diff options
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/ml/ml.hpp')
-rw-r--r-- | 2.3-1/thirdparty/raspberrypi/includes/opencv2/ml/ml.hpp | 2147 |
1 files changed, 0 insertions, 2147 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/ml/ml.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/ml/ml.hpp deleted file mode 100644 index d86ecde4..00000000 --- a/2.3-1/thirdparty/raspberrypi/includes/opencv2/ml/ml.hpp +++ /dev/null @@ -1,2147 +0,0 @@ -/*M/////////////////////////////////////////////////////////////////////////////////////// -// -// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. -// -// By downloading, copying, installing or using the software you agree to this license. -// If you do not agree to this license, do not download, install, -// copy or use the software. -// -// -// Intel License Agreement -// -// Copyright (C) 2000, Intel Corporation, all rights reserved. -// Third party copyrights are property of their respective owners. -// -// Redistribution and use in source and binary forms, with or without modification, -// are permitted provided that the following conditions are met: -// -// * Redistribution's of source code must retain the above copyright notice, -// this list of conditions and the following disclaimer. -// -// * Redistribution's in binary form must reproduce the above copyright notice, -// this list of conditions and the following disclaimer in the documentation -// and/or other materials provided with the distribution. -// -// * The name of Intel Corporation may not be used to endorse or promote products -// derived from this software without specific prior written permission. -// -// This software is provided by the copyright holders and contributors "as is" and -// any express or implied warranties, including, but not limited to, the implied -// warranties of merchantability and fitness for a particular purpose are disclaimed. -// In no event shall the Intel Corporation or contributors be liable for any direct, -// indirect, incidental, special, exemplary, or consequential damages -// (including, but not limited to, procurement of substitute goods or services; -// loss of use, data, or profits; or business interruption) however caused -// and on any theory of liability, whether in contract, strict liability, -// or tort (including negligence or otherwise) arising in any way out of -// the use of this software, even if advised of the possibility of such damage. -// -//M*/ - -#ifndef __OPENCV_ML_HPP__ -#define __OPENCV_ML_HPP__ - -#include "opencv2/core/core.hpp" -#include <limits.h> - -#ifdef __cplusplus - -#include <map> -#include <string> -#include <iostream> - -// Apple defines a check() macro somewhere in the debug headers -// that interferes with a method definiton in this header -#undef check - -/****************************************************************************************\ -* Main struct definitions * -\****************************************************************************************/ - -/* log(2*PI) */ -#define CV_LOG2PI (1.8378770664093454835606594728112) - -/* columns of <trainData> matrix are training samples */ -#define CV_COL_SAMPLE 0 - -/* rows of <trainData> matrix are training samples */ -#define CV_ROW_SAMPLE 1 - -#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE) - -struct CvVectors -{ - int type; - int dims, count; - CvVectors* next; - union - { - uchar** ptr; - float** fl; - double** db; - } data; -}; - -#if 0 -/* A structure, representing the lattice range of statmodel parameters. - It is used for optimizing statmodel parameters by cross-validation method. - The lattice is logarithmic, so <step> must be greater then 1. */ -typedef struct CvParamLattice -{ - double min_val; - double max_val; - double step; -} -CvParamLattice; - -CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val, - double log_step ) -{ - CvParamLattice pl; - pl.min_val = MIN( min_val, max_val ); - pl.max_val = MAX( min_val, max_val ); - pl.step = MAX( log_step, 1. ); - return pl; -} - -CV_INLINE CvParamLattice cvDefaultParamLattice( void ) -{ - CvParamLattice pl = {0,0,0}; - return pl; -} -#endif - -/* Variable type */ -#define CV_VAR_NUMERICAL 0 -#define CV_VAR_ORDERED 0 -#define CV_VAR_CATEGORICAL 1 - -#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm" -#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn" -#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian" -#define CV_TYPE_NAME_ML_EM "opencv-ml-em" -#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree" -#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree" -#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp" -#define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn" -#define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees" -#define CV_TYPE_NAME_ML_ERTREES "opencv-ml-extremely-randomized-trees" -#define CV_TYPE_NAME_ML_GBT "opencv-ml-gradient-boosting-trees" - -#define CV_TRAIN_ERROR 0 -#define CV_TEST_ERROR 1 - -class CV_EXPORTS_W CvStatModel -{ -public: - CvStatModel(); - virtual ~CvStatModel(); - - virtual void clear(); - - CV_WRAP virtual void save( const char* filename, const char* name=0 ) const; - CV_WRAP virtual void load( const char* filename, const char* name=0 ); - - virtual void write( CvFileStorage* storage, const char* name ) const; - virtual void read( CvFileStorage* storage, CvFileNode* node ); - -protected: - const char* default_model_name; -}; - -/****************************************************************************************\ -* Normal Bayes Classifier * -\****************************************************************************************/ - -/* The structure, representing the grid range of statmodel parameters. - It is used for optimizing statmodel accuracy by varying model parameters, - the accuracy estimate being computed by cross-validation. - The grid is logarithmic, so <step> must be greater then 1. */ - -class CvMLData; - -struct CV_EXPORTS_W_MAP CvParamGrid -{ - // SVM params type - enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 }; - - CvParamGrid() - { - min_val = max_val = step = 0; - } - - CvParamGrid( double min_val, double max_val, double log_step ); - //CvParamGrid( int param_id ); - bool check() const; - - CV_PROP_RW double min_val; - CV_PROP_RW double max_val; - CV_PROP_RW double step; -}; - -inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step ) -{ - min_val = _min_val; - max_val = _max_val; - step = _log_step; -} - -class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel -{ -public: - CV_WRAP CvNormalBayesClassifier(); - virtual ~CvNormalBayesClassifier(); - - CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses, - const CvMat* varIdx=0, const CvMat* sampleIdx=0 ); - - virtual bool train( const CvMat* trainData, const CvMat* responses, - const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false ); - - virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const; - CV_WRAP virtual void clear(); - - CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses, - const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); - CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, - const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), - bool update=false ); - CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const; - - virtual void write( CvFileStorage* storage, const char* name ) const; - virtual void read( CvFileStorage* storage, CvFileNode* node ); - -protected: - int var_count, var_all; - CvMat* var_idx; - CvMat* cls_labels; - CvMat** count; - CvMat** sum; - CvMat** productsum; - CvMat** avg; - CvMat** inv_eigen_values; - CvMat** cov_rotate_mats; - CvMat* c; -}; - - -/****************************************************************************************\ -* K-Nearest Neighbour Classifier * -\****************************************************************************************/ - -// k