From b43eccd4cffed5bd1017c5821524fb6e49202f78 Mon Sep 17 00:00:00 2001 From: Sandeep Gupta Date: Sun, 18 Jun 2017 23:55:40 +0530 Subject: First commit --- 2.3-1/src/c/elementaryFunctions/asin/casins.c | 146 ++++++++++++++++++++++++++ 1 file changed, 146 insertions(+) create mode 100644 2.3-1/src/c/elementaryFunctions/asin/casins.c (limited to '2.3-1/src/c/elementaryFunctions/asin/casins.c') diff --git a/2.3-1/src/c/elementaryFunctions/asin/casins.c b/2.3-1/src/c/elementaryFunctions/asin/casins.c new file mode 100644 index 00000000..35a4a8d8 --- /dev/null +++ b/2.3-1/src/c/elementaryFunctions/asin/casins.c @@ -0,0 +1,146 @@ +/* + * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab + * Copyright (C) 2008-2008 - INRIA - Bruno JOFRET + * Copyright (C) Bruno Pincon + * + * This file must be used under the terms of the CeCILL. + * This source file is licensed as described in the file COPYING, which + * you should have received as part of this distribution. The terms + * are also available at + * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt + * + */ + +/* + * REFERENCE + * This is a Fortran-77 translation of an algorithm by + * T.E. Hull, T. F. Fairgrieve and P.T.P. Tang which + * appears in their article : + * "Implementing the Complex Arcsine and Arccosine + * Functions Using Exception Handling", ACM, TOMS, + * Vol 23, No. 3, Sept 1997, p. 299-335 + * Thanks to Tom Fairgrieve + */ + +#include "lapack.h" +#include "asin.h" +#include "atan.h" +#include "sqrt.h" +#include "abs.h" +#include "log.h" +#include "log1p.h" +#include "min.h" +#include "max.h" + +floatComplex casins(floatComplex z) { + static float sdblPi_2 = 1.5707963267948966192313216f; + static float sdblLn2 = 0.6931471805599453094172321f; + static float sdblAcross = 1.5f; + static float sdblBcross = 0.6417f; + + float dblLsup = ssqrts((float) getOverflowThreshold())/ 8.0f; + float dblLinf = 4.0f * ssqrts((float) getUnderflowThreshold()); + float dblEpsm = ssqrts((float) getRelativeMachinePrecision()); + + float _dblReal = creals(z); + float _dblImg = cimags(z); + + float dblAbsReal = sabss(_dblReal); + float dblAbsImg = sabss(_dblImg); + float iSignReal = _dblReal < 0 ? -1.0f : 1.0f; + float iSignImg = _dblImg < 0 ? -1.0f : 1.0f; + + float dblR = 0, dblS = 0, dblA = 0, dblB = 0; + + float dblTemp = 0; + + float _pdblReal = 0; + float _pdblImg = 0; + + if( min(dblAbsReal, dblAbsImg) > dblLinf && max(dblAbsReal, dblAbsImg) <= dblLsup) + { + /* we are in the safe region */ + dblR = ssqrts( (dblAbsReal + 1) * (dblAbsReal + 1) + dblAbsImg * dblAbsImg); + dblS = ssqrts( (dblAbsReal - 1) * (dblAbsReal - 1) + dblAbsImg * dblAbsImg); + dblA = (float) 0.5 * ( dblR + dblS ); + dblB = dblAbsReal / dblA; + + + /* compute the real part */ + if(dblB <= sdblBcross) + _pdblReal = sasins(dblB); + else if( dblAbsReal <= 1) + _pdblReal = satans(dblAbsReal / ssqrts( 0.5f * (dblA + dblAbsReal) * ( (dblAbsImg * dblAbsImg) / (dblR + (dblAbsReal + 1)) + (dblS + (1 - dblAbsReal))))); + else + _pdblReal = satans(dblAbsReal / (dblAbsImg * ssqrts( 0.5f * ((dblA + dblAbsReal) / (dblR + (dblAbsReal + 1)) + (dblA + dblAbsReal) / (dblS + (dblAbsReal-1)))))); + + /* compute the imaginary part */ + if(dblA <= sdblAcross) + { + float dblImg1 = 0; + + if(dblAbsReal < 1) + /* Am1 = 0.5d0*((y**2)/(R+(x+1.d0))+(y**2)/(S+(1.d0-x))) */ + dblImg1 = 0.5f * (dblAbsImg * dblAbsImg / (dblR + (dblAbsReal + 1)) + dblAbsImg * dblAbsImg / (dblS + (1 - dblAbsReal))); + else + /* Am1 = 0.5d0*((y**2)/(R+(x+1.d0))+(S+(x-1.d0))) */ + dblImg1 = 0.5f * (dblAbsImg * dblAbsImg / (dblR + (dblAbsReal + 1)) + (dblS + (dblAbsReal - 1))); + /* ai = logp1(Am1 + sqrt(Am1*(A+1.d0))) */ + dblTemp = dblImg1 + ssqrts(dblImg1 * (dblA + 1)); + _pdblImg = slog1ps(dblTemp); + } + else + /* ai = log(A + sqrt(A**2 - 1.d0)) */ + _pdblImg = slogs(dblA + ssqrts(dblA * dblA - (float) 1.0)); + } + else + { + /* evaluation in the special regions ... */ + if(dblAbsImg <= dblEpsm * dabss(dblAbsReal - 1)) + { + if(dblAbsReal < 1) + { + _pdblReal = sasins(dblAbsReal); + _pdblImg = dblAbsImg / ssqrts((1 + dblAbsReal) * (1 - dblAbsReal)); + } + else + { + _pdblReal = sdblPi_2; + if(dblAbsReal <= dblLsup) + { + dblTemp = (dblAbsReal - 1) + ssqrts((dblAbsReal - 1) * (dblAbsReal + 1)); + _pdblImg = slog1ps(dblTemp); + } + else + _pdblImg = sdblLn2 + slogs(dblAbsReal); + } + } + else if(dblAbsImg < dblLinf) + { + _pdblReal = sdblPi_2 - ssqrts(dblAbsImg); + _pdblImg = ssqrts(dblAbsImg); + } + else if((dblEpsm * dblAbsImg - 1 >= dblAbsReal)) + { + _pdblReal = dblAbsReal * dblAbsImg; + _pdblImg = sdblLn2 + slogs(dblAbsReal); + } + else if(dblAbsReal > 1) + { + _pdblReal = satans(dblAbsReal / dblAbsImg); + dblTemp = (dblAbsReal / dblAbsImg) * (dblAbsReal / dblAbsImg); + _pdblImg = sdblLn2 + slogs(dblAbsReal) + 0.5f * slog1ps(dblTemp); + } + else + { + float dblTemp2 = ssqrts(1 + dblAbsImg * dblAbsImg); + _pdblReal = dblAbsReal / dblTemp2; + dblTemp = 2.0f * dblAbsImg * (dblAbsImg + dblTemp2); + _pdblImg = 0.5f * slog1ps(dblTemp); + } + } + _pdblReal *= iSignReal; + _pdblImg *= iSignImg; + + return (FloatComplex(_pdblReal, _pdblImg)); +} -- cgit