summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp
diff options
context:
space:
mode:
authorsiddhu89902017-04-24 14:08:37 +0530
committersiddhu89902017-04-24 14:08:37 +0530
commit472b2e7ebbd2d8b3ecd00b228128aa8a0bd3f920 (patch)
tree506e85e6c959148c052747d61ffd29d98fa058bf /2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp
parentb9cfdca438347fe4d28f7caff3cb7b382e455d3a (diff)
downloadScilab2C-472b2e7ebbd2d8b3ecd00b228128aa8a0bd3f920.tar.gz
Scilab2C-472b2e7ebbd2d8b3ecd00b228128aa8a0bd3f920.tar.bz2
Scilab2C-472b2e7ebbd2d8b3ecd00b228128aa8a0bd3f920.zip
Fixed float.h issue. OpenCV with built libraries working for linux x64
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp')
-rw-r--r--2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp1299
1 files changed, 0 insertions, 1299 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp
deleted file mode 100644
index aa6a5f6c..00000000
--- a/2.3-1/thirdparty/raspberrypi/includes/opencv2/imgproc/imgproc.hpp
+++ /dev/null
@@ -1,1299 +0,0 @@
-/*M///////////////////////////////////////////////////////////////////////////////////////
-//
-// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
-//
-// By downloading, copying, installing or using the software you agree to this license.
-// If you do not agree to this license, do not download, install,
-// copy or use the software.
-//
-//
-// License Agreement
-// For Open Source Computer Vision Library
-//
-// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
-// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
-// Third party copyrights are property of their respective owners.
-//
-// Redistribution and use in source and binary forms, with or without modification,
-// are permitted provided that the following conditions are met:
-//
-// * Redistribution's of source code must retain the above copyright notice,
-// this list of conditions and the following disclaimer.
-//
-// * Redistribution's in binary form must reproduce the above copyright notice,
-// this list of conditions and the following disclaimer in the documentation
-// and/or other materials provided with the distribution.
-//
-// * The name of the copyright holders may not be used to endorse or promote products
-// derived from this software without specific prior written permission.
-//
-// This software is provided by the copyright holders and contributors "as is" and
-// any express or implied warranties, including, but not limited to, the implied
-// warranties of merchantability and fitness for a particular purpose are disclaimed.
-// In no event shall the Intel Corporation or contributors be liable for any direct,
-// indirect, incidental, special, exemplary, or consequential damages
-// (including, but not limited to, procurement of substitute goods or services;
-// loss of use, data, or profits; or business interruption) however caused
-// and on any theory of liability, whether in contract, strict liability,
-// or tort (including negligence or otherwise) arising in any way out of
-// the use of this software, even if advised of the possibility of such damage.
-//
-//M*/
-
-#ifndef __OPENCV_IMGPROC_HPP__
-#define __OPENCV_IMGPROC_HPP__
-
-#include "opencv2/core/core.hpp"
-#include "opencv2/imgproc/types_c.h"
-
-#ifdef __cplusplus
-
-/*! \namespace cv
- Namespace where all the C++ OpenCV functionality resides
- */
-namespace cv
-{
-
-//! various border interpolation methods
-enum { BORDER_REPLICATE=IPL_BORDER_REPLICATE, BORDER_CONSTANT=IPL_BORDER_CONSTANT,
- BORDER_REFLECT=IPL_BORDER_REFLECT, BORDER_WRAP=IPL_BORDER_WRAP,
- BORDER_REFLECT_101=IPL_BORDER_REFLECT_101, BORDER_REFLECT101=BORDER_REFLECT_101,
- BORDER_TRANSPARENT=IPL_BORDER_TRANSPARENT,
- BORDER_DEFAULT=BORDER_REFLECT_101, BORDER_ISOLATED=16 };
-
-//! 1D interpolation function: returns coordinate of the "donor" pixel for the specified location p.
-CV_EXPORTS_W int borderInterpolate( int p, int len, int borderType );
-
-/*!
- The Base Class for 1D or Row-wise Filters
-
- This is the base class for linear or non-linear filters that process 1D data.
- In particular, such filters are used for the "horizontal" filtering parts in separable filters.
-
- Several functions in OpenCV return Ptr<BaseRowFilter> for the specific types of filters,
- and those pointers can be used directly or within cv::FilterEngine.
-*/
-class CV_EXPORTS BaseRowFilter
-{
-public:
- //! the default constructor
- BaseRowFilter();
- //! the destructor
- virtual ~BaseRowFilter();
- //! the filtering operator. Must be overridden in the derived classes. The horizontal border interpolation is done outside of the class.
- virtual void operator()(const uchar* src, uchar* dst,
- int width, int cn) = 0;
- int ksize, anchor;
-};
-
-
-/*!
- The Base Class for Column-wise Filters
-
- This is the base class for linear or non-linear filters that process columns of 2D arrays.
- Such filters are used for the "vertical" filtering parts in separable filters.
-
- Several functions in OpenCV return Ptr<BaseColumnFilter> for the specific types of filters,
- and those pointers can be used directly or within cv::FilterEngine.
-
- Unlike cv::BaseRowFilter, cv::BaseColumnFilter may have some context information,
- i.e. box filter keeps the sliding sum of elements. To reset the state BaseColumnFilter::reset()
- must be called (e.g. the method is called by cv::FilterEngine)
- */
-class CV_EXPORTS BaseColumnFilter
-{
-public:
- //! the default constructor
- BaseColumnFilter();
- //! the destructor
- virtual ~BaseColumnFilter();
- //! the filtering operator. Must be overridden in the derived classes. The vertical border interpolation is done outside of the class.
- virtual void operator()(const uchar** src, uchar* dst, int dststep,
- int dstcount, int width) = 0;
- //! resets the internal buffers, if any
- virtual void reset();
- int ksize, anchor;
-};
-
-/*!
- The Base Class for Non-Separable 2D Filters.
-
- This is the base class for linear or non-linear 2D filters.
-
- Several functions in OpenCV return Ptr<BaseFilter> for the specific types of filters,
- and those pointers can be used directly or within cv::FilterEngine.
-
- Similar to cv::BaseColumnFilter, the class may have some context information,
- that should be reset using BaseFilter::reset() method before processing the new array.
