From 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 Mon Sep 17 00:00:00 2001 From: Siddhesh Wani Date: Mon, 25 May 2015 14:46:31 +0530 Subject: Original Version --- 2.3-1/src/fortran/lapack/dgels.f | 422 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 422 insertions(+) create mode 100644 2.3-1/src/fortran/lapack/dgels.f (limited to '2.3-1/src/fortran/lapack/dgels.f') diff --git a/2.3-1/src/fortran/lapack/dgels.f b/2.3-1/src/fortran/lapack/dgels.f new file mode 100644 index 00000000..4fa1e229 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dgels.f @@ -0,0 +1,422 @@ + SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, + $ INFO ) +* +* -- LAPACK driver routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + CHARACTER TRANS + INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS +* .. +* .. Array Arguments .. + DOUBLE PRECISION A( LDA, * ), B( LDB, * ), WORK( * ) +* .. +* +* Purpose +* ======= +* +* DGELS solves overdetermined or underdetermined real linear systems +* involving an M-by-N matrix A, or its transpose, using a QR or LQ +* factorization of A. It is assumed that A has full rank. +* +* The following options are provided: +* +* 1. If TRANS = 'N' and m >= n: find the least squares solution of +* an overdetermined system, i.e., solve the least squares problem +* minimize || B - A*X ||. +* +* 2. If TRANS = 'N' and m < n: find the minimum norm solution of +* an underdetermined system A * X = B. +* +* 3. If TRANS = 'T' and m >= n: find the minimum norm solution of +* an undetermined system A**T * X = B. +* +* 4. If TRANS = 'T' and m < n: find the least squares solution of +* an overdetermined system, i.e., solve the least squares problem +* minimize || B - A**T * X ||. +* +* Several right hand side vectors b and solution vectors x can be +* handled in a single call; they are stored as the columns of the +* M-by-NRHS right hand side matrix B and the N-by-NRHS solution +* matrix X. +* +* Arguments +* ========= +* +* TRANS (input) CHARACTER*1 +* = 'N': the linear system involves A; +* = 'T': the linear system involves A**T. +* +* M (input) INTEGER +* The number of rows of the matrix A. M >= 0. +* +* N (input) INTEGER +* The number of columns of the matrix A. N >= 0. +* +* NRHS (input) INTEGER +* The number of right hand sides, i.e., the number of +* columns of the matrices B and X. NRHS >=0. +* +* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) +* On entry, the M-by-N matrix A. +* On exit, +* if M >= N, A is overwritten by details of its QR +* factorization as returned by DGEQRF; +* if M < N, A is overwritten by details of its LQ +* factorization as returned by DGELQF. +* +* LDA (input) INTEGER +* The leading dimension of the array A. LDA >= max(1,M). +* +* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) +* On entry, the matrix B of right hand side vectors, stored +* columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS +* if TRANS = 'T'. +* On exit, if INFO = 0, B is overwritten by the solution +* vectors, stored columnwise: +* if TRANS = 'N' and m >= n, rows 1 to n of B contain the least +* squares solution vectors; the residual sum of squares for the +* solution in each column is given by the sum of squares of +* elements N+1 to M in that column; +* if TRANS = 'N' and m < n, rows 1 to N of B contain the +* minimum norm solution vectors; +* if TRANS = 'T' and m >= n, rows 1 to M of B contain the +* minimum norm solution vectors; +* if TRANS = 'T' and m < n, rows 1 to M of B contain the +* least squares solution vectors; the residual sum of squares +* for the solution in each column is given by the sum of +* squares of elements M+1 to N in that column. +* +* LDB (input) INTEGER +* The leading dimension of the array B. LDB >= MAX(1,M,N). +* +* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +* +* LWORK (input) INTEGER +* The dimension of the array WORK. +* LWORK >= max( 1, MN + max( MN, NRHS ) ). +* For optimal performance, +* LWORK >= max( 1, MN + max( MN, NRHS )*NB ). +* where MN = min(M,N) and NB is the optimum block size. +* +* If LWORK = -1, then a workspace query is assumed; the routine +* only calculates the optimal size of the WORK array, returns +* this value as the first entry of the WORK array, and no error +* message related to LWORK is issued by XERBLA. +* +* INFO (output) INTEGER +* = 0: successful exit +* < 0: if INFO = -i, the i-th argument had an illegal value +* > 0: if INFO = i, the i-th diagonal element of the +* triangular factor of A is zero, so that A does not have +* full rank; the least squares solution could not be +* computed. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ZERO, ONE + PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) +* .. +* .. Local Scalars .. + LOGICAL LQUERY, TPSD + INTEGER BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE + DOUBLE PRECISION ANRM, BIGNUM, BNRM, SMLNUM +* .. +* .. Local Arrays .. + DOUBLE PRECISION RWORK( 1 ) +* .. +* .. External Functions .. + LOGICAL LSAME + INTEGER ILAENV + DOUBLE PRECISION DLAMCH, DLANGE + EXTERNAL LSAME, ILAENV, DLABAD, DLAMCH, DLANGE +* .. +* .. External Subroutines .. + EXTERNAL DGELQF, DGEQRF, DLASCL, DLASET, DORMLQ, DORMQR, + $ DTRTRS, XERBLA +* .. +* .. Intrinsic Functions .. + INTRINSIC DBLE, MAX, MIN +* .. +* .. Executable Statements .. +* +* Test the input arguments. +* + INFO = 0 + MN = MIN( M, N ) + LQUERY = ( LWORK.EQ.