From a555820564d9f2e95ca8c97871339d3a5a2081c3 Mon Sep 17 00:00:00 2001
From: Ankit Raj
Date: Wed, 21 Jun 2017 10:26:59 +0530
Subject: Updated Scilab2C

---
 2.3-1/src/fortran/lapack/ztgsyl.f | 575 ++++++++++++++++++++++++++++++++++++++
 1 file changed, 575 insertions(+)
 create mode 100644 2.3-1/src/fortran/lapack/ztgsyl.f

(limited to '2.3-1/src/fortran/lapack/ztgsyl.f')

diff --git a/2.3-1/src/fortran/lapack/ztgsyl.f b/2.3-1/src/fortran/lapack/ztgsyl.f
new file mode 100644
index 00000000..af808a31
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/ztgsyl.f
@@ -0,0 +1,575 @@
+      SUBROUTINE ZTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
+     $                   LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
+     $                   IWORK, INFO )
+*
+*  -- LAPACK routine (version 3.1) --
+*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+*     November 2006
+*
+*     .. Scalar Arguments ..
+      CHARACTER          TRANS
+      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
+     $                   LWORK, M, N
+      DOUBLE PRECISION   DIF, SCALE
+*     ..
+*     .. Array Arguments ..
+      INTEGER            IWORK( * )
+      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
+     $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
+     $                   WORK( * )
+*     ..
+*
+*  Purpose
+*  =======
+*
+*  ZTGSYL solves the generalized Sylvester equation:
+*
+*              A * R - L * B = scale * C            (1)
+*              D * R - L * E = scale * F
+*
+*  where R and L are unknown m-by-n matrices, (A, D), (B, E) and
+*  (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
+*  respectively, with complex entries. A, B, D and E are upper
+*  triangular (i.e., (A,D) and (B,E) in generalized Schur form).
+*
+*  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
+*  is an output scaling factor chosen to avoid overflow.
+*
+*  In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
+*  is defined as
+*
+*         Z = [ kron(In, A)  -kron(B', Im) ]        (2)
+*             [ kron(In, D)  -kron(E', Im) ],
+*
+*  Here Ix is the identity matrix of size x and X' is the conjugate
+*  transpose of X. Kron(X, Y) is the Kronecker product between the
+*  matrices X and Y.
+*
+*  If TRANS = 'C', y in the conjugate transposed system Z'*y = scale*b
+*  is solved for, which is equivalent to solve for R and L in
+*
+*              A' * R + D' * L = scale * C           (3)
+*              R * B' + L * E' = scale * -F
+*
+*  This case (TRANS = 'C') is used to compute an one-norm-based estimate
+*  of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
+*  and (B,E), using ZLACON.
+*
+*  If IJOB >= 1, ZTGSYL computes a Frobenius norm-based estimate of
+*  Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
+*  reciprocal of the smallest singular value of Z.
+*
+*  This is a level-3 BLAS algorithm.
+*
+*  Arguments
+*  =========
+*
+*  TRANS   (input) CHARACTER*1
+*          = 'N': solve the generalized sylvester equation (1).
+*          = 'C': solve the "conjugate transposed" system (3).
+*
+*  IJOB    (input) INTEGER
+*          Specifies what kind of functionality to be performed.
+*          =0: solve (1) only.
+*          =1: The functionality of 0 and 3.
+*          =2: The functionality of 0 and 4.
+*          =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
+*              (look ahead strategy is used).
+*          =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
+*              (ZGECON on sub-systems is used).
+*          Not referenced if TRANS = 'C'.
+*
+*  M       (input) INTEGER
+*          The order of the matrices A and D, and the row dimension of
+*          the matrices C, F, R and L.
+*
+*  N       (input) INTEGER
+*          The order of the matrices B and E, and the column dimension
+*          of the matrices C, F, R and L.
+*
+*  A       (input) COMPLEX*16 array, dimension (LDA, M)
+*          The upper triangular matrix A.
+*
+*  LDA     (input) INTEGER
+*          The leading dimension of the array A. LDA >= max(1, M).
+*
+*  B       (input) COMPLEX*16 array, dimension (LDB, N)
+*          The upper triangular matrix B.