Nearest Neighbors -class CV_EXPORTS_W CvKNearest : public CvStatModel -{ -public: - - CV_WRAP CvKNearest(); - virtual ~CvKNearest(); - - CvKNearest( const CvMat* trainData, const CvMat* responses, - const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 ); - - virtual bool train( const CvMat* trainData, const CvMat* responses, - const CvMat* sampleIdx=0, bool is_regression=false, - int maxK=32, bool updateBase=false ); - - virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0, - const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const; - - CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses, - const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 ); - - CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, - const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, - int maxK=32, bool updateBase=false ); - - virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0, - const float** neighbors=0, cv::Mat* neighborResponses=0, - cv::Mat* dist=0 ) const; - CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results, - CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const; - - virtual void clear(); - int get_max_k() const; - int get_var_count() const; - int get_sample_count() const; - bool is_regression() const; - - virtual float write_results( int k, int k1, int start, int end, - const float* neighbor_responses, const float* dist, CvMat* _results, - CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const; - - virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end, - float* neighbor_responses, const float** neighbors, float* dist ) const; - -protected: - - int max_k, var_count; - int total; - bool regression; - CvVectors* samples; -}; - -/****************************************************************************************\ -* Support Vector Machines * -\****************************************************************************************/ - -// SVM training parameters -struct CV_EXPORTS_W_MAP CvSVMParams -{ - CvSVMParams(); - CvSVMParams( int svm_type, int kernel_type, - double degree, double gamma, double coef0, - double Cvalue, double nu, double p, - CvMat* class_weights, CvTermCriteria term_crit ); - - CV_PROP_RW int svm_type; - CV_PROP_RW int kernel_type; - CV_PROP_RW double degree; // for poly - CV_PROP_RW double gamma; // for poly/rbf/sigmoid - CV_PROP_RW double coef0; // for poly/sigmoid - - CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR - CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR - CV_PROP_RW double p; // for CV_SVM_EPS_SVR - CvMat* class_weights; // for CV_SVM_C_SVC - CV_PROP_RW CvTermCriteria term_crit; // termination criteria -}; - - -struct CV_EXPORTS CvSVMKernel -{ - typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs, - const float* another, float* results ); - CvSVMKernel(); - CvSVMKernel( const CvSVMParams* params, Calc _calc_func ); - virtual bool create( const CvSVMParams* params, Calc _calc_func ); - virtual ~CvSVMKernel(); - - virtual void clear(); - virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results ); - - const CvSVMParams* params; - Calc calc_func; - - virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs, - const float* another, float* results, - double alpha, double beta ); - - virtual void calc_linear( int vec_count, int vec_size, const float** vecs, - const float* another, float* results ); - virtual void calc_rbf( int vec_count, int vec_size, const float** vecs, - const float* another, float* results ); - virtual void calc_poly( int vec_count, int vec_size, const float** vecs, - const float* another, float* results ); - virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs, - const float* another, float* results ); -}; - - -struct CvSVMKernelRow -{ - CvSVMKernelRow* prev; - CvSVMKernelRow* next; - float* data; -}; - - -struct CvSVMSolutionInfo -{ - double obj; - double rho; - double upper_bound_p; - double upper_bound_n; - double r; // for Solver_NU -}; - -class CV_EXPORTS CvSVMSolver -{ -public: - typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j ); - typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed ); - typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r ); - - CvSVMSolver(); - - CvSVMSolver( int count, int var_count, const float** samples, schar* y, - int alpha_count, double* alpha, double Cp, double Cn, - CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, - SelectWorkingSet select_working_set, CalcRho calc_rho ); - virtual bool create( int count, int var_count, const float** samples, schar* y, - int alpha_count, double* alpha, double Cp, double Cn, - CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, - SelectWorkingSet select_working_set, CalcRho calc_rho ); - virtual ~CvSVMSolver(); - - virtual void clear(); - virtual bool solve_generic( CvSVMSolutionInfo& si ); - - virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y, - double Cp, double Cn, CvMemStorage* storage, - CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); - virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y, - CvMemStorage* storage, CvSVMKernel* kernel, - double* alpha, CvSVMSolutionInfo& si ); - virtual bool solve_one_class( int count, int var_count, const float** samples, - CvMemStorage* storage, CvSVMKernel* kernel, - double* alpha, CvSVMSolutionInfo& si ); - - virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y, - CvMemStorage* storage, CvSVMKernel* kernel, - double* alpha, CvSVMSolutionInfo& si ); - - virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y, - CvMemStorage* storage, CvSVMKernel* kernel, - double* alpha, CvSVMSolutionInfo& si ); - - virtual float* get_row_base( int i, bool* _existed ); - virtual float* get_row( int i, float* dst ); - - int sample_count; - int var_count; - int cache_size; - int cache_line_size; - const float** samples; - const CvSVMParams* params; - CvMemStorage* storage; - CvSVMKernelRow lru_list; - CvSVMKernelRow* rows; - - int alpha_count; - - double* G; - double* alpha; - - // -1 - lower bound, 0 - free, 1 - upper bound - schar* alpha_status; - - schar* y; - double* b; - float* buf[2]; - double eps; - int max_iter; - double C[2]; // C[0] == Cn, C[1] == Cp - CvSVMKernel* kernel; - - SelectWorkingSet select_working_set_func; - CalcRho calc_rho_func; - GetRow get_row_func; - - virtual bool select_working_set( int& i, int& j ); - virtual bool select_working_set_nu_svm( int& i, int& j ); - virtual void calc_rho( double& rho, double& r ); - virtual void calc_rho_nu_svm( double& rho, double& r ); - - virtual float* get_row_svc( int i, float* row, float* dst, bool existed ); - virtual float* get_row_one_class( int i, float* row, float* dst, bool existed ); - virtual float* get_row_svr( int i, float* row, float* dst, bool existed ); -}; - - -struct CvSVMDecisionFunc -{ - double rho; - int sv_count; - double* alpha; - int* sv_index; -}; - - -// SVM model -class CV_EXPORTS_W CvSVM : public CvStatModel -{ -public: - // SVM type - enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 }; - - // SVM kernel type - enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 }; - - // SVM params type - enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 }; - - CV_WRAP CvSVM(); - virtual ~CvSVM(); - - CvSVM( const CvMat* trainData, const CvMat* responses, - const CvMat* varIdx=0, const CvMat* sampleIdx=0, - CvSVMParams params=CvSVMParams() ); - - virtual bool train( const CvMat* trainData, const CvMat* responses, - const CvMat* varIdx=0, const CvMat* sampleIdx=0, - CvSVMParams params=CvSVMParams() ); - - virtual bool train_auto( const CvMat* trainData, const CvMat* responses, - const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params, - int kfold = 10, - CvParamGrid Cgrid = get_default_grid(CvSVM::C), - CvParamGrid gammaGrid = get_default_grid(CvSVM::GAMMA), - CvParamGrid pGrid = get_default_grid(CvSVM::P), - CvParamGrid nuGrid = get_default_grid(CvSVM::NU), - CvParamGrid