-*/
-class CV_EXPORTS BaseFilter
-{
-public:
- //! the default constructor
- BaseFilter();
- //! the destructor
- virtual ~BaseFilter();
- //! the filtering operator. The horizontal and the vertical border interpolation is done outside of the class.
- virtual void operator()(const uchar** src, uchar* dst, int dststep,
- int dstcount, int width, int cn) = 0;
- //! resets the internal buffers, if any
- virtual void reset();
- Size ksize;
- Point anchor;
-};
-
-/*!
- The Main Class for Image Filtering.
-
- The class can be used to apply an arbitrary filtering operation to an image.
- It contains all the necessary intermediate buffers, it computes extrapolated values
- of the "virtual" pixels outside of the image etc.
- Pointers to the initialized cv::FilterEngine instances
- are returned by various OpenCV functions, such as cv::createSeparableLinearFilter(),
- cv::createLinearFilter(), cv::createGaussianFilter(), cv::createDerivFilter(),
- cv::createBoxFilter() and cv::createMorphologyFilter().
-
- Using the class you can process large images by parts and build complex pipelines
- that include filtering as some of the stages. If all you need is to apply some pre-defined
- filtering operation, you may use cv::filter2D(), cv::erode(), cv::dilate() etc.
- functions that create FilterEngine internally.
-
- Here is the example on how to use the class to implement Laplacian operator, which is the sum of
- second-order derivatives. More complex variant for different types is implemented in cv::Laplacian().
-
- \code
- void laplace_f(const Mat& src, Mat& dst)
- {
- CV_Assert( src.type() == CV_32F );
- // make sure the destination array has the proper size and type
- dst.create(src.size(), src.type());
-
- // get the derivative and smooth kernels for d2I/dx2.
- // for d2I/dy2 we could use the same kernels, just swapped
- Mat kd, ks;
- getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
-
- // let's process 10 source rows at once
- int DELTA = std::min(10, src.rows);
- Ptr<FilterEngine> Fxx = createSeparableLinearFilter(src.type(),
- dst.type(), kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
- Ptr<FilterEngine> Fyy = createSeparableLinearFilter(src.type(),
- dst.type(), ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
-
- int y = Fxx->start(src), dsty = 0, dy = 0;
- Fyy->start(src);
- const uchar* sptr = src.data + y*src.step;
-
- // allocate the buffers for the spatial image derivatives;
- // the buffers need to have more than DELTA rows, because at the
- // last iteration the output may take max(kd.rows-1,ks.rows-1)
- // rows more than the input.
- Mat Ixx( DELTA + kd.rows - 1, src.cols, dst.type() );
- Mat Iyy( DELTA + kd.rows - 1, src.cols, dst.type() );
-
- // inside the loop we always pass DELTA rows to the filter
- // (note that the "proceed" method takes care of possibe overflow, since
- // it was given the actual image height in the "start" method)
- // on output we can get:
- // * < DELTA rows (the initial buffer accumulation stage)
- // * = DELTA rows (settled state in the middle)
- // * > DELTA rows (then the input image is over, but we generate
- // "virtual" rows using the border mode and filter them)
- // this variable number of output rows is dy.
- // dsty is the current output row.
- // sptr is the pointer to the first input row in the portion to process
- for( ; dsty < dst.rows; sptr += DELTA*src.step, dsty += dy )
- {
- Fxx->proceed( sptr, (int)src.step, DELTA, Ixx.data, (int)Ixx.step );
- dy = Fyy->proceed( sptr, (int)src.step, DELTA, d2y.data, (int)Iyy.step );
- if( dy > 0 )
- {
- Mat dstripe = dst.rowRange(dsty, dsty + dy);
- add(Ixx.rowRange(0, dy), Iyy.rowRange(0, dy), dstripe);
- }
- }
- }
- \endcode
-*/
-class CV_EXPORTS FilterEngine
-{
-public:
- //! the default constructor
- FilterEngine();
- //! the full constructor. Either _filter2D or both _rowFilter and _columnFilter must be non-empty.
- FilterEngine(const Ptr<BaseFilter>& _filter2D,
- const Ptr<BaseRowFilter>& _rowFilter,
- const Ptr<BaseColumnFilter>& _columnFilter,
- int srcType, int dstType, int bufType,
- int _rowBorderType=BORDER_REPLICATE,
- int _columnBorderType=-1,
- const Scalar& _borderValue=Scalar());
- //! the destructor
- virtual ~FilterEngine();
- //! reinitializes the engine. The previously assigned filters are released.
- void init(const Ptr<BaseFilter>& _filter2D,
- const Ptr<BaseRowFilter>& _rowFilter,
- const Ptr<BaseColumnFilter>& _columnFilter,
- int srcType, int dstType, int bufType,
- int _rowBorderType=BORDER_REPLICATE, int _columnBorderType=-1,
- const Scalar& _borderValue=Scalar());
- //! starts filtering of the specified ROI of an image of size wholeSize.
- virtual int start(Size wholeSize, Rect roi, int maxBufRows=-1);
- //! starts filtering of the specified ROI of the specified image.
- virtual int start(const Mat& src, const Rect& srcRoi=Rect(0,0,-1,-1),
- bool isolated=false, int maxBufRows=-1);
- //! processes the next srcCount rows of the image.
- virtual int proceed(const uchar* src, int srcStep, int srcCount,
- uchar* dst, int dstStep);
- //! applies filter to the specified ROI of the image. if srcRoi=(0,0,-1,-1), the whole image is filtered.
- virtual void apply( const Mat& src, Mat& dst,
- const Rect& srcRoi=Rect(0,0,-1,-1),
- Point dstOfs=Point(0,0),
- bool isolated=false);
- //! returns true if the filter is separable
- bool isSeparable() const { return (const BaseFilter*)filter2D == 0; }
- //! returns the number
- int remainingInputRows() const;
- int remainingOutputRows() const;
-
- int srcType, dstType, bufType;
- Size ksize;
- Point anchor;
- int maxWidth;
- Size wholeSize;
- Rect roi;
- int dx1, dx2;
- int rowBorderType, columnBorderType;
- vector<int> borderTab;
- int borderElemSize;
- vector<uchar> ringBuf;
- vector<uchar> srcRow;
- vector<uchar> constBorderValue;
- vector<uchar> constBorderRow;
- int bufStep, startY, startY0, endY, rowCount, dstY;
- vector<uchar*> rows;
-
- Ptr<BaseFilter> filter2D;
- Ptr<BaseRowFilter> rowFilter;
- Ptr<BaseColumnFilter> columnFilter;
-};
-
-//! type of the kernel
-enum { KERNEL_GENERAL=0, KERNEL_SYMMETRICAL=1, KERNEL_ASYMMETRICAL=2,
- KERNEL_SMOOTH=4, KERNEL_INTEGER=8 };
-
-//! returns type (one of KERNEL_*) of 1D or 2D kernel specified by its coefficients.
