diff options
Diffstat (limited to 'src/c/specialFunctions/erfinv/derfinvs.c')
-rw-r--r-- | src/c/specialFunctions/erfinv/derfinvs.c | 49 |
1 files changed, 49 insertions, 0 deletions
diff --git a/src/c/specialFunctions/erfinv/derfinvs.c b/src/c/specialFunctions/erfinv/derfinvs.c new file mode 100644 index 0000000..3f7fe76 --- /dev/null +++ b/src/c/specialFunctions/erfinv/derfinvs.c @@ -0,0 +1,49 @@ +/* Copyright (C) 2016 - IIT Bombay - FOSSEE + + This file must be used under the terms of the CeCILL. + This source file is licensed as described in the file COPYING, which + you should have received as part of this distribution. The terms + are also available at + http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + Author: Brijesh Gupta C R + Organization: FOSSEE, IIT Bombay + Email: toolbox@scilab.in +*/ + +#include <stdio.h> +#include <stdlib.h> +#include <math.h> +#include "erfinv.h" + +# define PI 3.1415927 + +double derfinvs (double inp1) +{ + double a[] = {0.88622692374517353,-1.6601283962374516,0.92661860147244357,-0.14110320437680104}; //Coefficients for the formula to calculate inverse error + double b[] = {-2.13505380615258078,1.46060340345661088,-0.33198239813321595,0.01197270616590528}; //Coefficients for the formula to calculate inverse error + double c[] = {-1.994216456587148,-1.87267416351196,3.60874665878559364,1.82365845766309853}; //Coefficients for the formula to calculate inverse error + double d[] = {3.74146294065960872,1.81848952562894617}; //Coefficients for the formula to calculate inverse error + + if ((inp1 > 1) || (inp1 < -1)) + { + return 0.0/0.0; // returns Nan + } + if ((inp1 >= -0.7) && (inp1 <= 0.7)) + { + double sq = inp1 * inp1; + return (inp1 * (((a[3]*sq+a[2]) * sq+a[1]) * sq+a[0]) / ((((b[3]*sq+b[2]) * sq+b[1]) * sq+b[0]) * sq+1)); //Inverse error formula + } + + else if ((inp1 > 0.7) && (inp1 < 1)) + { + double z = sqrt(-log((1-inp1)/2)); + return ((((c[3]*z+c[2]) * z+c[1]) * z+c[0]) / ((d[1]*z+d[0]) * z+1)); //Inverse error formula + } + + else if ((inp1 > -1) && (inp1 < 0.7)) + { + double z = sqrt(-log((1+inp1)/2)); + return (-(((c[3]*z+c[2]) * z+c[1]) * z+c[0]) / ((d[1]*z+d[0]) * z+1)); //Inverse error formula + } +} + |