coeffGrid = get_default_grid(CvSVM::COEF), - CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE), - bool balanced=false ); - - virtual float predict( const CvMat* sample, bool returnDFVal=false ) const; - virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const; - - CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses, - const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), - CvSVMParams params=CvSVMParams() ); - - CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, - const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), - CvSVMParams params=CvSVMParams() ); - - CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses, - const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params, - int k_fold = 10, - CvParamGrid Cgrid = CvSVM::get_default_grid(CvSVM::C), - CvParamGrid gammaGrid = CvSVM::get_default_grid(CvSVM::GAMMA), - CvParamGrid pGrid = CvSVM::get_default_grid(CvSVM::P), - CvParamGrid nuGrid = CvSVM::get_default_grid(CvSVM::NU), - CvParamGrid coeffGrid = CvSVM::get_default_grid(CvSVM::COEF), - CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE), - bool balanced=false); - CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const; - CV_WRAP_AS(predict_all) void predict( cv::InputArray samples, cv::OutputArray results ) const; - - CV_WRAP virtual int get_support_vector_count() const; - virtual const float* get_support_vector(int i) const; - virtual CvSVMParams get_params() const { return params; }; - CV_WRAP virtual void clear(); - - static CvParamGrid get_default_grid( int param_id ); - - virtual void write( CvFileStorage* storage, const char* name ) const; - virtual void read( CvFileStorage* storage, CvFileNode* node ); - CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; } - -protected: - - virtual bool set_params( const CvSVMParams& params ); - virtual bool train1( int sample_count, int var_count, const float** samples, - const void* responses, double Cp, double Cn, - CvMemStorage* _storage, double* alpha, double& rho ); - virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples, - const CvMat* responses, CvMemStorage* _storage, double* alpha ); - virtual void create_kernel(); - virtual void create_solver(); - - virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const; - - virtual void write_params( CvFileStorage* fs ) const; - virtual void read_params( CvFileStorage* fs, CvFileNode* node ); - - void optimize_linear_svm(); - - CvSVMParams params; - CvMat* class_labels; - int var_all; - float** sv; - int sv_total; - CvMat* var_idx; - CvMat* class_weights; - CvSVMDecisionFunc* decision_func; - CvMemStorage* storage; - - CvSVMSolver* solver; - CvSVMKernel* kernel; - -private: - CvSVM(const CvSVM&); - CvSVM& operator = (const CvSVM&); -}; - -/****************************************************************************************\ -* Expectation - Maximization * -\****************************************************************************************/ -namespace cv -{ -class CV_EXPORTS_W EM : public Algorithm -{ -public: - // Type of covariation matrices - enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL}; - - // Default parameters - enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100}; - - // The initial step - enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0}; - - CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL, - const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, - EM::DEFAULT_MAX_ITERS, FLT_EPSILON)); - - virtual ~EM(); - CV_WRAP virtual void clear(); - - CV_WRAP virtual bool train(InputArray samples, - OutputArray logLikelihoods=noArray(), - OutputArray labels=noArray(), - OutputArray probs=noArray()); - - CV_WRAP virtual bool trainE(InputArray samples, - InputArray means0, - InputArray covs0=noArray(), - InputArray weights0=noArray(), - OutputArray logLikelihoods=noArray(), - OutputArray labels=noArray(), - OutputArray probs=noArray()); - - CV_WRAP virtual bool trainM(InputArray samples, - InputArray probs0, - OutputArray logLikelihoods=noArray(), - OutputArray labels=noArray(), - OutputArray probs=noArray()); - - CV_WRAP Vec2d predict(InputArray sample, - OutputArray probs=noArray()) const; - - CV_WRAP bool isTrained() const; - - AlgorithmInfo* info() const; - virtual void read(const FileNode& fn); - -protected: - - virtual void setTrainData(int startStep, const Mat& samples, - const Mat* probs0, - const Mat* means0, - const vector<Mat>* covs0, - const Mat* weights0); - - bool doTrain(int startStep, - OutputArray logLikelihoods, - OutputArray labels, - OutputArray probs); - virtual void eStep(); - virtual void mStep(); - - void clusterTrainSamples(); - void decomposeCovs(); - void computeLogWeightDivDet(); - - Vec2d computeProbabilities(const Mat& sample, Mat* probs) const; - - // all inner matrices have type CV_64FC1 - CV_PROP_RW int nclusters; - CV_PROP_RW int covMatType; - CV_PROP_RW int maxIters; - CV_PROP_RW double epsilon; - - Mat trainSamples; - Mat trainProbs; - Mat trainLogLikelihoods; - Mat trainLabels; - - CV_PROP Mat weights; - CV_PROP Mat means; - CV_PROP vector<Mat> covs; - - vector<Mat> covsEigenValues; - vector<Mat> covsRotateMats; - vector<Mat> invCovsEigenValues; - Mat logWeightDivDet; -}; -} // namespace cv - -/****************************************************************************************\ -* Decision Tree * -\****************************************************************************************/\ -struct CvPair16u32s -{ - unsigned short* u; - int* i; -}; - - -#define CV_DTREE_CAT_DIR(idx,subset) \ - (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1) - -struct CvDTreeSplit -{ - int var_idx; - int condensed_idx; - int inversed; - float quality; - CvDTreeSplit* next; - union - { - int subset[2]; - struct - { - float c; - int split_point; - } - ord; - }; -}; - -struct CvDTreeNode -{ - int class_idx; - int Tn; - double value; - - CvDTreeNode* parent; - CvDTreeNode* left; - CvDTreeNode* right; - - CvDTreeSplit* split; - - int sample_count; - int depth; - int* num_valid; - int offset; - int buf_idx; - double maxlr; - - // global pruning data - int complexity; - double alpha; - double node_risk, tree_risk, tree_error; - - // cross-validation pruning data - int* cv_Tn; - double* cv_node_risk; - double* cv_node_error; - - int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; } - void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; } -}; - - -struct CV_EXPORTS_W_MAP CvDTreeParams -{ - CV_PROP_RW int max_categories; - CV_PROP_RW int max_depth; - CV_PROP_RW int min_sample_count; - CV_PROP_RW int cv_folds; - CV_PROP_RW bool use_surrogates; - CV_PROP_RW bool use_1se_rule; - CV_PROP_RW bool truncate_pruned_tree; - CV_PROP_RW float regression_accuracy; - const float* priors; - - CvDTreeParams(); - CvDTreeParams( int max_depth, int min_sample_count, - float regression_accuracy, bool use_surrogates, - int max_categories, int cv_folds, - bool use_1se_rule, bool truncate_pruned_tree, - const float* priors ); -}; - - -struct CV_EXPORTS CvDTreeTrainData -{ - CvDTreeTrainData(); - CvDTreeTrainData( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - const CvDTreeParams& params=CvDTreeParams(), - bool _shared=false, bool _add_labels=false ); - virtual ~CvDTreeTrainData(); - - virtual void set_data( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - const CvDTreeParams& params=CvDTreeParams(), - bool _shared=false, bool _add_labels=false, - bool _update_data=false ); - virtual void do_responses_copy(); - - virtual void get_vectors( const CvMat* _subsample_idx, - float* values, uchar* missing, float* responses, bool get_class_idx=false ); - - virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); - - virtual void write_params( CvFileStorage* fs ) const; - virtual void read_params( CvFileStorage* fs, CvFileNode* node ); - - // release all the data - virtual void clear(); - - int get_num_classes() const; - int