From a555820564d9f2e95ca8c97871339d3a5a2081c3 Mon Sep 17 00:00:00 2001 From: Ankit Raj Date: Wed, 21 Jun 2017 10:26:59 +0530 Subject: Updated Scilab2C --- 2.3-1/src/fortran/lapack/dgelss.f | 617 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 617 insertions(+) create mode 100644 2.3-1/src/fortran/lapack/dgelss.f (limited to '2.3-1/src/fortran/lapack/dgelss.f') diff --git a/2.3-1/src/fortran/lapack/dgelss.f b/2.3-1/src/fortran/lapack/dgelss.f new file mode 100644 index 00000000..f024e138 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dgelss.f @@ -0,0 +1,617 @@ + SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, + $ WORK, LWORK, INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK + DOUBLE PRECISION RCOND +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* DGELSS computes the minimum norm solution to a real linear least +* squares problem: +* +* Minimize 2-norm(| b - A*x |). +* +* using the singular value decomposition (SVD) of A. A is an M-by-N +* matrix which may be rank-deficient. +* +* Several right hand side vectors b and solution vectors x can be +* handled in a single call; they are stored as the columns of the +* M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix +* X. +* +* The effective rank of A is determined by treating as zero those +* singular values which are less than RCOND times the largest singular +* value. +* +* Arguments +* ========= +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of right hand sides, i.e., the number of columns +* of the matrices B and X. NRHS >= 0. +* +* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) +* On entry, the M-by-N matrix A. +* On exit, the first min(m,n) rows of A are overwritten with +* its right singular vectors, stored rowwise. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) +* On entry, the M-by-NRHS right hand side matrix B. +* On exit, B is overwritten by the N-by-NRHS solution +* matrix X. If m >= n and RANK = n, the residual +* sum-of-squares for the solution in the i-th column is given +* by the sum of squares of elements n+1:m in that column. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= max(1,max(M,N)). +* +* S (output) DOUBLE PRECISION array, dimension (min(M,N)) +* The singular values of A in decreasing order. +* The condition number of A in the 2-norm = S(1)/S(min(m,n)). +* +* RCOND (input) DOUBLE PRECISION +* RCOND is used to determine the effective rank of A. +* Singular values S(i) <= RCOND*S(1) are treated as zero. +* If RCOND < 0, machine precision is used instead. +* +* RANK (output) INTEGER +* The effective rank of A, i.e., the number of singular values +* which are greater than RCOND*S(1). +* +* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. LWORK >= 1, and also: +* LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS ) +* For good performance, LWORK should generally be larger. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value. +* > 0: the algorithm for computing the SVD failed to converge; +* if INFO = i, i off-diagonal elements of an intermediate +* bidiagonal form did not converge to zero. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY + INTEGER BDSPAC, BL, CHUNK, I, IASCL, IBSCL, IE, IL, + $ ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN, + $ MAXWRK, MINMN, MINWRK, MM, MNTHR + DOUBLE PRECISION ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR +* .. +* .. Local Arrays .. + DOUBLE PRECISION VDUM( 1 ) +* .. +* .. External Subroutines .. + EXTERNAL DBDSQR, DCOPY, DGEBRD, DGELQF, DGEMM, DGEMV, + $ DGEQRF, DLABAD, DLACPY, DLASCL, DLASET, DORGBR, + $ DORMBR, DORMLQ, DORMQR, DRSCL, XERBLA +* .. +* .. External Functions .. + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANGE + EXTERNAL ILAENV, DLAMCH, DLANGE +* .. +* .. Intrinsic Functions .. + INTRINSIC MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input arguments +* + INFO = 0 + MINMN = MIN( M, N ) + MAXMN = MAX( M, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( M.LT.0 ) THEN + INFO = -1 + ELSE IF( N.LT.0 ) THEN + INFO = -2 