diff options
Diffstat (limited to 'src/c/linearAlgebra/svd')
-rw-r--r-- | src/c/linearAlgebra/svd/.1.c.swp | bin | 0 -> 12288 bytes | |||
-rw-r--r-- | src/c/linearAlgebra/svd/dsvda.c | 126 | ||||
-rw-r--r-- | src/c/linearAlgebra/svd/zsvda.c | 173 |
3 files changed, 299 insertions, 0 deletions
diff --git a/src/c/linearAlgebra/svd/.1.c.swp b/src/c/linearAlgebra/svd/.1.c.swp Binary files differnew file mode 100644 index 0000000..81d9e9c --- /dev/null +++ b/src/c/linearAlgebra/svd/.1.c.swp diff --git a/src/c/linearAlgebra/svd/dsvda.c b/src/c/linearAlgebra/svd/dsvda.c new file mode 100644 index 0000000..e6af300 --- /dev/null +++ b/src/c/linearAlgebra/svd/dsvda.c @@ -0,0 +1,126 @@ +/* Copyright (C) 2017 - IIT Bombay - FOSSEE + + This file must be used under the terms of the CeCILL. + This source file is licensed as described in the file COPYING, which + you should have received as part of this distribution. The terms + are also available at + http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + Author: Sandeep Gupta + Organization: FOSSEE, IIT Bombay + Email: toolbox@scilab.in + + */ + +/*Funtion to find singular value decomposition of given matrix */ + +#include "lapack.h" +#include <stdio.h> +#include <stdlib.h> +#include "string.h" +#include <math.h> +#include "svd.h" +#include "matrixTranspose.h" + +int min(int a,int b); +int max(int a,int b); + +extern double dgesvd_(char*,char*,int*,int*,double*,int*,double*,double*,int*,\ + double*,int*,double *,int*,int*); + +/* DGESVD computes the singular value decomposition (SVD) of a real + M-by-N matrix A, optionally computing the left and/or right singular + vectors. The SVD is written + + A = U * SIGMA * transpose(V) */ + +void dsvda(double *in1,int row,int col,double in2,double nout,double *out1, \ + double *out2,double *out3){ + + char JOBU,JOBVT; + int j,k; + int LDU=1; /*Leading Dimension of U */ + int LDVT=1; /*Leading Dimension of VT */ + int M = row; + int N = col; + double *buf; + double *S,*U,*VT; + double *WORK; + + if((nout > 1 && in2 == 1) && (M != N)){ /* [U,S,VT] = svd(x,'e') */ + if(M > N){ + JOBU = 'S'; + JOBVT = 'A'; + LDVT = N; + } + else{ + JOBU = 'A'; + JOBVT = 'S'; + LDVT = min(M,N); + } + LDU = M; + U = (double*) malloc((double) (LDU)*min(M,N)*sizeof(double)); + VT = (double*) malloc((double) (LDVT)*N*sizeof(double)); + } + else if(nout > 1){ /* [U,S,VT = svd(x)] */ + JOBU = 'A'; /*If JOBU = 'A', U contains the M-by-M orthogonal matrix U */ + JOBVT = 'A'; /*JOBVT = 'A': all N rows of V**T are returned in the array VT;*/ + LDU = M; + LDVT = N; + U = (double*) malloc((double) M*M*sizeof(double)); + VT = (double*) malloc((double) N*N*sizeof(double)); + } + else{ /* ans = svd(x) */ + JOBU = 'N'; + JOBVT = 'N'; + } + int LDA = max(1,M); + + /* Making a copy of input matrix */ + buf = (double*) malloc((double)M*N*sizeof(double)); + memcpy(buf,in1,M*N*sizeof(double)); + + S = (double*)malloc((double)min(col,row)*sizeof(double)); + + int LWORK = 5*min(M,N); + WORK = (double*)malloc((double)LWORK*sizeof(double)); + int INFO = 0; /*For successful exit */ + + dgesvd_(&JOBU,&JOBVT,&M,&N,buf,&LDA,S,U,&LDU,VT,&LDVT,WORK,&LWORK,&INFO); + /*Subroutine DGESVD from Lapack lib. */ + + if (nout == 1){ /* ans = svd(x)*/ + memcpy(out1,S,min(row,col)*sizeof(double)); + //printf("%lf %lf %lf",*(S),*(S+1),*(S+2)); + } /* [U,S,VT] = svd(x) */ + else if(in2 == 0 && nout > 1){ + memcpy(out1,U,LDU*M*sizeof(double)); + //memcpy(out3,VT,LDVT*min(row,col)*sizeof(double)); + for(j=0;j<M;j++){ + for(k=0;k<N;k++){ + if(j == k) *((out2+j*(min(M,N)))+k) = *(S+j); + else *((out2+j*(min(M,N)))+k) = 0; + } + } + dtransposea(VT,LDVT,N,out3); + } + else{ + memcpy(out1,U,LDU*min(row,col)*sizeof(double)); + for(j=0;j<min(M,N);j++){ + for(k=0;k<min(M,N);k++){ + if(j == k) *((out2+j*(min(M,N)))+k) = *(S+j); + else *((out2+j*(min(M,N)))+k) = 0; + } + } + dtransposea(VT,LDVT,N,out3); + } +} + +int min(int a,int b){ + if(a > b) return b; + return a; +} + +int max(int a,int b){ + if(a > b) return a; + return b; +} diff --git a/src/c/linearAlgebra/svd/zsvda.c b/src/c/linearAlgebra/svd/zsvda.c new file mode 100644 index 0000000..0d36022 --- /dev/null +++ b/src/c/linearAlgebra/svd/zsvda.c @@ -0,0 +1,173 @@ +/* Copyright (C) 2017 - IIT Bombay - FOSSEE + + This file must be used under the terms of the CeCILL. + This source file is licensed as described in the file COPYING, which + you should have received as part of this distribution. The terms + are also available at + http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + Author: Sandeep Gupta + Organization: FOSSEE, IIT Bombay + Email: toolbox@scilab.in + + */ +#include "svd.h" +#include "lapack.h" +#include <stdio.h> +#include <stdlib.h> +#include "string.h" +#include "doubleComplex.h" +#include "matrixTranspose.h" +#include "conj.h" + +extern doubleComplex zgesvd_( char* , char* , int* , int* ,doubleComplex *,\ + int* , double* ,doubleComplex* , int* ,doubleComplex* , int* ,\ + doubleComplex* , int* , double* , int* ); + + +int Min(int a,int b){ + if(a > b) + return b; + return a; +} + +int Max(int a,int b){ + if(a > b) + return a; + else + return b; +} + +void zsvda(doubleComplex *in1,int row,int col,int in2,int nout, doubleComplex *out1,\ + doubleComplex *out2,doubleComplex *out3){ + + /* Allocating memory and copying the input in buf*/ + doubleComplex *buf; + buf = (doubleComplex *)malloc(row*col*sizeof(doubleComplex)); + memcpy(buf,in1,row*col*sizeof(doubleComplex)); + + /* Type of variable used */ + int i,j,k; + char JOBU,JOBVT; + int M = row; + int N = col; + int LDA,LDU,LDVT,LWORK,INFO; + + /*double precision array to store