-CV_EXPORTS int getKernelType(InputArray kernel, Point anchor);
-
-//! returns the primitive row filter with the specified kernel
-CV_EXPORTS Ptr<BaseRowFilter> getLinearRowFilter(int srcType, int bufType,
- InputArray kernel, int anchor,
- int symmetryType);
-
-//! returns the primitive column filter with the specified kernel
-CV_EXPORTS Ptr<BaseColumnFilter> getLinearColumnFilter(int bufType, int dstType,
- InputArray kernel, int anchor,
- int symmetryType, double delta=0,
- int bits=0);
-
-//! returns 2D filter with the specified kernel
-CV_EXPORTS Ptr<BaseFilter> getLinearFilter(int srcType, int dstType,
- InputArray kernel,
- Point anchor=Point(-1,-1),
- double delta=0, int bits=0);
-
-//! returns the separable linear filter engine
-CV_EXPORTS Ptr<FilterEngine> createSeparableLinearFilter(int srcType, int dstType,
- InputArray rowKernel, InputArray columnKernel,
- Point anchor=Point(-1,-1), double delta=0,
- int rowBorderType=BORDER_DEFAULT,
- int columnBorderType=-1,
- const Scalar& borderValue=Scalar());
-
-//! returns the non-separable linear filter engine
-CV_EXPORTS Ptr<FilterEngine> createLinearFilter(int srcType, int dstType,
- InputArray kernel, Point _anchor=Point(-1,-1),
- double delta=0, int rowBorderType=BORDER_DEFAULT,
- int columnBorderType=-1, const Scalar& borderValue=Scalar());
-
-//! returns the Gaussian kernel with the specified parameters
-CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype=CV_64F );
-
-//! returns the Gaussian filter engine
-CV_EXPORTS Ptr<FilterEngine> createGaussianFilter( int type, Size ksize,
- double sigma1, double sigma2=0,
- int borderType=BORDER_DEFAULT);
-//! initializes kernels of the generalized Sobel operator
-CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
- int dx, int dy, int ksize,
- bool normalize=false, int ktype=CV_32F );
-//! returns filter engine for the generalized Sobel operator
-CV_EXPORTS Ptr<FilterEngine> createDerivFilter( int srcType, int dstType,
- int dx, int dy, int ksize,
- int borderType=BORDER_DEFAULT );
-//! returns horizontal 1D box filter
-CV_EXPORTS Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType,
- int ksize, int anchor=-1);
-//! returns vertical 1D box filter
-CV_EXPORTS Ptr<BaseColumnFilter> getColumnSumFilter( int sumType, int dstType,
- int ksize, int anchor=-1,
- double scale=1);
-//! returns box filter engine
-CV_EXPORTS Ptr<FilterEngine> createBoxFilter( int srcType, int dstType, Size ksize,
- Point anchor=Point(-1,-1),
- bool normalize=true,
- int borderType=BORDER_DEFAULT);
-
-//! returns the Gabor kernel with the specified parameters
-CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
- double gamma, double psi=CV_PI*0.5, int ktype=CV_64F );
-
-//! type of morphological operation
-enum { MORPH_ERODE=CV_MOP_ERODE, MORPH_DILATE=CV_MOP_DILATE,
- MORPH_OPEN=CV_MOP_OPEN, MORPH_CLOSE=CV_MOP_CLOSE,
- MORPH_GRADIENT=CV_MOP_GRADIENT, MORPH_TOPHAT=CV_MOP_TOPHAT,
- MORPH_BLACKHAT=CV_MOP_BLACKHAT, MORPH_HITMISS };
-
-//! returns horizontal 1D morphological filter
-CV_EXPORTS Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int anchor=-1);
-//! returns vertical 1D morphological filter
-CV_EXPORTS Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor=-1);
-//! returns 2D morphological filter
-CV_EXPORTS Ptr<BaseFilter> getMorphologyFilter(int op, int type, InputArray kernel,
- Point anchor=Point(-1,-1));
-
-//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
-static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); }
-
-//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
-CV_EXPORTS Ptr<FilterEngine> createMorphologyFilter(int op, int type, InputArray kernel,
- Point anchor=Point(-1,-1), int rowBorderType=BORDER_CONSTANT,
- int columnBorderType=-1,
- const Scalar& borderValue=morphologyDefaultBorderValue());
-
-//! shape of the structuring element
-enum { MORPH_RECT=0, MORPH_CROSS=1, MORPH_ELLIPSE=2 };
-//! returns structuring element of the specified shape and size
-CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor=Point(-1,-1));
-
-template<> CV_EXPORTS void Ptr<IplConvKernel>::delete_obj();
-
-//! copies 2D array to a larger destination array with extrapolation of the outer part of src using the specified border mode
-CV_EXPORTS_W void copyMakeBorder( InputArray src, OutputArray dst,
- int top, int bottom, int left, int right,
- int borderType, const Scalar& value=Scalar() );
-
-//! smooths the image using median filter.
-CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
-//! smooths the image using Gaussian filter.