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -3 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -5 + ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN + INFO = -7 + END IF +* +* Compute workspace +* (Note: Comments in the code beginning "Workspace:" describe the +* minimal amount of workspace needed at that point in the code, +* as well as the preferred amount for good performance. +* NB refers to the optimal block size for the immediately +* following subroutine, as returned by ILAENV.) +* + IF( INFO.EQ.0 ) THEN + MINWRK = 1 + MAXWRK = 1 + IF( MINMN.GT.0 ) THEN + MM = M + MNTHR = ILAENV( 6, 'DGELSS', ' ', M, N, NRHS, -1 ) + IF( M.GE.N .AND. M.GE.MNTHR ) THEN +* +* Path 1a - overdetermined, with many more rows than +* columns +* + MM = N + MAXWRK = MAX( MAXWRK, N + N*ILAENV( 1, 'DGEQRF', ' ', M, + $ N, -1, -1 ) ) + MAXWRK = MAX( MAXWRK, N + NRHS*ILAENV( 1, 'DORMQR', 'LT', + $ M, NRHS, N, -1 ) ) + END IF + IF( M.GE.N ) THEN +* +* Path 1 - overdetermined or exactly determined +* +* Compute workspace needed for DBDSQR +* + BDSPAC = MAX( 1, 5*N ) + MAXWRK = MAX( MAXWRK, 3*N + ( MM + N )*ILAENV( 1, + $ 'DGEBRD', ' ', MM, N, -1, -1 ) ) + MAXWRK = MAX( MAXWRK, 3*N + NRHS*ILAENV( 1, 'DORMBR', + $ 'QLT', MM, NRHS, N, -1 ) ) + MAXWRK = MAX( MAXWRK, 3*N + ( N - 1 )*ILAENV( 1, + $ 'DORGBR', 'P', N, N, N, -1 ) ) + MAXWRK = MAX( MAXWRK, BDSPAC ) + MAXWRK = MAX( MAXWRK, N*NRHS ) + MINWRK = MAX( 3*N + MM, 3*N + NRHS, BDSPAC ) + MAXWRK = MAX( MINWRK, MAXWRK ) + END IF + IF( N.GT.M ) THEN +* +* Compute workspace needed for DBDSQR +* + BDSPAC = MAX( 1, 5*M ) + MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC ) + IF( N.GE.MNTHR ) THEN +* +* Path 2a - underdetermined, with many more columns +* than rows +* + MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, + $ -1 ) + MAXWRK = MAX( MAXWRK, M*M + 4*M + 2*M*ILAENV( 1, + $ 'DGEBRD', ' ', M, M, -1, -1 ) ) + MAXWRK = MAX( MAXWRK, M*M + 4*M + NRHS*ILAENV( 1, + $ 'DORMBR', 'QLT', M, NRHS, M, -1 ) ) + MAXWRK = MAX( MAXWRK, M*M + 4*M + + $ ( M - 1 )*ILAENV( 1, 'DORGBR', 'P', M, + $ M, M, -1 ) ) + MAXWRK = MAX( MAXWRK, M*M + M + BDSPAC ) + IF( NRHS.GT.1 ) THEN + MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS ) + ELSE + MAXWRK = MAX( MAXWRK, M*M + 2*M ) + END IF + MAXWRK = MAX( MAXWRK, M + NRHS*ILAENV( 1, 'DORMLQ', + $ 'LT', N, NRHS, M, -1 ) ) + ELSE +* +* Path 2 - underdetermined +* + MAXWRK = 3*M + ( N + M )*ILAENV( 1, 'DGEBRD', ' ', M, + $ N, -1, -1 ) + MAXWRK = MAX( MAXWRK, 3*M + NRHS*ILAENV( 1, 'DORMBR', + $ 'QLT', M, NRHS, M, -1 ) ) + MAXWRK = MAX( MAXWRK, 3*M + M*ILAENV( 1, 'DORGBR', + $ 'P', M, N, M, -1 ) ) + MAXWRK = MAX( MAXWRK, BDSPAC ) + MAXWRK = MAX( MAXWRK, N*NRHS ) + END IF + END IF + MAXWRK = MAX( MINWRK, MAXWRK ) + END IF + WORK( 1 ) = MAXWRK +* + IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) + $ INFO = -12 + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGELSS', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( M.EQ.0 .OR. N.EQ.0 ) THEN + RANK = 0 + RETURN + END IF +* +* Get machine parameters +* + EPS = DLAMCH( 'P' ) + SFMIN = DLAMCH( 'S' ) + SMLNUM = SFMIN / EPS + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) +* +* Scale A if max element outside range [SMLNUM,BIGNUM] +* + ANRM = DLANGE( 'M', M, N, A, LDA, WORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 ) + RANK = 0 + GO TO 70 + END IF +* +* Scale B if max element outside range [SMLNUM,BIGNUM] +* + BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) + IBSCL = 2 + END IF +* +* Overdetermined case +* + IF( M.GE.N ) THEN +* +* Path 1 - overdetermined or exactly determined +* + MM = M + IF( M.GE.MNTHR ) THEN +* +* Path 1a - overdetermined, with many more rows than columns +* + MM = N + ITAU = 1 + IWORK = ITAU + N +* +* Compute A=Q*R +* (Workspace: need 2*N, prefer N+N*NB) +* + CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), + $ LWORK-IWORK+1, INFO ) +* +* Multiply B by transpose(Q) +* (Workspace: need N+NRHS, prefer N+NRHS*NB) +* + CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B, + $ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) +* +* Zero