get_var_type(int vi) const; - int get_work_var_count() const {return work_var_count;} - - virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf ); - virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf ); - virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); - virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); - virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); - virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf, - const float** ord_values, const int** sorted_indices, int* sample_indices_buf ); - virtual int get_child_buf_idx( CvDTreeNode* n ); - - //////////////////////////////////// - - virtual bool set_params( const CvDTreeParams& params ); - virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count, - int storage_idx, int offset ); - - virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val, - int split_point, int inversed, float quality ); - virtual CvDTreeSplit* new_split_cat( int vi, float quality ); - virtual void free_node_data( CvDTreeNode* node ); - virtual void free_train_data(); - virtual void free_node( CvDTreeNode* node ); - - int sample_count, var_all, var_count, max_c_count; - int ord_var_count, cat_var_count, work_var_count; - bool have_labels, have_priors; - bool is_classifier; - int tflag; - - const CvMat* train_data; - const CvMat* responses; - CvMat* responses_copy; // used in Boosting - - int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead - bool shared; - int is_buf_16u; - - CvMat* cat_count; - CvMat* cat_ofs; - CvMat* cat_map; - - CvMat* counts; - CvMat* buf; - inline size_t get_length_subbuf() const - { - size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count; - return res; - } - - CvMat* direction; - CvMat* split_buf; - - CvMat* var_idx; - CvMat* var_type; // i-th element = - // k<0 - ordered - // k>=0 - categorical, see k-th element of cat_* arrays - CvMat* priors; - CvMat* priors_mult; - - CvDTreeParams params; - - CvMemStorage* tree_storage; - CvMemStorage* temp_storage; - - CvDTreeNode* data_root; - - CvSet* node_heap; - CvSet* split_heap; - CvSet* cv_heap; - CvSet* nv_heap; - - cv::RNG* rng; -}; - -class CvDTree; -class CvForestTree; - -namespace cv -{ - struct DTreeBestSplitFinder; - struct ForestTreeBestSplitFinder; -} - -class CV_EXPORTS_W CvDTree : public CvStatModel -{ -public: - CV_WRAP CvDTree(); - virtual ~CvDTree(); - - virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvDTreeParams params=CvDTreeParams() ); - - virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() ); - - // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} - virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 ); - - virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx ); - - virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0, - bool preprocessedInput=false ) const; - - CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, - const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), - const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), - const cv::Mat& missingDataMask=cv::Mat(), - CvDTreeParams params=CvDTreeParams() ); - - CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(), - bool preprocessedInput=false ) const; - CV_WRAP virtual cv::Mat getVarImportance(); - - virtual const CvMat* get_var_importance(); - CV_WRAP virtual void clear(); - - virtual void read( CvFileStorage* fs, CvFileNode* node ); - virtual void write( CvFileStorage* fs, const char* name ) const; - - // special read & write methods for trees in the tree ensembles - virtual void read( CvFileStorage* fs, CvFileNode* node, - CvDTreeTrainData* data ); - virtual void write( CvFileStorage* fs ) const; - - const CvDTreeNode* get_root() const; - int get_pruned_tree_idx() const; - CvDTreeTrainData* get_data(); - -protected: - friend struct cv::DTreeBestSplitFinder; - - virtual bool do_train( const CvMat* _subsample_idx ); - - virtual void try_split_node( CvDTreeNode* n ); - virtual void split_node_data( CvDTreeNode* n ); - virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); - virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); - virtual double calc_node_dir( CvDTreeNode* node ); - virtual void complete_node_dir( CvDTreeNode* node ); - virtual void cluster_categories( const int* vectors, int vector_count, - int var_count, int* sums, int k, int* cluster_labels ); - - virtual void calc_node_value( CvDTreeNode* node ); - - virtual void prune_cv(); - virtual double update_tree_rnc( int T, int fold ); - virtual int cut_tree( int T, int fold, double min_alpha ); - virtual void free_prune_data(bool cut_tree); - virtual void free_tree(); - - virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const; - virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const; - virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent ); - virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node ); - virtual void write_tree_nodes( CvFileStorage* fs ) const; - virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node ); - - CvDTreeNode* root; - CvMat* var_importance; - CvDTreeTrainData* data; - -public: - int pruned_tree_idx; -}; - - -/****************************************************************************************\ -* Random Trees Classifier * -\****************************************************************************************/ - -class CvRTrees; - -class CV_EXPORTS CvForestTree: public CvDTree -{ -public: - CvForestTree(); - virtual ~CvForestTree(); - - virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest ); - - virtual int get_var_count() const {return data ? data->var_count : 0;} - virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data ); - - /* dummy methods to avoid warnings: BEGIN */ - virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvDTreeParams params=CvDTreeParams() ); - - virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); - virtual void read( CvFileStorage* fs, CvFileNode* node ); - virtual void read( CvFileStorage* fs, CvFileNode* node, - CvDTreeTrainData* data ); - /* dummy methods to avoid warnings: END */ - -protected: - friend struct cv::ForestTreeBestSplitFinder; - - virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); - CvRTrees* forest; -}; - - -struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams -{ - //Parameters for the forest - CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance - CV_PROP_RW int nactive_vars; - CV_PROP_RW CvTermCriteria term_crit; - - CvRTParams(); - CvRTParams( int max_depth, int min_sample_count, - float regression_accuracy, bool use_surrogates, - int max_categories, const float* priors, bool calc_var_importance, - int nactive_vars, int max_num_of_trees_in_the_forest, - float forest_accuracy, int termcrit_type ); -}; - - -class CV_EXPORTS_W CvRTrees : public CvStatModel -{ -public: - CV_WRAP CvRTrees(); - virtual ~CvRTrees(); - virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvRTParams params=CvRTParams() ); - - virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); - virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const; - virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const; - - CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, - const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), - const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), - const cv::Mat& missingDataMask=cv::Mat(), - CvRTParams params=CvRTParams() ); - CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; - CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; - CV_WRAP virtual cv::Mat getVarImportance(); - - CV_WRAP virtual void clear(); - - virtual const CvMat* get_var_importance(); - virtual float get_proximity( const CvMat* sample1, const CvMat* sample2, - const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const; - - virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} - - virtual float get_train_error(); - - virtual