-CV_EXPORTS_W void GaussianBlur( InputArray src,
- OutputArray dst, Size ksize,
- double sigmaX, double sigmaY=0,
- int borderType=BORDER_DEFAULT );
-//! smooths the image using bilateral filter
-CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
- double sigmaColor, double sigmaSpace,
- int borderType=BORDER_DEFAULT );
-//! smooths the image using adaptive bilateral filter
-CV_EXPORTS_W void adaptiveBilateralFilter( InputArray src, OutputArray dst, Size ksize,
- double sigmaSpace, double maxSigmaColor = 20.0, Point anchor=Point(-1, -1),
- int borderType=BORDER_DEFAULT );
-//! smooths the image using the box filter. Each pixel is processed in O(1) time
-CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
- Size ksize, Point anchor=Point(-1,-1),
- bool normalize=true,
- int borderType=BORDER_DEFAULT );
-//! a synonym for normalized box filter
-CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
- Size ksize, Point anchor=Point(-1,-1),
- int borderType=BORDER_DEFAULT );
-
-//! applies non-separable 2D linear filter to the image
-CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
- InputArray kernel, Point anchor=Point(-1,-1),
- double delta=0, int borderType=BORDER_DEFAULT );
-
-//! applies separable 2D linear filter to the image
-CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
- InputArray kernelX, InputArray kernelY,
- Point anchor=Point(-1,-1),
- double delta=0, int borderType=BORDER_DEFAULT );
-
-//! applies generalized Sobel operator to the image
-CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
- int dx, int dy, int ksize=3,
- double scale=1, double delta=0,
- int borderType=BORDER_DEFAULT );
-
-//! applies the vertical or horizontal Scharr operator to the image
-CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
- int dx, int dy, double scale=1, double delta=0,
- int borderType=BORDER_DEFAULT );
-
-//! applies Laplacian operator to the image
-CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
- int ksize=1, double scale=1, double delta=0,
- int borderType=BORDER_DEFAULT );
-
-//! applies Canny edge detector and produces the edge map.
-CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
- double threshold1, double threshold2,
- int apertureSize=3, bool L2gradient=false );
-
-//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
-CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
- int blockSize, int ksize=3,
- int borderType=BORDER_DEFAULT );
-
-//! computes Harris cornerness criteria at each image pixel
-CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
- int ksize, double k,
- int borderType=BORDER_DEFAULT );
-
-// low-level function for computing eigenvalues and eigenvectors of 2x2 matrices
-CV_EXPORTS void eigen2x2( const float* a, float* e, int n );
-
-//! computes both eigenvalues and the eigenvectors of 2x2 derivative covariation matrix at each pixel. The output is stored as 6-channel matrix.
-CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
- int blockSize, int ksize,
- int borderType=BORDER_DEFAULT );
-
-//! computes another complex cornerness criteria at each pixel
-CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
- int borderType=BORDER_DEFAULT );
-
-//! adjusts the corner locations with sub-pixel accuracy to maximize the certain cornerness criteria
-CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
- Size winSize, Size zeroZone,
- TermCriteria criteria );
-
-//! finds the strong enough corners where the cornerMinEigenVal() or cornerHarris() report the local maxima
-CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
- int maxCorners, double qualityLevel, double minDistance,
- InputArray mask=noArray(), int blockSize=3,
- bool useHarrisDetector=false, double k=0.04 );
-
-//! finds lines in the black-n-white image using the standard or pyramid Hough transform
-CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
- double rho, double theta, int threshold,
- double srn=0, double stn=0 );
-
-//! finds line segments in the black-n-white image using probabilistic Hough transform
-CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
- double rho, double theta, int threshold,
- double minLineLength=0, double maxLineGap=0 );
-
-//! finds circles in the grayscale image using 2+1 gradient Hough transform
-CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
- int method, double dp, double minDist,
- double param1=100, double param2=100,
- int minRadius=0, int maxRadius=0 );
-
-enum
-{
- GHT_POSITION = 0,
- GHT_SCALE = 1,
- GHT_ROTATION = 2
-};
-
-//! finds arbitrary template in the grayscale image using Generalized Hough Transform
-//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
-//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
-class CV_EXPORTS GeneralizedHough : public Algorithm
-{
-public:
- static Ptr<GeneralizedHough> create(int method);
-
- virtual ~GeneralizedHough();
-
- //! set template to search
- void setTemplate(InputArray templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
- void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1));
-
- //! find template on image
- void detect(InputArray image, OutputArray positions, OutputArray votes = cv::noArray(), int cannyThreshold = 100);
- void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = cv::noArray());
-
- void release();
-
-protected:
- virtual void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter) = 0;
- virtual void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) = 0;
- virtual void releaseImpl() = 0;
-
-private:
- Mat edges_, dx_, dy_;
-};
-
-//! erodes the image (applies the local minimum operator)
-CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
- Point anchor=Point(-1,-1), int iterations=1,
- int borderType=BORDER_CONSTANT,
- const Scalar& borderValue=morphologyDefaultBorderValue() );
-
-//! dilates the image (applies the local maximum operator)
-CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
- Point anchor=Point(-1,-1), int iterations=1,
- int borderType=BORDER_CONSTANT,
- const Scalar& borderValue=morphologyDefaultBorderValue() );
-
-//! applies an advanced morphological operation to the image
-CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
- int op, InputArray kernel,
- Point anchor=Point(-1,-1), int iterations=1,
- int borderType=BORDER_CONSTANT,
- const Scalar& borderValue=morphologyDefaultBorderValue() );
-
-//! interpolation algorithm
-enum
-{
- INTER_NEAREST=CV_INTER_NN, //!< nearest neighbor interpolation
- INTER_LINEAR=CV_INTER_LINEAR, //!< bilinear interpolation
- INTER_CUBIC=CV_INTER_CUBIC, //!< bicubic interpolation
- INTER_AREA=CV_INTER_AREA, //!< area-based (or super) interpolation
- INTER_LANCZOS4=CV_INTER_LANCZOS4, //!< Lanczos interpolation over 8x8 neighborhood
- INTER_MAX=7,
- WARP_INVERSE_MAP=CV_WARP_INVERSE_MAP
-};
-
-//! resizes the image
-CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
- Size dsize, double fx=0, double fy=0,
- int interpolation=INTER_LINEAR );
-
-//! warps the image using affine transformation
-CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
- InputArray M, Size dsize,
- int flags=INTER_LINEAR,
- int borderMode=BORDER_CONSTANT,
- const Scalar& borderValue=Scalar());
-
-//! warps the image using perspective transformation
-CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
- InputArray M, Size dsize,
- int flags=INTER_LINEAR,
- int borderMode=BORDER_CONSTANT,
- const Scalar& borderValue=Scalar());
-
-enum
-{
- INTER_BITS=5, INTER_BITS2=INTER_BITS*2,
- INTER_TAB_SIZE=(1<<INTER_BITS),
- INTER_TAB_SIZE2=INTER_TAB_SIZE*INTER_TAB_SIZE
-};
-
-//! warps the image using the precomputed maps. The maps are stored in either floating-point or integer fixed-point format
-CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
- InputArray map1, InputArray map2,
- int interpolation, int borderMode=BORDER_CONSTANT,
- const Scalar& borderValue=Scalar());
-
-//! converts maps for remap from floating-point to fixed-point format or backwards
-CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
- OutputArray dstmap1, OutputArray dstmap2,
- int dstmap1type, bool nninterpolation=false );
-
-//! returns 2x3 affine transformation matrix for the planar rotation.
-CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale );
-//! returns 3x3 perspective transformation for the corresponding 4 point pairs.
-CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] );
-//! returns 2x3 affine transformation for the corresponding 3 point pairs.
-CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
-//! computes 2x3 affine transformation matrix that is inverse to the specified 2x3 affine transformation.
-CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
-
-CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst );
-CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
-
-//! extracts rectangle from the image at sub-pixel location
-CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
- Point2f center, OutputArray patch, int patchType=-1 );
-
-//! computes the integral image
-CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth=-1 );
-
-//! computes the integral image and integral for the squared image
-CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
- OutputArray sqsum, int sdepth=-1 );
-//! computes the integral image, integral for the squared image and the tilted integral image
-CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
- OutputArray sqsum, OutputArray tilted,
- int sdepth=-1 );
-
-//! adds image to the accumulator (dst += src). Unlike cv::add, dst and src can have different types.
-CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
- InputArray mask=noArray() );
-//! adds squared src image to the accumulator (dst += src*src).
-CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
- InputArray mask=noArray() );
-//! adds product of the 2 images to the accumulator (dst += src1*src2).
-CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
- InputOutputArray dst, InputArray mask=noArray() );
-//! updates the running average (dst = dst*(1-alpha) + src*alpha)
-CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
- double alpha, InputArray mask=noArray() );
-
-//! computes PSNR image/video quality metric
-CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
-
-CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
- InputArray window = noArray());
-CV_EXPORTS_W Point2d phaseCorrelateRes(InputArray src1, InputArray src2,
- InputArray window, CV_OUT double* response = 0);
-CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
-
-//! type of the threshold operation
-enum { THRESH_BINARY=CV_THRESH_BINARY, THRESH_BINARY_INV=CV_THRESH_BINARY_INV,
- THRESH_TRUNC=CV_THRESH_TRUNC, THRESH_TOZERO=CV_THRESH_TOZERO,
- THRESH_TOZERO_INV=CV_THRESH_TOZERO_INV, THRESH_MASK=CV_THRESH_MASK,
- THRESH_OTSU=CV_THRESH_OTSU };
-
-//! applies fixed threshold to the image
-CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
- double thresh, double maxval, int type );
-
-//! adaptive threshold algorithm
-enum { ADAPTIVE_THRESH_MEAN_C=0, ADAPTIVE_THRESH_GAUSSIAN_C=1 };
-
-//! applies variable (adaptive) threshold to the image
-CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
- double maxValue, int adaptiveMethod,
- int thresholdType, int blockSize, double C );
-
-//! smooths and downsamples the image
-CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
- const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );
-//! upsamples and smoothes the image
-CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
- const Size& dstsize=Size(), int borderType=BORDER_DEFAULT );
-
-//! builds the gaussian pyramid using pyrDown() as a basic operation
-CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
- int maxlevel, int borderType=BORDER_DEFAULT );
-
-//! corrects lens distortion for the given camera matrix and distortion coefficients
-CV_EXPORTS_W void undistort( InputArray src, OutputArray dst,
- InputArray cameraMatrix,
- InputArray distCoeffs,
- InputArray newCameraMatrix=noArray() );
-
-//! initializes maps for cv::remap() to correct lens distortion and optionally rectify the image
-CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs,
- InputArray R, InputArray newCameraMatrix,
- Size size, int m1type, OutputArray map1, OutputArray map2 );
-
-enum
-{
- PROJ_SPHERICAL_ORTHO = 0,
- PROJ_SPHERICAL_EQRECT = 1
-};
-
-//! initializes maps for cv::remap() for wide-angle
-CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs,
- Size imageSize, int destImageWidth,
- int m1type, OutputArray map1, OutputArray map2,
- int projType=PROJ_SPHERICAL_EQRECT, double alpha=0);
-
-//! returns the default new camera matrix (by default it is the same as cameraMatrix unless centerPricipalPoint=true)
-CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize=Size(),
- bool centerPrincipalPoint=false );
-
-//! returns points' coordinates after lens distortion correction
-CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst,
- InputArray cameraMatrix, InputArray distCoeffs,
- InputArray R=noArray(), InputArray P=noArray());
-
-template<> CV_EXPORTS void Ptr<CvHistogram>::delete_obj();
-
-//! computes the joint dense histogram for a set of images.
-CV_EXPORTS void calcHist( const Mat* images, int nimages,
- const int* channels, InputArray mask,
- OutputArray hist, int dims, const int* histSize,
- const float** ranges, bool uniform=true, bool accumulate=false );
-
-//! computes the joint sparse histogram for a set of images.
