9#Nonlinear Systems#9.9#Describing Function for a saturation nonlinearity#Ex9_9_model.xcos#3432/CH9/EX9.9/Ex9_9_model.xcos#X##118675 9#Nonlinear Systems#9.9#Describing Function for a saturation nonlinearity#Ex9_9_f1.pdf#3432/CH9/EX9.9/Ex9_9_f1.pdf#R##118674 9#Nonlinear Systems#9.9#Describing Function for a saturation nonlinearity#Ex9_9_f0.pdf#3432/CH9/EX9.9/Ex9_9_f0.pdf#R##118673 9#Nonlinear Systems#9.9#Describing Function for a saturation nonlinearity#Ex9_9.sce#3432/CH9/EX9.9/Ex9_9.sce#S##118672 9#Nonlinear Systems#9.9#Describing Function for a saturation nonlinearity#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 9#Nonlinear Systems#9.8#Antiwindup compensation for a PI controller#Ex9_8_model.xcos#3432/CH9/EX9.8/Ex9_8_model.xcos#X##118667 9#Nonlinear Systems#9.8#Antiwindup compensation for a PI controller#Ex9_8_f1.pdf#3432/CH9/EX9.8/Ex9_8_f1.pdf#R##118666 9#Nonlinear Systems#9.8#Antiwindup compensation for a PI controller#Ex9_8_f0.pdf#3432/CH9/EX9.8/Ex9_8_f0.pdf#R##118665 9#Nonlinear Systems#9.8#Antiwindup compensation for a PI controller#Ex9_8.sce#3432/CH9/EX9.8/Ex9_8.sce#S##118664 9#Nonlinear Systems#9.8#Antiwindup compensation for a PI controller#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 9#Nonlinear Systems#9.7#Analysis and design of the system with limit cycle using the root locus#Ex9_7_model_notch.xcos#3432/CH9/EX9.7/Ex9_7_model_notch.xcos#X##118663 9#Nonlinear Systems#9.7#Analysis and design of the system with limit cycle using the root locus#Ex9_7_model.xcos#3432/CH9/EX9.7/Ex9_7_model.xcos#X##118662 9#Nonlinear Systems#9.7#Analysis and design of the system with limit cycle using the root locus#Ex9_7_f3.pdf#3432/CH9/EX9.7/Ex9_7_f3.pdf#R##118661 9#Nonlinear Systems#9.7#Analysis and design of the system with limit cycle using the root locus#Ex9_7_f1.pdf#3432/CH9/EX9.7/Ex9_7_f1.pdf#R##118660 9#Nonlinear Systems#9.7#Analysis and design of the system with limit cycle using the root locus#Ex9_7.sce#3432/CH9/EX9.7/Ex9_7.sce#S##118659 9#Nonlinear Systems#9.7#Analysis and design of the system with limit cycle using the root locus#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 9#Nonlinear Systems#9.6#Stability of conditionally stable system using root locus#Ex9_6.sce#3432/CH9/EX9.6/Ex9_6.sce#S##118648 9#Nonlinear Systems#9.6#Stability of conditionally stable system using root locus#Ex9_6_f0.pdf#3432/CH9/EX9.6/Ex9_6_f0.pdf#R##118649 9#Nonlinear Systems#9.6#Stability of conditionally stable system using root locus#Ex9_6_f1.pdf#3432/CH9/EX9.6/Ex9_6_f1.pdf#R##118650 9#Nonlinear Systems#9.6#Stability of conditionally stable system using root locus#Ex9_6_model.xcos#3432/CH9/EX9.6/Ex9_6_model.xcos#X##118651 9#Nonlinear Systems#9.6#Stability of conditionally stable system using root locus#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 9#Nonlinear Systems#9.5#Changing Overshoot and Saturation nonlinearity#Ex9_5_f1.pdf#3432/CH9/EX9.5/Ex9_5_f1.pdf#R##118641 9#Nonlinear Systems#9.5#Changing Overshoot and Saturation nonlinearity#Ex9_5_f0.pdf#3432/CH9/EX9.5/Ex9_5_f0.pdf#R##118640 9#Nonlinear Systems#9.5#Changing Overshoot and Saturation nonlinearity#Ex9_5_model.xcos#3432/CH9/EX9.5/Ex9_5_model.xcos#X##118642 9#Nonlinear Systems#9.5#Changing Overshoot and Saturation nonlinearity#Ex9_5.sce#3432/CH9/EX9.5/Ex9_5.sce#S##118639 9#Nonlinear Systems#9.5#Changing Overshoot and Saturation nonlinearity#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 9#Nonlinear Systems#9.13#Determination of stability with a hysteresis