-1 ) + IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN + INFO = -1 + ELSE IF( M.LT.0 ) THEN + INFO = -2 + ELSE IF( N.LT.0 ) THEN + INFO = -3 + ELSE IF( NRHS.LT.0 ) THEN + INFO = -4 + ELSE IF( LDA.LT.MAX( 1, M ) ) THEN + INFO = -6 + ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN + INFO = -8 + ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY ) + $ THEN + INFO = -10 + END IF +* +* Figure out optimal block size +* + IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN +* + TPSD = .TRUE. + IF( LSAME( TRANS, 'N' ) ) + $ TPSD = .FALSE. +* + IF( M.GE.N ) THEN + NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 ) + IF( TPSD ) THEN + NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LN', M, NRHS, N, + $ -1 ) ) + ELSE + NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, + $ -1 ) ) + END IF + ELSE + NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 ) + IF( TPSD ) THEN + NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, + $ -1 ) ) + ELSE + NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LN', N, NRHS, M, + $ -1 ) ) + END IF + END IF +* + WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB ) + WORK( 1 ) = DBLE( WSIZE ) +* + END IF +* + IF( INFO.NE.0 ) THEN + CALL XERBLA( 'DGELS ', -INFO ) + RETURN + ELSE IF( LQUERY ) THEN + RETURN + END IF +* +* Quick return if possible +* + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + RETURN + END IF +* +* Get machine parameters +* + SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) + BIGNUM = ONE / SMLNUM + CALL DLABAD( SMLNUM, BIGNUM ) +* +* Scale A, B if max element outside range [SMLNUM,BIGNUM] +* + ANRM = DLANGE( 'M', M, N, A, LDA, RWORK ) + IASCL = 0 + IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) + IASCL = 1 + ELSE IF( ANRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) + IASCL = 2 + ELSE IF( ANRM.EQ.ZERO ) THEN +* +* Matrix all zero. Return zero solution. +* + CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) + GO TO 50 + END IF +* + BROW = M + IF( TPSD ) + $ BROW = N + BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK ) + IBSCL = 0 + IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN +* +* Scale matrix norm up to SMLNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 1 + ELSE IF( BNRM.GT.BIGNUM ) THEN +* +* Scale matrix norm down to BIGNUM +* + CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB, + $ INFO ) + IBSCL = 2 + END IF +* + IF( M.GE.N ) THEN +* +* compute QR factorization of A +* + CALL DGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN, + $ INFO ) +* +* workspace at least N, optimally N*NB +* + IF( .NOT.TPSD ) THEN +* +* Least-Squares Problem min || A * X - B || +* +* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) +* + CALL DORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA, + $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, + $ INFO ) +* +* workspace at least NRHS, optimally NRHS*NB +* +* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) +* + CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = N +* + ELSE +* +* Overdetermined system of equations A' * X = B +* +* B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS) +* + CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* B(N+1:M,1:NRHS) = ZERO +* + DO 20 J = 1, NRHS + DO 10 I = N + 1, M + B( I, J ) = ZERO + 10 CONTINUE + 20 CONTINUE +* +* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) +* + CALL DORMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA, + $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, + $ INFO ) +* +* workspace at least NRHS, optimally NRHS*NB +* + SCLLEN = M +* + END IF +* + ELSE +* +* Compute LQ factorization of A +* + CALL DGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN, + $ INFO ) +* +* workspace at least M, optimally M*NB. +* + IF( .NOT.TPSD ) THEN +* +* underdetermined system of equations A * X = B +* +* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) +* + CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* +* B(M+1:N,1:NRHS) = 0 +* + DO 40 J = 1, NRHS + DO 30 I = M + 1, N + B( I, J ) = ZERO + 30 CONTINUE + 40 CONTINUE +* +* B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS) +* + CALL DORMLQ( 'Left', 'Transpose', N, NRHS, M, A, LDA, + $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, + $ INFO ) +* +* workspace at least NRHS, optimally NRHS*NB +* + SCLLEN = N +* + ELSE +* +* overdetermined system min || A' * X - B || +* +* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) +* + CALL DORMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA, + $ WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN, + $ INFO ) +* +* workspace at least NRHS, optimally NRHS*NB +* +* B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS) +* + CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS, + $ A, LDA, B, LDB, INFO ) +* + IF( INFO.GT.0 ) THEN + RETURN + END IF +* + SCLLEN = M +* + END IF +* + END IF +* +* Undo scaling +* + IF( IASCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IASCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF + IF( IBSCL.EQ.1 ) THEN + CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + ELSE IF( IBSCL.EQ.2 ) THEN + CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB, + $ INFO ) + END IF +* + 50 CONTINUE + WORK( 1 ) = DBLE( WSIZE ) +* + RETURN +* +* End of DGELS +* + END -- cgit