+*
+*  LDB     (input) INTEGER
+*          The leading dimension of the array B. LDB >= max(1, N).
+*
+*  C       (input/output) COMPLEX*16 array, dimension (LDC, N)
+*          On entry, C contains the right-hand-side of the first matrix
+*          equation in (1) or (3).
+*          On exit, if IJOB = 0, 1 or 2, C has been overwritten by
+*          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
+*          the solution achieved during the computation of the
+*          Dif-estimate.
+*
+*  LDC     (input) INTEGER
+*          The leading dimension of the array C. LDC >= max(1, M).
+*
+*  D       (input) COMPLEX*16 array, dimension (LDD, M)
+*          The upper triangular matrix D.
+*
+*  LDD     (input) INTEGER
+*          The leading dimension of the array D. LDD >= max(1, M).
+*
+*  E       (input) COMPLEX*16 array, dimension (LDE, N)
+*          The upper triangular matrix E.
+*
+*  LDE     (input) INTEGER
+*          The leading dimension of the array E. LDE >= max(1, N).
+*
+*  F       (input/output) COMPLEX*16 array, dimension (LDF, N)
+*          On entry, F contains the right-hand-side of the second matrix
+*          equation in (1) or (3).
+*          On exit, if IJOB = 0, 1 or 2, F has been overwritten by
+*          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
+*          the solution achieved during the computation of the
+*          Dif-estimate.
+*
+*  LDF     (input) INTEGER
+*          The leading dimension of the array F. LDF >= max(1, M).
+*
+*  DIF     (output) DOUBLE PRECISION
+*          On exit DIF is the reciprocal of a lower bound of the
+*          reciprocal of the Dif-function, i.e. DIF is an upper bound of
+*          Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
+*          IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
+*
+*  SCALE   (output) DOUBLE PRECISION
+*          On exit SCALE is the scaling factor in (1) or (3).
+*          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
+*          to a slightly perturbed system but the input matrices A, B,
+*          D and E have not been changed. If SCALE = 0, R and L will
+*          hold the solutions to the homogenious system with C = F = 0.
+*
+*  WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
+*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+*  LWORK   (input) INTEGER
+*          The dimension of the array WORK. LWORK > = 1.
+*          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
+*
+*          If LWORK = -1, then a workspace query is assumed; the routine
+*          only calculates the optimal size of the WORK array, returns
+*          this value as the first entry of the WORK array, and no error
+*          message related to LWORK is issued by XERBLA.
+*
+*  IWORK   (workspace) INTEGER array, dimension (M+N+2)
+*          If IJOB = 0, IWORK is not referenced.
+*
+*  INFO    (output) INTEGER
+*            =0: successful exit
+*            <0: If INFO = -i, the i-th argument had an illegal value.
+*            >0: (A, D) and (B, E) have common or very close
+*                eigenvalues.
+*
+*  Further Details
+*  ===============
+*
+*  Based on contributions by
+*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
+*     Umea University, S-901 87 Umea, Sweden.
+*
+*  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
+*      for Solving the Generalized Sylvester Equation and Estimating the
+*      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
+*      Department of Computing Science, Umea University, S-901 87 Umea,
+*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
+*      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
+*      No 1, 1996.
+*
+*  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
+*      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
+*      Appl., 15(4):1045-1060, 1994.
+*
+*  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
+*      Condition Estimators for Solving the Generalized Sylvester
+*      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
+*      July 1989, pp 745-751.
+*
+*  =====================================================================
+*  Replaced various illegal calls to CCOPY by calls to CLASET.
+*  Sven Hammarling, 1/5/02.
+*
+*     .. Parameters ..
+      DOUBLE PRECISION   ZERO, ONE
+      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+      COMPLEX*16         CZERO
+      PARAMETER          ( CZERO = (0.0D+0, 0.0D+0) )
+*     ..
+*     .. Local Scalars ..
+      LOGICAL            LQUERY, NOTRAN
+      INTEGER            I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
+     $                   LINFO, LWMIN, MB, NB, P, PQ, Q
+      DOUBLE PRECISION   DSCALE, DSUM, SCALE2, SCALOC
+*     ..
