1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* -- LAPACK auxiliary routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
* ..
*
* Purpose
* =======
*
* DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
* [ A B ]
* [ B C ].
* On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
* eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
* eigenvector for RT1, giving the decomposition
*
* [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
* [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
*
* Arguments
* =========
*
* A (input) DOUBLE PRECISION
* The (1,1) element of the 2-by-2 matrix.
*
* B (input) DOUBLE PRECISION
* The (1,2) element and the conjugate of the (2,1) element of
* the 2-by-2 matrix.
*
* C (input) DOUBLE PRECISION
* The (2,2) element of the 2-by-2 matrix.
*
* RT1 (output) DOUBLE PRECISION
* The eigenvalue of larger absolute value.
*
* RT2 (output) DOUBLE PRECISION
* The eigenvalue of smaller absolute value.
*
* CS1 (output) DOUBLE PRECISION
* SN1 (output) DOUBLE PRECISION
* The vector (CS1, SN1) is a unit right eigenvector for RT1.
*
* Further Details
* ===============
*
* RT1 is accurate to a few ulps barring over/underflow.
*
* RT2 may be inaccurate if there is massive cancellation in the
* determinant A*C-B*B; higher precision or correctly rounded or
* correctly truncated arithmetic would be needed to compute RT2
* accurately in all cases.
*
* CS1 and SN1 are accurate to a few ulps barring over/underflow.
*
* Overflow is possible only if RT1 is within a factor of 5 of overflow.
* Underflow is harmless if the input data is 0 or exceeds
* underflow_threshold / macheps.
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION TWO
PARAMETER ( TWO = 2.0D0 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = 0.5D0 )
* ..
* .. Local Scalars ..
INTEGER SGN1, SGN2
DOUBLE PRECISION AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
$ TB, TN
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
* Compute the eigenvalues
*
SM = A + C
DF = A - C
ADF = ABS( DF )
TB = B + B
AB = ABS( TB )
IF( ABS( A ).GT.ABS( C ) ) THEN
ACMX = A
ACMN = C
ELSE
ACMX = C
ACMN = A
END IF
IF( ADF.GT.AB ) THEN
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
ELSE IF( ADF.LT.AB ) THEN
RT = AB*SQRT( ONE+( ADF / AB )**2 )
ELSE
*
* Includes case AB=ADF=0
*
RT = AB*SQRT( TWO )
END IF
IF( SM.LT.ZERO ) THEN
RT1 = HALF*( SM-RT )
SGN1 = -1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE IF( SM.GT.ZERO ) THEN
RT1 = HALF*( SM+RT )
SGN1 = 1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE
*
* Includes case RT1 = RT2 = 0
*
RT1 = HALF*RT
RT2 = -HALF*RT
SGN1 = 1
END IF
*
* Compute the eigenvector
*
IF( DF.GE.ZERO ) THEN
CS = DF + RT
SGN2 = 1
ELSE
CS = DF - RT
SGN2 = -1
END IF
ACS = ABS( CS )
IF( ACS.GT.AB ) THEN
CT = -TB / CS
SN1 = ONE / SQRT( ONE+CT*CT )
CS1 = CT*SN1
ELSE
IF( AB.EQ.ZERO ) THEN
CS1 = ONE
SN1 = ZERO
ELSE
TN = -CS / TB
CS1 = ONE / SQRT( ONE+TN*TN )
SN1 = TN*CS1
END IF
END IF
IF( SGN1.EQ.SGN2 ) THEN
TN = CS1
CS1 = -SN1
SN1 = TN
END IF
RETURN
*
* End of DLAEV2
*
END
|