-CV_EXPORTS void calcHist( const Mat* images, int nimages,
- const int* channels, InputArray mask,
- SparseMat& hist, int dims,
- const int* histSize, const float** ranges,
- bool uniform=true, bool accumulate=false );
-
-CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
- const vector<int>& channels,
- InputArray mask, OutputArray hist,
- const vector<int>& histSize,
- const vector<float>& ranges,
- bool accumulate=false );
-
-//! computes back projection for the set of images
-CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
- const int* channels, InputArray hist,
- OutputArray backProject, const float** ranges,
- double scale=1, bool uniform=true );
-
-//! computes back projection for the set of images
-CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
- const int* channels, const SparseMat& hist,
- OutputArray backProject, const float** ranges,
- double scale=1, bool uniform=true );
-
-CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const vector<int>& channels,
- InputArray hist, OutputArray dst,
- const vector<float>& ranges,
- double scale );
-
-/*CV_EXPORTS void calcBackProjectPatch( const Mat* images, int nimages, const int* channels,
- InputArray hist, OutputArray dst, Size patchSize,
- int method, double factor=1 );
-
-CV_EXPORTS_W void calcBackProjectPatch( InputArrayOfArrays images, const vector<int>& channels,
- InputArray hist, OutputArray dst, Size patchSize,
- int method, double factor=1 );*/
-
-//! compares two histograms stored in dense arrays
-CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
-
-//! compares two histograms stored in sparse arrays
-CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
-
-//! normalizes the grayscale image brightness and contrast by normalizing its histogram
-CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
-
-class CV_EXPORTS_W CLAHE : public Algorithm
-{
-public:
- CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
-
- CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
- CV_WRAP virtual double getClipLimit() const = 0;
-
- CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
- CV_WRAP virtual Size getTilesGridSize() const = 0;
-
- CV_WRAP virtual void collectGarbage() = 0;
-};
-CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
-
-CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
- int distType, InputArray cost=noArray(),
- float* lowerBound=0, OutputArray flow=noArray() );
-
-//! segments the image using watershed algorithm
-CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
-
-//! filters image using meanshift algorithm
-CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
- double sp, double sr, int maxLevel=1,
- TermCriteria termcrit=TermCriteria(
- TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
-
-//! class of the pixel in GrabCut algorithm
-enum
-{
- GC_BGD = 0, //!< background
- GC_FGD = 1, //!< foreground
- GC_PR_BGD = 2, //!< most probably background
- GC_PR_FGD = 3 //!< most probably foreground
-};
-
-//! GrabCut algorithm flags
-enum
-{
- GC_INIT_WITH_RECT = 0,
- GC_INIT_WITH_MASK = 1,
- GC_EVAL = 2
-};
-
-//! segments the image using GrabCut algorithm
-CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
- InputOutputArray bgdModel, InputOutputArray fgdModel,
- int iterCount, int mode = GC_EVAL );
-
-enum
-{
- DIST_LABEL_CCOMP = 0,
- DIST_LABEL_PIXEL = 1
-};
-
-//! builds the discrete Voronoi diagram
-CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
- OutputArray labels, int distanceType, int maskSize,
- int labelType=DIST_LABEL_CCOMP );
-
-//! computes the distance transform map
-CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
- int distanceType, int maskSize );
-
-enum { FLOODFILL_FIXED_RANGE = 1 << 16, FLOODFILL_MASK_ONLY = 1 << 17 };
-
-//! fills the semi-uniform image region starting from the specified seed point
-CV_EXPORTS int floodFill( InputOutputArray image,
- Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
- Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
- int flags=4 );
-
-//! fills the semi-uniform image region and/or the mask starting from the specified seed point
-CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
- Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
- Scalar loDiff=Scalar(), Scalar upDiff=Scalar(),
- int flags=4 );
-
-
-enum
-{
- COLOR_BGR2BGRA =0,
- COLOR_RGB2RGBA =COLOR_BGR2BGRA,
-
- COLOR_BGRA2BGR =1,
- COLOR_RGBA2RGB =COLOR_BGRA2BGR,
-
- COLOR_BGR2RGBA =2,
- COLOR_RGB2BGRA =COLOR_BGR2RGBA,
-
- COLOR_RGBA2BGR =3,
- COLOR_BGRA2RGB =COLOR_RGBA2BGR,
-
- COLOR_BGR2RGB =4,
- COLOR_RGB2BGR =COLOR_BGR2RGB,
-
- COLOR_BGRA2RGBA =5,
- COLOR_RGBA2BGRA =COLOR_BGRA2RGBA,
-
- COLOR_BGR2GRAY =6,
- COLOR_RGB2GRAY =7,
- COLOR_GRAY2BGR =8,
- COLOR_GRAY2RGB =COLOR_GRAY2BGR,
- COLOR_GRAY2BGRA =9,
- COLOR_GRAY2RGBA =COLOR_GRAY2BGRA,
- COLOR_BGRA2GRAY =10,
- COLOR_RGBA2GRAY =11,
-
- COLOR_BGR2BGR565 =12,
- COLOR_RGB2BGR565 =13,
- COLOR_BGR5652BGR =14,
- COLOR_BGR5652RGB =15,
- COLOR_BGRA2BGR565 =16,
- COLOR_RGBA2BGR565 =17,
- COLOR_BGR5652BGRA =18,
- COLOR_BGR5652RGBA =19,
-
- COLOR_GRAY2BGR565 =20,
- COLOR_BGR5652GRAY =21,
-
- COLOR_BGR2BGR555 =22,
- COLOR_RGB2BGR555 =23,
- COLOR_BGR5552BGR =24,
- COLOR_BGR5552RGB =25,
- COLOR_BGRA2BGR555 =26,
- COLOR_RGBA2BGR555 =27,
- COLOR_BGR5552BGRA =28,
- COLOR_BGR5552RGBA =29,
-
- COLOR_GRAY2BGR555 =30,
- COLOR_BGR5552GRAY =31,
-
- COLOR_BGR2XYZ =32,
- COLOR_RGB2XYZ =33,
- COLOR_XYZ2BGR =34,
- COLOR_XYZ2RGB =35,
-
- COLOR_BGR2YCrCb =36,
- COLOR_RGB2YCrCb =37,
- COLOR_YCrCb2BGR =38,
- COLOR_YCrCb2RGB =39,
-
- COLOR_BGR2HSV =40,
- COLOR_RGB2HSV =41,
-
- COLOR_BGR2Lab =44,
- COLOR_RGB2Lab =45,
-
- COLOR_BayerBG2BGR =46,
- COLOR_BayerGB2BGR =47,
- COLOR_BayerRG2BGR =48,
- COLOR_BayerGR2BGR =49,
-
- COLOR_BayerBG2RGB =COLOR_BayerRG2BGR,
- COLOR_BayerGB2RGB =COLOR_BayerGR2BGR,
- COLOR_BayerRG2RGB =COLOR_BayerBG2BGR,
- COLOR_BayerGR2RGB =COLOR_BayerGB2BGR,
-
- COLOR_BGR2Luv =50,
- COLOR_RGB2Luv =51,
- COLOR_BGR2HLS =52,
- COLOR_RGB2HLS =53,
-
- COLOR_HSV2BGR =54,
- COLOR_HSV2RGB =55,
-
- COLOR_Lab2BGR =56,
- COLOR_Lab2RGB =57,
- COLOR_Luv2BGR =58,
- COLOR_Luv2RGB =59,
- COLOR_HLS2BGR =60,
- COLOR_HLS2RGB =61,
-
- COLOR_BayerBG2BGR_VNG =62,
- COLOR_BayerGB2BGR_VNG =63,
- COLOR_BayerRG2BGR_VNG =64,
- COLOR_BayerGR2BGR_VNG =65,
-
- COLOR_BayerBG2RGB_VNG =COLOR_BayerRG2BGR_VNG,
- COLOR_BayerGB2RGB_VNG =COLOR_BayerGR2BGR_VNG,
- COLOR_BayerRG2RGB_VNG =COLOR_BayerBG2BGR_VNG,
- COLOR_BayerGR2RGB_VNG =COLOR_BayerGB2BGR_VNG,
-
- COLOR_BGR2HSV_FULL = 66,