void read( CvFileStorage* fs, CvFileNode* node ); - virtual void write( CvFileStorage* fs, const char* name ) const; - - CvMat* get_active_var_mask(); - CvRNG* get_rng(); - - int get_tree_count() const; - CvForestTree* get_tree(int i) const; - -protected: - virtual std::string getName() const; - - virtual bool grow_forest( const CvTermCriteria term_crit ); - - // array of the trees of the forest - CvForestTree** trees; - CvDTreeTrainData* data; - int ntrees; - int nclasses; - double oob_error; - CvMat* var_importance; - int nsamples; - - cv::RNG* rng; - CvMat* active_var_mask; -}; - -/****************************************************************************************\ -* Extremely randomized trees Classifier * -\****************************************************************************************/ -struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData -{ - virtual void set_data( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - const CvDTreeParams& params=CvDTreeParams(), - bool _shared=false, bool _add_labels=false, - bool _update_data=false ); - virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf, - const float** ord_values, const int** missing, int* sample_buf = 0 ); - virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); - virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); - virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); - virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing, - float* responses, bool get_class_idx=false ); - virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); - const CvMat* missing_mask; -}; - -class CV_EXPORTS CvForestERTree : public CvForestTree -{ -protected: - virtual double calc_node_dir( CvDTreeNode* node ); - virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual void split_node_data( CvDTreeNode* n ); -}; - -class CV_EXPORTS_W CvERTrees : public CvRTrees -{ -public: - CV_WRAP CvERTrees(); - virtual ~CvERTrees(); - virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvRTParams params=CvRTParams()); - CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, - const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), - const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), - const cv::Mat& missingDataMask=cv::Mat(), - CvRTParams params=CvRTParams()); - virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); -protected: - virtual std::string getName() const; - virtual bool grow_forest( const CvTermCriteria term_crit ); -}; - - -/****************************************************************************************\ -* Boosted tree classifier * -\****************************************************************************************/ - -struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams -{ - CV_PROP_RW int boost_type; - CV_PROP_RW int weak_count; - CV_PROP_RW int split_criteria; - CV_PROP_RW double weight_trim_rate; - - CvBoostParams(); - CvBoostParams( int boost_type, int weak_count, double weight_trim_rate, - int max_depth, bool use_surrogates, const float* priors ); -}; - - -class CvBoost; - -class CV_EXPORTS CvBoostTree: public CvDTree -{ -public: - CvBoostTree(); - virtual ~CvBoostTree(); - - virtual bool train( CvDTreeTrainData* trainData, - const CvMat* subsample_idx, CvBoost* ensemble ); - - virtual void scale( double s ); - virtual void read( CvFileStorage* fs, CvFileNode* node, - CvBoost* ensemble, CvDTreeTrainData* _data ); - virtual void clear(); - - /* dummy methods to avoid warnings: BEGIN */ - virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvDTreeParams params=CvDTreeParams() ); - virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); - - virtual void read( CvFileStorage* fs, CvFileNode* node ); - virtual void read( CvFileStorage* fs, CvFileNode* node, - CvDTreeTrainData* data ); - /* dummy methods to avoid warnings: END */ - -protected: - - virtual void try_split_node( CvDTreeNode* n ); - virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, - float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); - virtual void calc_node_value( CvDTreeNode* n ); - virtual double calc_node_dir( CvDTreeNode* n ); - - CvBoost* ensemble; -}; - - -class CV_EXPORTS_W CvBoost : public CvStatModel -{ -public: - // Boosting type - enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 }; - - // Splitting criteria - enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 }; - - CV_WRAP CvBoost(); - virtual ~CvBoost(); - - CvBoost( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvBoostParams params=CvBoostParams() ); - - virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvBoostParams params=CvBoostParams(), - bool update=false ); - - virtual bool train( CvMLData* data, - CvBoostParams params=CvBoostParams(), - bool update=false ); - - virtual float predict( const CvMat* sample, const CvMat* missing=0, - CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ, - bool raw_mode=false, bool return_sum=false ) const; - - CV_WRAP CvBoost( const cv::Mat& trainData, int tflag, - const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), - const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), - const cv::Mat& missingDataMask=cv::Mat(), - CvBoostParams params=CvBoostParams() ); - - CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, - const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), - const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), - const cv::Mat& missingDataMask=cv::Mat(), - CvBoostParams params=CvBoostParams(), - bool update=false ); - - CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), - const cv::Range& slice=cv::Range::all(), bool rawMode=false, - bool returnSum=false ) const; - - virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} - - CV_WRAP virtual void prune( CvSlice slice ); - - CV_WRAP virtual void clear(); - - virtual void write( CvFileStorage* storage, const char* name ) const; - virtual void read( CvFileStorage* storage, CvFileNode* node ); - virtual const CvMat* get_active_vars(bool absolute_idx=true); - - CvSeq* get_weak_predictors(); - - CvMat* get_weights(); - CvMat* get_subtree_weights(); - CvMat* get_weak_response(); - const CvBoostParams& get_params() const; - const CvDTreeTrainData* get_data() const; - -protected: - - void update_weights_impl( CvBoostTree* tree, double initial_weights[2] ); - - virtual bool set_params( const CvBoostParams& params ); - virtual void update_weights( CvBoostTree* tree ); - virtual void trim_weights(); - virtual void write_params( CvFileStorage* fs ) const; - virtual void read_params( CvFileStorage* fs, CvFileNode* node ); - - CvDTreeTrainData* data; - CvBoostParams params; - CvSeq* weak; - - CvMat* active_vars; - CvMat* active_vars_abs; - bool have_active_cat_vars; - - CvMat* orig_response; - CvMat* sum_response; - CvMat* weak_eval; - CvMat* subsample_mask; - CvMat* weights; - CvMat* subtree_weights; - bool have_subsample; -}; - - -/****************************************************************************************\ -* Gradient Boosted Trees * -\****************************************************************************************/ - -// DataType: STRUCT CvGBTreesParams -// Parameters of GBT (Gradient Boosted trees model), including single -// tree settings and ensemble parameters. -// -// weak_count - count of trees in the ensemble -// loss_function_type - loss function used for ensemble training -// subsample_portion - portion of whole training set used for -// every single tree training. -// subsample_portion value is in (0.0, 1.0]. -// subsample_portion == 1.0 when whole dataset is -// used on each step. Count of sample used on each -// step is computed as -// int(total_samples_count * subsample_portion). -// shrinkage - regularization parameter. -// Each tree prediction is multiplied on shrinkage value. - - -struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams -{ - CV_PROP_RW int weak_count; - CV_PROP_RW int loss_function_type; - CV_PROP_RW float subsample_portion; - CV_PROP_RW float shrinkage; - - CvGBTreesParams(); - CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage, - float subsample_portion, int max_depth, bool use_surrogates ); -}; - -// DataType: CLASS CvGBTrees -// Gradient Boosting Trees (GBT) algorithm implementation. -// -// data - training dataset -// params - parameters of the CvGBTrees -// weak - array[0..