From dd50e95a8193fb0faa846ccaa971a115ba69e71c Mon Sep 17 00:00:00 2001 From: Sandeep Gupta Date: Wed, 5 Jul 2017 12:41:25 +0530 Subject: LinearAlgebra and MatrixOperation Update --- 2.3-1/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h | 112 ---------------------- 1 file changed, 112 deletions(-) delete mode 100644 2.3-1/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h (limited to '2.3-1/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h') diff --git a/2.3-1/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h b/2.3-1/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h deleted file mode 100644 index 7f68f0e2..00000000 --- a/2.3-1/thirdparty/includes/GSL/gsl/gsl_sf_ellint.h +++ /dev/null @@ -1,112 +0,0 @@ -/* specfunc/gsl_sf_ellint.h - * - * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 3 of the License, or (at - * your option) any later version. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. - */ - -/* Author: G. Jungman */ - -#ifndef __GSL_SF_ELLINT_H__ -#define __GSL_SF_ELLINT_H__ - -#include -#include - -#undef __BEGIN_DECLS -#undef __END_DECLS -#ifdef __cplusplus -# define __BEGIN_DECLS extern "C" { -# define __END_DECLS } -#else -# define __BEGIN_DECLS /* empty */ -# define __END_DECLS /* empty */ -#endif - -__BEGIN_DECLS - - -/* Legendre form of complete elliptic integrals - * - * K(k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] - * E(k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, Pi/2}] - * - * exceptions: GSL_EDOM - */ -int gsl_sf_ellint_Kcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_Kcomp(double k, gsl_mode_t mode); - -int gsl_sf_ellint_Ecomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_Ecomp(double k, gsl_mode_t mode); - -int gsl_sf_ellint_Pcomp_e(double k, double n, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_Pcomp(double k, double n, gsl_mode_t mode); - -int gsl_sf_ellint_Dcomp_e(double k, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_Dcomp(double k, gsl_mode_t mode); - - -/* Legendre form of incomplete elliptic integrals - * - * F(phi,k) = Integral[1/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] - * E(phi,k) = Integral[ Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] - * P(phi,k,n) = Integral[(1 + n Sin[t]^2)^(-1)/Sqrt[1 - k^2 Sin[t]^2], {t, 0, phi}] - * D(phi,k,n) = R_D(1-Sin[phi]^2, 1-k^2 Sin[phi]^2, 1.0) - * - * F: [Carlson, Numerische Mathematik 33 (1979) 1, (4.1)] - * E: [Carlson, ", (4.2)] - * P: [Carlson, ", (4.3)] - * D: [Carlson, ", (4.4)] - * - * exceptions: GSL_EDOM - */ -int gsl_sf_ellint_F_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_F(double phi, double k, gsl_mode_t mode); - -int gsl_sf_ellint_E_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_E(double phi, double k, gsl_mode_t mode); - -int gsl_sf_ellint_P_e(double phi, double k, double n, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_P(double phi, double k, double n, gsl_mode_t mode); - -int gsl_sf_ellint_D_e(double phi, double k, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_D(double phi, double k, gsl_mode_t mode); - - -/* Carlson's symmetric basis of functions - * - * RC(x,y) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1)], {t,0,Inf}] - * RD(x,y,z) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2), {t,0,Inf}] - * RF(x,y,z) = 1/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2), {t,0,Inf}] - * RJ(x,y,z,p) = 3/2 Integral[(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1), {t,0,Inf}] - * - * exceptions: GSL_EDOM - */ -int gsl_sf_ellint_RC_e(double x, double y, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_RC(double x, double y, gsl_mode_t mode); - -int gsl_sf_ellint_RD_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_RD(double x, double y, double z, gsl_mode_t mode); - -int gsl_sf_ellint_RF_e(double x, double y, double z, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_RF(double x, double y, double z, gsl_mode_t mode); - -int gsl_sf_ellint_RJ_e(double x, double y, double z, double p, gsl_mode_t mode, gsl_sf_result * result); -double gsl_sf_ellint_RJ(double x, double y, double z, double p, gsl_mode_t mode); - - -__END_DECLS - -#endif /* __GSL_SF_ELLINT_H__ */ -- cgit