+*     .. External Functions ..
+      LOGICAL            LSAME
+      INTEGER            ILAENV
+      EXTERNAL           LSAME, ILAENV
+*     ..
+*     .. External Subroutines ..
+      EXTERNAL           XERBLA, ZGEMM, ZLACPY, ZLASET, ZSCAL, ZTGSY2
+*     ..
+*     .. Intrinsic Functions ..
+      INTRINSIC          DBLE, DCMPLX, MAX, SQRT
+*     ..
+*     .. Executable Statements ..
+*
+*     Decode and test input parameters
+*
+      INFO = 0
+      NOTRAN = LSAME( TRANS, 'N' )
+      LQUERY = ( LWORK.EQ.-1 )
+*
+      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
+         INFO = -1
+      ELSE IF( NOTRAN ) THEN
+         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
+            INFO = -2
+         END IF
+      END IF
+      IF( INFO.EQ.0 ) THEN
+         IF( M.LE.0 ) THEN
+            INFO = -3
+         ELSE IF( N.LE.0 ) THEN
+            INFO = -4
+         ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+            INFO = -6
+         ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+            INFO = -8
+         ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
+            INFO = -10
+         ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
+            INFO = -12
+         ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
+            INFO = -14
+         ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
+            INFO = -16
+         END IF
+      END IF
+*
+      IF( INFO.EQ.0 ) THEN
+         IF( NOTRAN ) THEN
+            IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
+               LWMIN = MAX( 1, 2*M*N )
+            ELSE
+               LWMIN = 1
+            END IF
+         ELSE
+            LWMIN = 1
+         END IF
+         WORK( 1 ) = LWMIN
+*
+         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+            INFO = -20
+         END IF
+      END IF
+*
+      IF( INFO.NE.0 ) THEN
+         CALL XERBLA( 'ZTGSYL', -INFO )
+         RETURN
+      ELSE IF( LQUERY ) THEN
+         RETURN
+      END IF
+*
+*     Quick return if possible
+*
+      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
+         SCALE = 1
+         IF( NOTRAN ) THEN
+            IF( IJOB.NE.0 ) THEN
+               DIF = 0
+            END IF
+         END IF
+         RETURN
+      END IF
+*
+*     Determine  optimal block sizes MB and NB
+*
+      MB = ILAENV( 2, 'ZTGSYL', TRANS, M, N, -1, -1 )
+      NB = ILAENV( 5, 'ZTGSYL', TRANS, M, N, -1, -1 )
+*
+      ISOLVE = 1
+      IFUNC = 0
+      IF( NOTRAN ) THEN
+         IF( IJOB.GE.3 ) THEN
+            IFUNC = IJOB - 2
+            CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
+            CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
+         ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
+            ISOLVE = 2
+         END IF
+      END IF
+*
+      IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
+     $     THEN
+*
+*        Use unblocked Level 2 solver
+*
+         DO 30 IROUND = 1, ISOLVE
+*
+            SCALE = ONE
+            DSCALE = ZERO
+            DSUM = ONE
+            PQ = M*N
+            CALL ZTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
+     $                   LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
+     $                   INFO )
+            IF( DSCALE.NE.ZERO ) THEN
+               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
+                  DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
+               ELSE
+                  DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
+               END IF
+            END IF
+            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
+               IF( NOTRAN ) THEN
+                  IFUNC = IJOB
+               END IF
+               SCALE2 = SCALE
+               CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
+               CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
+               CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
+               CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
+            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
+               CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
+               CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
+               SCALE = SCALE2
+            END IF
+   30    CONTINUE
+*
+         RETURN
+*
+      END IF
+*
+*     Determine block structure of A
+*
+      P = 0
+      I = 1
+   40 CONTINUE
+      IF( I.GT.M )
+     $   GO TO 50
+      P = P + 1
