN = 2
+      NX = 1
+      IWS = M
+      IF( NB.GT.1 .AND. NB.LT.K ) THEN
+*
+*        Determine when to cross over from blocked to unblocked code.
+*
+         NX = MAX( 0, ILAENV( 3, 'DGERQF', ' ', M, N, -1, -1 ) )
+         IF( NX.LT.K ) THEN
+*
+*           Determine if workspace is large enough for blocked code.
+*
+            LDWORK = M
+            IWS = LDWORK*NB
+            IF( LWORK.LT.IWS ) THEN
+*
+*              Not enough workspace to use optimal NB:  reduce NB and
+*              determine the minimum value of NB.
+*
+               NB = LWORK / LDWORK
+               NBMIN = MAX( 2, ILAENV( 2, 'DGERQF', ' ', M, N, -1,
+     $                 -1 ) )
+            END IF
+         END IF
+      END IF
+*
+      IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
+*
+*        Use blocked code initially.
+*        The last kk rows are handled by the block method.
+*
+         KI = ( ( K-NX-1 ) / NB )*NB
+         KK = MIN( K, KI+NB )
+*
+         DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
+            IB = MIN( K-I+1, NB )
+*
+*           Compute the RQ factorization of the current block
+*           A(m-k+i:m-k+i+ib-1,1:n-k+i+ib-1)
+*
+            CALL DGERQ2( IB, N-K+I+IB-1, A( M-K+I, 1 ), LDA, TAU( I ),
+     $                   WORK, IINFO )
+            IF( M-K+I.GT.1 ) THEN
+*
+*              Form the triangular factor of the block reflector
+*              H = H(i+ib-1) . . . H(i+1) H(i)
+*
+               CALL DLARFT( 'Backward', 'Rowwise', N-K+I+IB-1, IB,
+     $                      A( M-K+I, 1 ), LDA, TAU( I ), WORK, LDWORK )
+*
+*              Apply H to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
+*
+               CALL DLARFB( 'Right', 'No transpose', 'Backward',
+     $                      'Rowwise', M-K+I-1, N-K+I+IB-1, IB,
+     $                      A( M-K+I, 1 ), LDA, WORK, LDWORK, A, LDA,
+     $                      WORK( IB+1 ), LDWORK )
+            END IF
+   10    CONTINUE
+         MU = M - K + I + NB - 1
+         NU = N - K + I + NB - 1
+      ELSE
+         MU = M
+         NU = N
+      END IF
+*
+*     Use unblocked code to factor the last or only block
+*
+      IF( MU.GT.0 .AND. NU.GT.0 )
+     $   CALL DGERQ2( MU, NU, A, LDA, TAU, WORK, IINFO )
+*
+      WORK( 1 ) = IWS
+      RETURN
+*
+*     End of DGERQF
+*
+      END
-- 
cgit