out below R +* + IF( N.GT.1 ) + $ CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA ) + END IF +* + IE = 1 + ITAUQ = IE + N + ITAUP = ITAUQ + N + IWORK = ITAUP + N +* +* Bidiagonalize R in A +* (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) +* + CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ), + $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, + $ INFO ) +* +* Multiply B by transpose of left bidiagonalizing vectors of R +* (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) +* + CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ), + $ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) +* +* Generate right bidiagonalizing vectors of R in A +* (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) +* + CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ), + $ WORK( IWORK ), LWORK-IWORK+1, INFO ) + IWORK = IE + N +* +* Perform bidiagonal QR iteration +* multiply B by transpose of left singular vectors +* compute right singular vectors in A +* (Workspace: need BDSPAC) +* + CALL DBDSQR( 'U', N, N, 0, NRHS, S, WORK( IE ), A, LDA, VDUM, + $ 1, B, LDB, WORK( IWORK ), INFO ) + IF( INFO.NE.0 ) + $ GO TO 70 +* +* Multiply B by reciprocals of singular values +* + THR = MAX( RCOND*S( 1 ), SFMIN ) + IF( RCOND.LT.ZERO ) + $ THR = MAX( EPS*S( 1 ), SFMIN ) + RANK = 0 + DO 10 I = 1, N + IF( S( I ).GT.THR ) THEN + CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB ) + RANK = RANK + 1 + ELSE + CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB ) + END IF + 10 CONTINUE +* +* Multiply B by right singular vectors +* (Workspace: need N, prefer N*NRHS) +* + IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN + CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, A, LDA, B, LDB, ZERO, + $ WORK, LDB ) + CALL DLACPY( 'G', N, NRHS, WORK, LDB, B, LDB ) + ELSE IF( NRHS.GT.1 ) THEN + CHUNK = LWORK / N + DO 20 I = 1, NRHS, CHUNK + BL = MIN( NRHS-I+1, CHUNK ) + CALL DGEMM( 'T', 'N', N, BL, N, ONE, A, LDA, B( 1, I ), + $ LDB, ZERO, WORK, N ) + CALL DLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB ) + 20 CONTINUE + ELSE + CALL DGEMV( 'T', N, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 ) + CALL DCOPY( N, WORK, 1, B, 1 ) + END IF +* + ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+ + $ MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN +* +* Path 2a - underdetermined, with many more columns than rows +* and sufficient workspace for an efficient algorithm +* + LDWORK = M + IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ), + $ M*LDA+M+M*NRHS ) )LDWORK = LDA + ITAU = 1 + IWORK = M + 1 +* +* Compute A=L*Q +* (Workspace: need 2*M, prefer M+M*NB) +* + CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ), + $ LWORK-IWORK+1, INFO ) + IL = IWORK +* +* Copy L to WORK(IL), zeroing out above it +* + CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK ) + CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ), + $ LDWORK ) + IE = IL + LDWORK*M + ITAUQ = IE + M + ITAUP = ITAUQ + M + IWORK = ITAUP + M +* +* Bidiagonalize L in WORK(IL) +* (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) +* + CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ), + $ WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ), + $ LWORK-IWORK+1, INFO ) +* +* Multiply B by transpose of left bidiagonalizing vectors of L +* (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) +* + CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK, + $ WORK( ITAUQ ), B, LDB, WORK( IWORK ), + $ LWORK-IWORK+1, INFO ) +* +* Generate right bidiagonalizing vectors of R in WORK(IL) +* (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB) +* + CALL DORGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ), + $ WORK( IWORK ), LWORK-IWORK+1, INFO ) + IWORK = IE + M +* +* Perform bidiagonal QR iteration, +* computing right singular vectors of L in WORK(IL) and +* multiplying B by transpose of left singular vectors +* (Workspace: need M*M+M+BDSPAC) +* + CALL DBDSQR( 'U', M, M, 0, NRHS, S, WORK( IE ), WORK( IL ), + $ LDWORK, A, LDA, B, LDB, WORK( IWORK ), INFO ) + IF( INFO.NE.0 ) + $ GO TO 70 +* +* Multiply B by reciprocals of singular values +* + THR = MAX( RCOND*S( 1 ), SFMIN ) + IF( RCOND.LT.ZERO ) + $ THR = MAX( EPS*S( 1 ), SFMIN ) + RANK = 0 + DO 30 I = 1, M + IF( S( I ).GT.THR ) THEN + CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB ) + RANK = RANK + 1 + ELSE + CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB ) + END IF + 30 CONTINUE + IWORK = IE +* +* Multiply B by right singular vectors of L in WORK(IL) +* (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS) +* + IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN + CALL DGEMM( 'T', 'N', M, NRHS, M, ONE, WORK( IL ), LDWORK, + $ B, LDB, ZERO, WORK( IWORK ), LDB ) + CALL DLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB ) + ELSE IF( NRHS.GT.1 ) THEN + CHUNK = ( LWORK-IWORK+1 ) / M + DO 40 I = 1, NRHS, CHUNK + BL = MIN( NRHS-I+1, CHUNK ) + CALL DGEMM( 'T', 'N', M, BL, M, ONE, WORK( IL ), LDWORK, + $ B( 1, I ), LDB, ZERO, WORK( IWORK ), M ) + CALL DLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ), + $ LDB ) + 40 CONTINUE + ELSE + CALL DGEMV( 'T', M, M, ONE, WORK( IL ), LDWORK, B( 1, 1 ), + $ 1, ZERO, WORK( IWORK ), 1 ) + CALL DCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 ) + END IF +* +* Zero out below first M rows of B +* + CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB ) + IWORK = ITAU + M +* +* Multiply transpose(Q) by B +* (Workspace: need M+NRHS, prefer M+NRHS*NB) +* + CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B, + $ LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) +* + ELSE +* +* Path 2 - remaining underdetermined cases +* + IE = 1 + ITAUQ = IE + M + ITAUP = ITAUQ + M + IWORK = ITAUP + M +* +* Bidiagonalize A +* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) +* + CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ), + $ WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1, + $ INFO ) +* +* Multiply B by transpose of left bidiagonalizing vectors +* (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) +* + CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ), + $ B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO ) +* +* Generate right bidiagonalizing vectors in A +* (Workspace: need 4*M, prefer 3*M+M*NB) +* + CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ), + $ WORK( IWORK ), LWORK-IWORK+1, INFO ) + IWORK = IE + M +* +* Perform bidiagonal QR iteration, +* computing right singular vectors of A in A and +* multiplying B by transpose of left singular vectors +* (Workspace: need BDSPAC) +* + CALL DBDSQR( 'L', M, N, 0, NRHS, S, WORK( IE ), A, LDA, VDUM, + $ 1, B, LDB, WORK( IWORK ), INFO ) + IF( INFO.NE.0 ) + $ GO TO 70 +* +* Multiply B by reciprocals of singular values +* + THR = MAX( RCOND*S( 1 ), SFMIN ) + IF( RCOND.LT.ZERO ) + $ THR = MAX( EPS*S( 1 ), SFMIN ) + RANK = 0 + DO 50 I = 1, M + IF( S( I ).GT.THR ) THEN + CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB ) + RANK = RANK + 1 + ELSE + CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB ) + END IF + 50 CONTINUE +* +* Multiply B by right singular vectors of A +* (Workspace: need N, prefer N*NRHS) +* + IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN + CALL DGEMM( 'T', 'N', N, NRHS, M, ONE, A, LDA, B, LDB, ZERO, + $ WORK, LDB ) + CALL DLACPY( 'F', N, NRHS, WORK, LDB, B, LDB ) + ELSE IF( NRHS.GT.1 ) THEN + CHUNK = LWORK / N + DO 60 I = 1, NRHS, CHUNK + BL = MIN( NRHS-I+1, CHUNK ) + CALL DGEMM( 'T', 'N', N, BL, M, ONE, A, LDA, B( 1, I ), + $ LDB, ZERO, WORK, N ) + CALL DLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB ) + 60 CONTINUE + ELSE + CALL DGEMV( 'T', M, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 ) + CALL DCOPY( N, WORK, 1, B, 1 ) + END IF + END IF +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) + CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) + CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) + END IF +* + 70 CONTINUE + WORK( 1 ) = MAXWRK + RETURN +* +* End of DGELSS +* + END -- cgit