+      IWORK( P ) = I
+      I = I + MB
+      IF( I.GE.M )
+     $   GO TO 50
+      GO TO 40
+   50 CONTINUE
+      IWORK( P+1 ) = M + 1
+      IF( IWORK( P ).EQ.IWORK( P+1 ) )
+     $   P = P - 1
+*
+*     Determine block structure of B
+*
+      Q = P + 1
+      J = 1
+   60 CONTINUE
+      IF( J.GT.N )
+     $   GO TO 70
+*
+      Q = Q + 1
+      IWORK( Q ) = J
+      J = J + NB
+      IF( J.GE.N )
+     $   GO TO 70
+      GO TO 60
+*
+   70 CONTINUE
+      IWORK( Q+1 ) = N + 1
+      IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
+     $   Q = Q - 1
+*
+      IF( NOTRAN ) THEN
+         DO 150 IROUND = 1, ISOLVE
+*
+*           Solve (I, J) - subsystem
+*               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
+*               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
+*           for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
+*
+            PQ = 0
+            SCALE = ONE
+            DSCALE = ZERO
+            DSUM = ONE
+            DO 130 J = P + 2, Q
+               JS = IWORK( J )
+               JE = IWORK( J+1 ) - 1
+               NB = JE - JS + 1
+               DO 120 I = P, 1, -1
+                  IS = IWORK( I )
+                  IE = IWORK( I+1 ) - 1
+                  MB = IE - IS + 1
+                  CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
+     $                         B( JS, JS ), LDB, C( IS, JS ), LDC,
+     $                         D( IS, IS ), LDD, E( JS, JS ), LDE,
+     $                         F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
+     $                         LINFO )
+                  IF( LINFO.GT.0 )
+     $               INFO = LINFO
+                  PQ = PQ + MB*NB
+                  IF( SCALOC.NE.ONE ) THEN
+                     DO 80 K = 1, JS - 1
+                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
+     $                              C( 1, K ), 1 )
+                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
+     $                              F( 1, K ), 1 )
+   80                CONTINUE
+                     DO 90 K = JS, JE
+                        CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
+     $                              C( 1, K ), 1 )
+                        CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
+     $                              F( 1, K ), 1 )
+   90                CONTINUE
+                     DO 100 K = JS, JE
+                        CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
+     $                              C( IE+1, K ), 1 )
+                        CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
+     $                              F( IE+1, K ), 1 )
+  100                CONTINUE
+                     DO 110 K = JE + 1, N
+                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
+     $                              C( 1, K ), 1 )
+                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
+     $                              F( 1, K ), 1 )
+  110                CONTINUE
+                     SCALE = SCALE*SCALOC
+                  END IF
+*
+*                 Substitute R(I,J) and L(I,J) into remaining equation.
+*
+                  IF( I.GT.1 ) THEN
+                     CALL ZGEMM( 'N', 'N', IS-1, NB, MB,
+     $                           DCMPLX( -ONE, ZERO ), A( 1, IS ), LDA,
+     $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
+     $                           C( 1, JS ), LDC )
+                     CALL ZGEMM( 'N', 'N', IS-1, NB, MB,
+     $                           DCMPLX( -ONE, ZERO ), D( 1, IS ), LDD,
+     $                           C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
+     $                           F( 1, JS ), LDF )
+                  END IF
+                  IF( J.LT.Q ) THEN
+                     CALL ZGEMM( 'N', 'N', MB, N-JE, NB,
+     $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
+     $                           B( JS, JE+1 ), LDB,
+     $                           DCMPLX( ONE, ZERO ), C( IS, JE+1 ),
+     $                           LDC )
+                     CALL ZGEMM( 'N', 'N', MB, N-JE, NB,
+     $                           DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
+     $                           E( JS, JE+1 ), LDE,
+     $                           DCMPLX( ONE, ZERO ), F( IS, JE+1 ),
+     $                           LDF )
+                  END IF
+  120          CONTINUE
+  130       CONTINUE
+            IF( DSCALE.NE.ZERO ) THEN