(class_count-1)] of CvSeq -// for storing tree ensembles -// orig_response - original responses of the training set samples -// sum_response - predicitons of the current model on the training dataset. -// this matrix is updated on every iteration. -// sum_response_tmp - predicitons of the model on the training set on the next -// step. On every iteration values of sum_responses_tmp are -// computed via sum_responses values. When the current -// step is complete sum_response values become equal to -// sum_responses_tmp. -// sampleIdx - indices of samples used for training the ensemble. -// CvGBTrees training procedure takes a set of samples -// (train_data) and a set of responses (responses). -// Only pairs (train_data[i], responses[i]), where i is -// in sample_idx are used for training the ensemble. -// subsample_train - indices of samples used for training a single decision -// tree on the current step. This indices are countered -// relatively to the sample_idx, so that pairs -// (train_data[sample_idx[i]], responses[sample_idx[i]]) -// are used for training a decision tree. -// Training set is randomly splited -// in two parts (subsample_train and subsample_test) -// on every iteration accordingly to the portion parameter. -// subsample_test - relative indices of samples from the training set, -// which are not used for training a tree on the current -// step. -// missing - mask of the missing values in the training set. This -// matrix has the same size as train_data. 1 - missing -// value, 0 - not a missing value. -// class_labels - output class labels map. -// rng - random number generator. Used for spliting the -// training set. -// class_count - count of output classes. -// class_count == 1 in the case of regression, -// and > 1 in the case of classification. -// delta - Huber loss function parameter. -// base_value - start point of the gradient descent procedure. -// model prediction is -// f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where -// f_0 is the base value. - - - -class CV_EXPORTS_W CvGBTrees : public CvStatModel -{ -public: - - /* - // DataType: ENUM - // Loss functions implemented in CvGBTrees. - // - // SQUARED_LOSS - // problem: regression - // loss = (x - x')^2 - // - // ABSOLUTE_LOSS - // problem: regression - // loss = abs(x - x') - // - // HUBER_LOSS - // problem: regression - // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta - // 1/2*(x - x')^2, if abs(x - x') <= delta, - // where delta is the alpha-quantile of pseudo responses from - // the training set. - // - // DEVIANCE_LOSS - // problem: classification - // - */ - enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; - - - /* - // Default constructor. Creates a model only (without training). - // Should be followed by one form of the train(...) function. - // - // API - // CvGBTrees(); - - // INPUT - // OUTPUT - // RESULT - */ - CV_WRAP CvGBTrees(); - - - /* - // Full form constructor. Creates a gradient boosting model and does the - // train. - // - // API - // CvGBTrees( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvGBTreesParams params=CvGBTreesParams() ); - - // INPUT - // trainData - a set of input feature vectors. - // size of matrix is - // <count of samples> x <variables count> - // or <variables count> x <count of samples> - // depending on the tflag parameter. - // matrix values are float. - // tflag - a flag showing how do samples stored in the - // trainData matrix row by row (tflag=CV_ROW_SAMPLE) - // or column by column (tflag=CV_COL_SAMPLE). - // responses - a vector of responses corresponding to the samples - // in trainData. - // varIdx - indices of used variables. zero value means that all - // variables are active. - // sampleIdx - indices of used samples. zero value means that all - // samples from trainData are in the training set. - // varType - vector of <variables count> length. gives every - // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. - // varType = 0 means all variables are numerical. - // missingDataMask - a mask of misiing values in trainData. - // missingDataMask = 0 means that there are no missing - // values. - // params - parameters of GTB algorithm. - // OUTPUT - // RESULT - */ - CvGBTrees( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvGBTreesParams params=CvGBTreesParams() ); - - - /* - // Destructor. - */ - virtual ~CvGBTrees(); - - - /* - // Gradient tree boosting model training - // - // API - // virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvGBTreesParams params=CvGBTreesParams(), - bool update=false ); - - // INPUT - // trainData - a set of input feature vectors. - // size of matrix is - // <count of samples> x <variables count> - // or <variables count> x <count of samples> - // depending on the tflag parameter. - // matrix values are float. - // tflag - a flag showing how do samples stored in the - // trainData matrix row by row (tflag=CV_ROW_SAMPLE) - // or column by column (tflag=CV_COL_SAMPLE). - // responses - a vector of responses corresponding to the samples - // in trainData. - // varIdx - indices of used variables. zero value means that all - // variables are active. - // sampleIdx - indices of used samples. zero value means that all - // samples from trainData are in the training set. - // varType - vector of <variables count> length. gives every - // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. - // varType = 0 means all variables are numerical. - // missingDataMask - a mask of misiing values in trainData. - // missingDataMask = 0 means that there are no missing - // values. - // params - parameters of GTB algorithm. - // update - is not supported now. (!) - // OUTPUT - // RESULT - // Error state. - */ - virtual bool train( const CvMat* trainData, int tflag, - const CvMat* responses, const CvMat* varIdx=0, - const CvMat* sampleIdx=0, const CvMat* varType=0, - const CvMat* missingDataMask=0, - CvGBTreesParams params=CvGBTreesParams(), - bool update=false ); - - - /* - // Gradient tree boosting model training - // - // API - // virtual bool train( CvMLData* data, - CvGBTreesParams params=CvGBTreesParams(), - bool update=false ) {return false;}; - - // INPUT - // data - training set. - // params - parameters of GTB algorithm. - // update - is not supported now. (!) - // OUTPUT - // RESULT - // Error state. - */ - virtual bool train( CvMLData* data, - CvGBTreesParams params=CvGBTreesParams(), - bool update=false ); - - - /* - // Response value prediction - // - // API - // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, - CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, - int k=-1 ) const; - - // INPUT - // sample - input sample of the same type as in the training set. - // missing - missing values mask. missing=0 if there are no - // missing values in sample vector. - // weak_responses - predictions of all of the trees. - // not implemented (!) - // slice - part of the ensemble used for prediction. - // slice = CV_WHOLE_SEQ when all trees are used. - // k - number of ensemble used. - // k is in {-1,0,1,..,<count of output classes-1>}. - // in the case of classification problem - // <count of output classes-1> ensembles are built. - // If k = -1 ordinary prediction is the result, - // otherwise function gives the prediction of the - // k-th ensemble only. - // OUTPUT - // RESULT - // Predicted value. - */ - virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, - CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, - int