Sigma*/ + double *S; + S = (double *)malloc(Min(M,N)*sizeof(double)); + + /* amount of memory needed for work */ + LWORK = Max(1,2*Min(M,N)+Max(M,N)); + doubleComplex *WORK = malloc(Max(1,2*LWORK)*sizeof(doubleComplex)); + + double *RWORK; + RWORK = (double *)malloc(5*Min(M,N)*sizeof(double)); + + INFO = 0; + + if(nout == 1){ + JOBU = 'N'; + JOBVT = 'N'; + LDA = M; + LDU = M; + LDVT = N; + //doubleComplex *U,*VT; + //U = malloc(sizeof(doubleComplex)); + //VT = malloc(sizeof(doubleComplex)); + zgesvd_(&JOBU,&JOBVT,&M,&N,buf,&LDA,S,NULL,&LDU,NULL,&LDVT,WORK,&LWORK,RWORK,&INFO); + + //memcpy(out2,S,Min(M,N)*sizeof(double)); + for(i=0;i<Min(M,N);i++){ + out2[i] = DoubleComplex(S[i],0); + //out2[i] = S[i]; + //out2[i] = 0; + } + out1 = NULL; + out3 = NULL; + //for(i=0;i<Min(M,N);i++) printf("%lf ",S[i]); + //free(S); + } + else if(nout == 3){ + if(in2 == 0 || M == N){ + JOBU = 'A'; + JOBVT = 'A'; + LDA = M; + LDU = M; + LDVT = N; + doubleComplex *U = malloc(LDU*M*sizeof(doubleComplex)); + doubleComplex *VT = malloc(LDVT*N*sizeof(doubleComplex)); + + /*doubleComplex wopt; + LWORK = -1; + zgesvd_(&JOBU,&JOBVT,&M,&N,buf,&LDA,S,U,&LDU,VT,&LDVT,&wopt,&LWORK,RWORK,&INFO);*/ + + //LWORK = (int)zreals(wopt); + + WORK = (doubleComplex *)malloc(LWORK*sizeof(doubleComplex)); + zgesvd_(&JOBU,&JOBVT,&M,&N,buf,&LDA,S,U,&LDU,VT,&LDVT,WORK,&LWORK,RWORK,&INFO); + + memcpy(out1,U,LDU*Min(M,N)*sizeof(doubleComplex)); + //memcpy(out3,VT,N*N*sizeof(doubleComplex)); + for(i=0;i<N;i++){ + for(j=i;j<N;j++){ + out3[i+j*N] = zconjs(VT[j+i*N]); + out3[j+i*N] = zconjs(VT[i+j*N]); + } + } + //ztransposea(VT,LDVT,Min(M,N),out3); + /*for(i=0;i<N;i++){ + for(j=0;j<N;j++){ + printf("[ %lf %lf]",zreals(VT[i*N+j]),zimags(VT[i*N+j])); + } + printf("\n"); + }*/ + //free(U); + //free(VT); + } + else{ + LDA = M; + LDU = M; + if(M > N){ + JOBU = 'S'; + JOBVT = 'A'; + LDVT = N; + } + else{ + JOBU = 'A'; + JOBVT = 'S'; + LDVT = Min(M,N); + } + doubleComplex *U; + U = malloc(LDU*Min(M,N)*sizeof(doubleComplex)); + doubleComplex *VT; + VT = malloc(LDVT*N*sizeof(doubleComplex)); + zgesvd_(&JOBU,&JOBVT,&M,&N,buf,&LDA,S,U,&LDU,VT,&LDVT,WORK,&LWORK,RWORK,&INFO); + memcpy(out1,U,M*Min(M,N)*sizeof(doubleComplex)); + //ztransposea(VT,LDVT,Min(row,col),out3); + + /* These lines are added to patch an error of ZGESVD */ + /* + ij = i+(j-1)*N + ji = j+(i-1)*N + zstk(lV+ij-1) = conjg(zstk(lVT+ji-1)) + zstk(lV+ji-1) = conjg(zstk(lVT+ij-1)) + */ + for(i=0;i<Min(M,N);i++){ + for(j=0;j<N;j++){ + out3[j+i*N] = zconjs(VT[i+j*Min(M,N)]); + } + } + //free(U); + //free(VT); + } + /* output from zgesvd is copied to out2 variables in required format*/ + for(j=0;j<Min(M,N);j++){ + for(k=0;k<Min(M,N);k++){ + if(j == k) + out2[j*(Min(M,N))+k] = DoubleComplex(S[j],0); + else + out2[j*(Min(M,N))+k] = DoubleComplex(0,0); + } + } + } +} |