+               IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
+                  DIF = SQRT( DBLE( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
+               ELSE
+                  DIF = SQRT( DBLE( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
+               END IF
+            END IF
+            IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
+               IF( NOTRAN ) THEN
+                  IFUNC = IJOB
+               END IF
+               SCALE2 = SCALE
+               CALL ZLACPY( 'F', M, N, C, LDC, WORK, M )
+               CALL ZLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
+               CALL ZLASET( 'F', M, N, CZERO, CZERO, C, LDC )
+               CALL ZLASET( 'F', M, N, CZERO, CZERO, F, LDF )
+            ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
+               CALL ZLACPY( 'F', M, N, WORK, M, C, LDC )
+               CALL ZLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
+               SCALE = SCALE2
+            END IF
+  150    CONTINUE
+      ELSE
+*
+*        Solve transposed (I, J)-subsystem
+*            A(I, I)' * R(I, J) + D(I, I)' * L(I, J) = C(I, J)
+*            R(I, J) * B(J, J)  + L(I, J) * E(J, J) = -F(I, J)
+*        for I = 1,2,..., P; J = Q, Q-1,..., 1
+*
+         SCALE = ONE
+         DO 210 I = 1, P
+            IS = IWORK( I )
+            IE = IWORK( I+1 ) - 1
+            MB = IE - IS + 1
+            DO 200 J = Q, P + 2, -1
+               JS = IWORK( J )
+               JE = IWORK( J+1 ) - 1
+               NB = JE - JS + 1
+               CALL ZTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
+     $                      B( JS, JS ), LDB, C( IS, JS ), LDC,
+     $                      D( IS, IS ), LDD, E( JS, JS ), LDE,
+     $                      F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
+     $                      LINFO )
+               IF( LINFO.GT.0 )
+     $            INFO = LINFO
+               IF( SCALOC.NE.ONE ) THEN
+                  DO 160 K = 1, JS - 1
+                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
+     $                           1 )
+                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
+     $                           1 )
+  160             CONTINUE
+                  DO 170 K = JS, JE
+                     CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
+     $                           C( 1, K ), 1 )
+                     CALL ZSCAL( IS-1, DCMPLX( SCALOC, ZERO ),
+     $                           F( 1, K ), 1 )
+  170             CONTINUE
+                  DO 180 K = JS, JE
+                     CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
+     $                           C( IE+1, K ), 1 )
+                     CALL ZSCAL( M-IE, DCMPLX( SCALOC, ZERO ),
+     $                           F( IE+1, K ), 1 )
+  180             CONTINUE
+                  DO 190 K = JE + 1, N
+                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
+     $                           1 )
+                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
+     $                           1 )
+  190             CONTINUE
+                  SCALE = SCALE*SCALOC
+               END IF
+*
+*              Substitute R(I,J) and L(I,J) into remaining equation.
+*
+               IF( J.GT.P+2 ) THEN
+                  CALL ZGEMM( 'N', 'C', MB, JS-1, NB,
+     $                        DCMPLX( ONE, ZERO ), C( IS, JS ), LDC,
+     $                        B( 1, JS ), LDB, DCMPLX( ONE, ZERO ),
+     $                        F( IS, 1 ), LDF )
+                  CALL ZGEMM( 'N', 'C', MB, JS-1, NB,
+     $                        DCMPLX( ONE, ZERO ), F( IS, JS ), LDF,
+     $                        E( 1, JS ), LDE, DCMPLX( ONE, ZERO ),
+     $                        F( IS, 1 ), LDF )
+               END IF
+               IF( I.LT.P ) THEN
+                  CALL ZGEMM( 'C', 'N', M-IE, NB, MB,
+     $                        DCMPLX( -ONE, ZERO ), A( IS, IE+1 ), LDA,
+     $                        C( IS, JS ), LDC, DCMPLX( ONE, ZERO ),
+     $                        C( IE+1, JS ), LDC )
+                  CALL ZGEMM( 'C', 'N', M-IE, NB, MB,
+     $                        DCMPLX( -ONE, ZERO ), D( IS, IE+1 ), LDD,
+     $                        F( IS, JS ), LDF, DCMPLX( ONE, ZERO ),
+     $                        C( IE+1, JS ), LDC )
+               END IF
+  200       CONTINUE
+  210    CONTINUE
+      END IF
+*
+      WORK( 1 ) = LWMIN
+*
+      RETURN
+*
+*     End of ZTGSYL
+*
+      END
-- 
cgit