k=-1 ) const; - - /* - // Response value prediction. - // Parallel version (in the case of TBB existence) - // - // API - // virtual float predict( const CvMat* sample, const CvMat* missing=0, - CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, - int k=-1 ) const; - - // INPUT - // sample - input sample of the same type as in the training set. - // missing - missing values mask. missing=0 if there are no - // missing values in sample vector. - // weak_responses - predictions of all of the trees. - // not implemented (!) - // slice - part of the ensemble used for prediction. - // slice = CV_WHOLE_SEQ when all trees are used. - // k - number of ensemble used. - // k is in {-1,0,1,..,<count of output classes-1>}. - // in the case of classification problem - // <count of output classes-1> ensembles are built. - // If k = -1 ordinary prediction is the result, - // otherwise function gives the prediction of the - // k-th ensemble only. - // OUTPUT - // RESULT - // Predicted value. - */ - virtual float predict( const CvMat* sample, const CvMat* missing=0, - CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, - int k=-1 ) const; - - /* - // Deletes all the data. - // - // API - // virtual void clear(); - - // INPUT - // OUTPUT - // delete data, weak, orig_response, sum_response, - // weak_eval, subsample_train, subsample_test, - // sample_idx, missing, lass_labels - // delta = 0.0 - // RESULT - */ - CV_WRAP virtual void clear(); - - /* - // Compute error on the train/test set. - // - // API - // virtual float calc_error( CvMLData* _data, int type, - // std::vector<float> *resp = 0 ); - // - // INPUT - // data - dataset - // type - defines which error is to compute: train (CV_TRAIN_ERROR) or - // test (CV_TEST_ERROR). - // OUTPUT - // resp - vector of predicitons - // RESULT - // Error value. - */ - virtual float calc_error( CvMLData* _data, int type, - std::vector<float> *resp = 0 ); - - /* - // - // Write parameters of the gtb model and data. Write learned model. - // - // API - // virtual void write( CvFileStorage* fs, const char* name ) const; - // - // INPUT - // fs - file storage to read parameters from. - // name - model name. - // OUTPUT - // RESULT - */ - virtual void write( CvFileStorage* fs, const char* name ) const; - - - /* - // - // Read parameters of the gtb model and data. Read learned model. - // - // API - // virtual void read( CvFileStorage* fs, CvFileNode* node ); - // - // INPUT - // fs - file storage to read parameters from. - // node - file node. - // OUTPUT - // RESULT - */ - virtual void read( CvFileStorage* fs, CvFileNode* node ); - - - // new-style C++ interface - CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag, - const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), - const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), - const cv::Mat& missingDataMask=cv::Mat(), - CvGBTreesParams params=CvGBTreesParams() ); - - CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, - const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), - const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), - const cv::Mat& missingDataMask=cv::Mat(), - CvGBTreesParams params=CvGBTreesParams(), - bool update=false ); - - CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), - const cv::Range& slice = cv::Range::all(), - int k=-1 ) const; - -protected: - - /* - // Compute the gradient vector components. - // - // API - // virtual void find_gradient( const int k = 0); - - // INPUT - // k - used for classification problem, determining current - // tree ensemble. - // OUTPUT - // changes components of data->responses - // which correspond to samples used for training - // on the current step. - // RESULT - */ - virtual void find_gradient( const int k = 0); - - - /* - // - // Change values in tree leaves according to the used loss function. - // - // API - // virtual void change_values(CvDTree* tree, const int k = 0); - // - // INPUT - // tree - decision tree to change. - // k - used for classification problem, determining current - // tree ensemble. - // OUTPUT - // changes 'value' fields of the trees' leaves. - // changes sum_response_tmp. - // RESULT - */ - virtual void change_values(CvDTree* tree, const int k = 0); - - - /* - // - // Find optimal constant prediction value according to the used loss - // function. - // The goal is to find a constant which gives the minimal summary loss - // on the _Idx samples. - // - // API - // virtual float find_optimal_value( const CvMat* _Idx ); - // - // INPUT - // _Idx - indices of the samples from the training set. - // OUTPUT - // RESULT - // optimal constant value. - */ - virtual float find_optimal_value( const CvMat* _Idx ); - - - /* - // - // Randomly split the whole training set in two parts according - // to params.portion. - // - // API - // virtual void do_subsample(); - // - // INPUT - // OUTPUT - // subsample_train - indices of samples used for training - // subsample_test - indices of samples used for test - // RESULT - */ - virtual void do_subsample(); - - - /* - // - // Internal recursive function giving an array of subtree tree leaves. - // - // API - // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); - // - // INPUT - // node - current leaf. - // OUTPUT - // count - count of leaves in the subtree. - // leaves - array of pointers to leaves. - // RESULT - */ - void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); - - - /* - // - // Get leaves of the tree. - // - // API - // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); - // - // INPUT - // dtree - decision tree. - // OUTPUT - // len - count of the leaves. - // RESULT - // CvDTreeNode** - array of pointers to leaves. - */ - CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); - - - /* - // - // Is it a regression or a classification. - // - // API - // bool problem_type(); - // - // INPUT - // OUTPUT - // RESULT - // false if it is a classification problem, - // true - if regression. - */ - virtual bool problem_type() const; - - - /* - // - // Write parameters of the gtb model. - // - // API - // virtual void write_params( CvFileStorage* fs ) const; - // - // INPUT - // fs - file storage to write parameters to. - // OUTPUT - // RESULT - */ - virtual void write_params( CvFileStorage* fs ) const; - - - /* - // - // Read parameters of the gtb model and data. - // - // API - // virtual void read_params( CvFileStorage* fs ); - // - // INPUT - // fs - file storage to read parameters from. - // OUTPUT - // params - parameters of the gtb model. - // data - contains information about the structure - // of the data set (count of variables, - // their types, etc.). - // class_labels - output class labels map. - // RESULT - */ - virtual void read_params( CvFileStorage* fs, CvFileNode* fnode ); - int get_len(const CvMat* mat) const; - - - CvDTreeTrainData* data; - CvGBTreesParams params; - - CvSeq** weak; - CvMat* orig_response; - CvMat* sum_response; - CvMat* sum_response_tmp; - CvMat* sample_idx; - CvMat* subsample_train; - CvMat* subsample_test; - CvMat* missing; - CvMat* class_labels; - - cv::RNG* rng; - - int class_count; - float delta; - float base_value; - -}; - - - -/****************************************************************************************\ -* Artificial Neural Networks (ANN) * -\****************************************************************************************/ - -/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// - -struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams -{ - CvANN_MLP_TrainParams(); - CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method, - double param1, double param2=0 ); - ~CvANN_MLP_TrainParams(); - - enum { BACKPROP=0, RPROP=1 }; - - CV_PROP_RW CvTermCriteria term_crit; - CV_PROP_RW int train_method; - - // backpropagation parameters - CV_PROP_RW double bp_dw_scale, bp_moment_scale; - - // rprop