- COLOR_RGB2HSV_FULL = 67,
- COLOR_BGR2HLS_FULL = 68,
- COLOR_RGB2HLS_FULL = 69,
-
- COLOR_HSV2BGR_FULL = 70,
- COLOR_HSV2RGB_FULL = 71,
- COLOR_HLS2BGR_FULL = 72,
- COLOR_HLS2RGB_FULL = 73,
-
- COLOR_LBGR2Lab = 74,
- COLOR_LRGB2Lab = 75,
- COLOR_LBGR2Luv = 76,
- COLOR_LRGB2Luv = 77,
-
- COLOR_Lab2LBGR = 78,
- COLOR_Lab2LRGB = 79,
- COLOR_Luv2LBGR = 80,
- COLOR_Luv2LRGB = 81,
-
- COLOR_BGR2YUV = 82,
- COLOR_RGB2YUV = 83,
- COLOR_YUV2BGR = 84,
- COLOR_YUV2RGB = 85,
-
- COLOR_BayerBG2GRAY = 86,
- COLOR_BayerGB2GRAY = 87,
- COLOR_BayerRG2GRAY = 88,
- COLOR_BayerGR2GRAY = 89,
-
- //YUV 4:2:0 formats family
- COLOR_YUV2RGB_NV12 = 90,
- COLOR_YUV2BGR_NV12 = 91,
- COLOR_YUV2RGB_NV21 = 92,
- COLOR_YUV2BGR_NV21 = 93,
- COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
- COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
-
- COLOR_YUV2RGBA_NV12 = 94,
- COLOR_YUV2BGRA_NV12 = 95,
- COLOR_YUV2RGBA_NV21 = 96,
- COLOR_YUV2BGRA_NV21 = 97,
- COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
- COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
-
- COLOR_YUV2RGB_YV12 = 98,
- COLOR_YUV2BGR_YV12 = 99,
- COLOR_YUV2RGB_IYUV = 100,
- COLOR_YUV2BGR_IYUV = 101,
- COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
- COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
- COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
- COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
-
- COLOR_YUV2RGBA_YV12 = 102,
- COLOR_YUV2BGRA_YV12 = 103,
- COLOR_YUV2RGBA_IYUV = 104,
- COLOR_YUV2BGRA_IYUV = 105,
- COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
- COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
- COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
- COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
-
- COLOR_YUV2GRAY_420 = 106,
- COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
- COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
- COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
-
- //YUV 4:2:2 formats family
- COLOR_YUV2RGB_UYVY = 107,
- COLOR_YUV2BGR_UYVY = 108,
- //COLOR_YUV2RGB_VYUY = 109,
- //COLOR_YUV2BGR_VYUY = 110,
- COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
- COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
- COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
- COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
-
- COLOR_YUV2RGBA_UYVY = 111,
- COLOR_YUV2BGRA_UYVY = 112,
- //COLOR_YUV2RGBA_VYUY = 113,
- //COLOR_YUV2BGRA_VYUY = 114,
- COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
- COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
- COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
- COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
-
- COLOR_YUV2RGB_YUY2 = 115,
- COLOR_YUV2BGR_YUY2 = 116,
- COLOR_YUV2RGB_YVYU = 117,
- COLOR_YUV2BGR_YVYU = 118,
- COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
- COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
- COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
- COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
-
- COLOR_YUV2RGBA_YUY2 = 119,
- COLOR_YUV2BGRA_YUY2 = 120,
- COLOR_YUV2RGBA_YVYU = 121,
- COLOR_YUV2BGRA_YVYU = 122,
- COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
- COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
- COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
- COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
-
- COLOR_YUV2GRAY_UYVY = 123,
- COLOR_YUV2GRAY_YUY2 = 124,
- //COLOR_YUV2GRAY_VYUY = COLOR_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
- COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
- COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
-
- // alpha premultiplication
- COLOR_RGBA2mRGBA = 125,
- COLOR_mRGBA2RGBA = 126,
-
- COLOR_RGB2YUV_I420 = 127,
- COLOR_BGR2YUV_I420 = 128,
- COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
- COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
-
- COLOR_RGBA2YUV_I420 = 129,
- COLOR_BGRA2YUV_I420 = 130,
- COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
- COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
- COLOR_RGB2YUV_YV12 = 131,
- COLOR_BGR2YUV_YV12 = 132,
- COLOR_RGBA2YUV_YV12 = 133,
- COLOR_BGRA2YUV_YV12 = 134,
-
- COLOR_COLORCVT_MAX = 135
-};
-
-
-//! converts image from one color space to another
-CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn=0 );
-
-//! raster image moments
-class CV_EXPORTS_W_MAP Moments
-{
-public:
- //! the default constructor
- Moments();
- //! the full constructor
- Moments(double m00, double m10, double m01, double m20, double m11,
- double m02, double m30, double m21, double m12, double m03 );
- //! the conversion from CvMoments
- Moments( const CvMoments& moments );
- //! the conversion to CvMoments
- operator CvMoments() const;
-
- //! spatial moments
- CV_PROP_RW double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03;
- //! central moments
- CV_PROP_RW double mu20, mu11, mu02, mu30, mu21, mu12, mu03;
- //! central normalized moments
- CV_PROP_RW double nu20, nu11, nu02, nu30, nu21, nu12, nu03;
-};
-
-//! computes moments of the rasterized shape or a vector of points
-CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage=false );
-
-//! computes 7 Hu invariants from the moments
-CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
-CV_EXPORTS_W void HuMoments( const Moments& m, CV_OUT OutputArray hu );
-
-//! type of the template matching operation
-enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF=4, TM_CCOEFF_NORMED=5 };
-
-//! computes the proximity map for the raster template and the image where the template is searched for
-CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
- OutputArray result, int method );
-
-//! mode of the contour retrieval algorithm
-enum
-{
- RETR_EXTERNAL=CV_RETR_EXTERNAL, //!< retrieve only the most external (top-level) contours
- RETR_LIST=CV_RETR_LIST, //!< retrieve all the contours without any hierarchical information
- RETR_CCOMP=CV_RETR_CCOMP, //!< retrieve the connected components (that can possibly be nested)
- RETR_TREE=CV_RETR_TREE, //!< retrieve all the contours and the whole hierarchy
- RETR_FLOODFILL=CV_RETR_FLOODFILL
-};
-
-//! the contour approximation algorithm
-enum
-{
- CHAIN_APPROX_NONE=CV_CHAIN_APPROX_NONE,
- CHAIN_APPROX_SIMPLE=CV_CHAIN_APPROX_SIMPLE,
- CHAIN_APPROX_TC89_L1=CV_CHAIN_APPROX_TC89_L1,
- CHAIN_APPROX_TC89_KCOS=CV_CHAIN_APPROX_TC89_KCOS
-};
-
-//! retrieves contours and the hierarchical information from black-n-white image.
-CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours,
- OutputArray hierarchy, int mode,
- int method, Point offset=Point());
-
-//! retrieves contours from black-n-white image.
-CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours,
- int mode, int method, Point offset=Point());
-
-//! draws contours in the image
-CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
- int contourIdx, const Scalar& color,
- int thickness=1, int lineType=8,
- InputArray hierarchy=noArray(),
- int maxLevel=INT_MAX, Point offset=Point() );
-
-//! approximates contour or a curve using Douglas-Peucker algorithm
-CV_EXPORTS_W void approxPolyDP( InputArray curve,
- OutputArray approxCurve,
- double epsilon, bool closed );
-
-//! computes the contour perimeter (closed=true) or a curve length
-CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
-//! computes the bounding rectangle for a contour
-CV_EXPORTS_W Rect boundingRect( InputArray points );
-//! computes the contour area
-CV_EXPORTS_W double contourArea( InputArray contour, bool oriented=false );
-//! computes the minimal rotated rectangle for a set of points
-CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
-//! computes the minimal enclosing circle for a set of points
-CV_EXPORTS_W void minEnclosingCircle( InputArray points,
- CV_OUT Point2f& center, CV_OUT float& radius );
-//! matches two contours using one of the available algorithms
-CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
- int method, double parameter );
-//! computes convex hull for a set of 2D points.
-CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
- bool clockwise=false, bool returnPoints=true );
-//! computes the contour convexity defects
-CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
-
-//! returns true if the contour is convex. Does not support contours with self-intersection
-CV_EXPORTS_W bool isContourConvex( InputArray contour );
-
-//! finds intersection of two convex polygons
-CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2,
- OutputArray _p12, bool handleNested=true );
-
-//! fits ellipse to the set of 2D points
-CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
-
-//! fits line to the set of 2D points using M-estimator algorithm
-CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
- double param, double reps, double aeps );
-//! checks if the point is inside the contour. Optionally computes the signed distance from the point to the contour boundary
-CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
-
-
-class CV_EXPORTS_W Subdiv2D
-{
-public:
- enum
- {
- PTLOC_ERROR = -2,
- PTLOC_OUTSIDE_RECT = -1,
- PTLOC_INSIDE = 0,
- PTLOC_VERTEX = 1,
- PTLOC_ON_EDGE = 2
- };
-
- enum
- {
- NEXT_AROUND_ORG = 0x00,
- NEXT_AROUND_DST = 0x22,
- PREV_AROUND_ORG = 0x11,
- PREV_AROUND_DST = 0x33,
- NEXT_AROUND_LEFT = 0x13,
- NEXT_AROUND_RIGHT = 0x31,
- PREV_AROUND_LEFT = 0x20,
- PREV_AROUND_RIGHT = 0x02
- };
-
- CV_WRAP Subdiv2D();
- CV_WRAP Subdiv2D(Rect rect);
- CV_WRAP void initDelaunay(Rect rect);
-
- CV_WRAP int insert(Point2f pt);
- CV_WRAP void insert(const vector<Point2f>& ptvec);
- CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
-
- CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt=0);
- CV_WRAP void getEdgeList(CV_OUT vector<Vec4f>& edgeList) const;
- CV_WRAP void getTriangleList(CV_OUT vector<Vec6f>& triangleList) const;
- CV_WRAP void getVoronoiFacetList(const vector<int>& idx, CV_OUT vector<vector<Point2f> >& facetList,
- CV_OUT vector<Point2f>& facetCenters);
-
- CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge=0) const;
-
- CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
- CV_WRAP int nextEdge(int edge) const;
- CV_WRAP int rotateEdge(int edge, int rotate) const;
- CV_WRAP int symEdge(int edge) const;
- CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt=0) const;
- CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt=0) const;
-
-protected:
- int newEdge();
- void deleteEdge(int edge);
- int newPoint(Point2f pt, bool isvirtual, int firstEdge=0);
- void deletePoint(int vtx);
- void setEdgePoints( int edge, int orgPt, int dstPt );
- void splice( int edgeA, int edgeB );
- int connectEdges( int edgeA, int edgeB );
- void swapEdges( int edge );
- int isRightOf(Point2f pt, int edge) const;
- void calcVoronoi();
- void clearVoronoi();
- void checkSubdiv() const;
-
- struct CV_EXPORTS Vertex
- {
- Vertex();
- Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0);
- bool isvirtual() const;
- bool isfree() const;
- int firstEdge;
- int type;
- Point2f pt;
- };
- struct CV_EXPORTS QuadEdge
- {
- QuadEdge();
- QuadEdge(int edgeidx);
- bool isfree() const;
- int next[4];
- int pt[4];
- };
-
- vector<Vertex> vtx;
- vector<QuadEdge> qedges;
- int freeQEdge;
- int freePoint;
- bool validGeometry;
-
- int recentEdge;
- Point2f topLeft;
- Point2f bottomRight;
-};
-
-}
-
-#endif /* __cplusplus */
-
-#endif
-
-/* End of file. */