parameters - CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max; -}; - - -class CV_EXPORTS_W CvANN_MLP : public CvStatModel -{ -public: - CV_WRAP CvANN_MLP(); - CvANN_MLP( const CvMat* layerSizes, - int activateFunc=CvANN_MLP::SIGMOID_SYM, - double fparam1=0, double fparam2=0 ); - - virtual ~CvANN_MLP(); - - virtual void create( const CvMat* layerSizes, - int activateFunc=CvANN_MLP::SIGMOID_SYM, - double fparam1=0, double fparam2=0 ); - - virtual int train( const CvMat* inputs, const CvMat* outputs, - const CvMat* sampleWeights, const CvMat* sampleIdx=0, - CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), - int flags=0 ); - virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const; - - CV_WRAP CvANN_MLP( const cv::Mat& layerSizes, - int activateFunc=CvANN_MLP::SIGMOID_SYM, - double fparam1=0, double fparam2=0 ); - - CV_WRAP virtual void create( const cv::Mat& layerSizes, - int activateFunc=CvANN_MLP::SIGMOID_SYM, - double fparam1=0, double fparam2=0 ); - - CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs, - const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(), - CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), - int flags=0 ); - - CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const; - - CV_WRAP virtual void clear(); - - // possible activation functions - enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 }; - - // available training flags - enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 }; - - virtual void read( CvFileStorage* fs, CvFileNode* node ); - virtual void write( CvFileStorage* storage, const char* name ) const; - - int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; } - const CvMat* get_layer_sizes() { return layer_sizes; } - double* get_weights(int layer) - { - return layer_sizes && weights && - (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0; - } - - virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const; - -protected: - - virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs, - const CvMat* _sample_weights, const CvMat* sampleIdx, - CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags ); - - // sequential random backpropagation - virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); - - // RPROP algorithm - virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); - - virtual void calc_activ_func( CvMat* xf, const double* bias ) const; - virtual void set_activ_func( int _activ_func=SIGMOID_SYM, - double _f_param1=0, double _f_param2=0 ); - virtual void init_weights(); - virtual void scale_input( const CvMat* _src, CvMat* _dst ) const; - virtual void scale_output( const CvMat* _src, CvMat* _dst ) const; - virtual void calc_input_scale( const CvVectors* vecs, int flags ); - virtual void calc_output_scale( const CvVectors* vecs, int flags ); - - virtual void write_params( CvFileStorage* fs ) const; - virtual void read_params( CvFileStorage* fs, CvFileNode* node ); - - CvMat* layer_sizes; - CvMat* wbuf; - CvMat* sample_weights; - double** weights; - double f_param1, f_param2; - double min_val, max_val, min_val1, max_val1; - int activ_func; - int max_count, max_buf_sz; - CvANN_MLP_TrainParams params; - cv::RNG* rng; -}; - -/****************************************************************************************\ -* Auxilary functions declarations * -\****************************************************************************************/ - -/* Generates <sample> from multivariate normal distribution, where <mean> - is an - average row vector, <cov> - symmetric covariation matrix */ -CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample, - CvRNG* rng CV_DEFAULT(0) ); - -/* Generates sample from gaussian mixture distribution */ -CVAPI(void) cvRandGaussMixture( CvMat* means[], - CvMat* covs[], - float weights[], - int clsnum, - CvMat* sample, - CvMat* sampClasses CV_DEFAULT(0) ); - -#define CV_TS_CONCENTRIC_SPHERES 0 - -/* creates test set */ -CVAPI(void) cvCreateTestSet( int type, CvMat** samples, - int num_samples, - int num_features, - CvMat** responses, - int num_classes, ... ); - -/****************************************************************************************\ -* Data * -\****************************************************************************************/ - -#define CV_COUNT 0 -#define CV_PORTION 1 - -struct CV_EXPORTS CvTrainTestSplit -{ - CvTrainTestSplit(); - CvTrainTestSplit( int train_sample_count, bool mix = true); - CvTrainTestSplit( float train_sample_portion, bool mix = true); - - union - { - int count; - float portion; - } train_sample_part; - int train_sample_part_mode; - - bool mix; -}; - -class CV_EXPORTS CvMLData -{ -public: - CvMLData(); - virtual ~CvMLData(); - - // returns: - // 0 - OK - // -1 - file can not be opened or is not correct - int read_csv( const char* filename ); - - const CvMat* get_values() const; - const CvMat* get_responses(); - const CvMat* get_missing() const; - - void set_response_idx( int idx ); // old response become predictors, new response_idx = idx - // if idx < 0 there will be no response - int get_response_idx() const; - - void set_train_test_split( const CvTrainTestSplit * spl ); - const CvMat* get_train_sample_idx() const; - const CvMat* get_test_sample_idx() const; - void mix_train_and_test_idx(); - - const CvMat* get_var_idx(); - void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability), - // use change_var_idx - void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor - - const CvMat* get_var_types(); - int get_var_type( int var_idx ) const; - // following 2 methods enable to change vars type - // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable - // with numerical labels; in the other cases var types are correctly determined automatically - void set_var_types( const char* str ); // str examples: - // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]", - // "cat", "ord" (all vars are categorical/ordered) - void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL } - - void set_delimiter( char ch ); - char get_delimiter() const; - - void set_miss_ch( char ch ); - char get_miss_ch() const; - - const std::map<std::string, int>& get_class_labels_map() const; - -protected: - virtual void clear(); - - void str_to_flt_elem( const char* token, float& flt_elem, int& type); - void free_train_test_idx(); - - char delimiter; - char miss_ch; - //char flt_separator; - - CvMat* values; - CvMat* missing; - CvMat* var_types; - CvMat* var_idx_mask; - - CvMat* response_out; // header - CvMat* var_idx_out; // mat - CvMat* var_types_out; // mat - - int response_idx; - - int train_sample_count; - bool mix; - - int total_class_count; - std::map<std::string, int> class_map; - - CvMat* train_sample_idx; - CvMat* test_sample_idx; - int* sample_idx; // data of train_sample_idx and test_sample_idx - - cv::RNG* rng; -}; - - -namespace cv -{ - -typedef CvStatModel StatModel; -typedef CvParamGrid ParamGrid; -typedef CvNormalBayesClassifier NormalBayesClassifier; -typedef CvKNearest KNearest; -typedef CvSVMParams SVMParams; -typedef CvSVMKernel SVMKernel; -typedef CvSVMSolver SVMSolver; -typedef CvSVM SVM; -typedef CvDTreeParams DTreeParams; -typedef CvMLData TrainData; -typedef CvDTree DecisionTree; -typedef CvForestTree ForestTree; -typedef CvRTParams RandomTreeParams; -typedef CvRTrees RandomTrees; -typedef CvERTreeTrainData ERTreeTRainData; -typedef CvForestERTree ERTree; -typedef CvERTrees ERTrees; -typedef CvBoostParams BoostParams; -typedef CvBoostTree BoostTree; -typedef CvBoost Boost; -typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams; -typedef CvANN_MLP NeuralNet_MLP; -typedef CvGBTreesParams GradientBoostingTreeParams; -typedef CvGBTrees GradientBoostingTrees; - -template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj(); - -CV_EXPORTS bool initModule_ml(void); - -} - -#endif // __cplusplus -#endif // __OPENCV_ML_HPP__ - -/* End of file. */ |