nonlinearity#Ex9_13_model.xcos#3432/CH9/EX9.13/Ex9_13_model.xcos#X##118695 9#Nonlinear Systems#9.13#Determination of stability with a hysteresis nonlinearity#Ex9_13_f1.pdf#3432/CH9/EX9.13/Ex9_13_f1.pdf#R##118694 9#Nonlinear Systems#9.13#Determination of stability with a hysteresis nonlinearity#Ex9_13_f0.pdf#3432/CH9/EX9.13/Ex9_13_f0.pdf#R##118693 9#Nonlinear Systems#9.13#Determination of stability with a hysteresis nonlinearity#Ex9_13.sce#3432/CH9/EX9.13/Ex9_13.sce#S##118692 9#Nonlinear Systems#9.13#Determination of stability with a hysteresis nonlinearity#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 9#Nonlinear Systems#9.12#Conditionally stable system#Ex9_12_f1.pdf#3432/CH9/EX9.12/Ex9_12_f1.pdf#R##118690 9#Nonlinear Systems#9.12#Conditionally stable system#Ex9_12_f0.pdf#3432/CH9/EX9.12/Ex9_12_f0.pdf#R##118689 9#Nonlinear Systems#9.12#Conditionally stable system#Ex9_12.sce#3432/CH9/EX9.12/Ex9_12.sce#S##118688 9#Nonlinear Systems#9.12#Conditionally stable system#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 9#Nonlinear Systems#9.11#Describing Function for a relay with hysteresis non linearity#Ex9_11_f0.pdf#3432/CH9/EX9.11/Ex9_11_f0.pdf#R##118680 9#Nonlinear Systems#9.11#Describing Function for a relay with hysteresis non linearity#Ex9_11_f1.pdf#3432/CH9/EX9.11/Ex9_11_f1.pdf#R##118681 9#Nonlinear Systems#9.11#Describing Function for a relay with hysteresis non linearity#Ex9_11_model.xcos#3432/CH9/EX9.11/Ex9_11_model.xcos#X##118682 9#Nonlinear Systems#9.11#Describing Function for a relay with hysteresis non linearity#Ex9_11.sce#3432/CH9/EX9.11/Ex9_11.sce#S##118679 9#Nonlinear Systems#9.11#Describing Function for a relay with hysteresis non linearity#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 8#Digital Control#8.2#Design of a Space Station Attitude Digital Controller using Discrete Equivalents#Ex8_2_model.xcos#3432/CH8/EX8.2/Ex8_2_model.xcos#X##118634 8#Digital Control#8.2#Design of a Space Station Attitude Digital Controller using Discrete Equivalents#Ex8_2_f1.pdf#3432/CH8/EX8.2/Ex8_2_f1.pdf#R##118633 8#Digital Control#8.2#Design of a Space Station Attitude Digital Controller using Discrete Equivalents#Ex8_2_f0.pdf#3432/CH8/EX8.2/Ex8_2_f0.pdf#R##118632 8#Digital Control#8.2#Design of a Space Station Attitude Digital Controller using Discrete Equivalents#Ex8_2.sce#3432/CH8/EX8.2/Ex8_2.sce#S##118631 8#Digital Control#8.2#Design of a Space Station Attitude Digital Controller using Discrete Equivalents#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 8#Digital Control#8.1#Digital Controller using tustin approximation#Ex8_1_model.xcos#3432/CH8/EX8.1/Ex8_1_model.xcos#X##118629 8#Digital Control#8.1#Digital Controller using tustin approximation#Ex8_1_f1.pdf#3432/CH8/EX8.1/Ex8_1_f1.pdf#R##118628 8#Digital Control#8.1#Digital Controller using tustin approximation#Ex8_1_f0.pdf#3432/CH8/EX8.1/Ex8_1_f0.pdf#R##118627 8#Digital Control#8.1#Digital Controller using tustin approximation#Ex8_1.sce#3432/CH8/EX8.1/Ex8_1.sce#S##118626 8#Digital Control#8.1#Digital Controller using tustin approximation#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.9#State Equations in Modal Canonical Form#Ex7_9.sce#3432/CH7/EX7.9/Ex7_9.sce#S##118789 7#State Space Design#7.8#Time scaling an oscillator#Ex7_8.sce#3432/CH7/EX7.8/Ex7_8.sce#S##120575 7#State Space Design#7.7#Analog computer Implementation#Ex7_7.sce#3432/CH7/EX7.7/Ex7_7.sce#S##118787 7#State Space Design#7.35#Integral Control of a Motor Speed System#Ex7_35_model.xcos#3432/CH7/EX7.35/Ex7_35_model.xcos#X##118843 7#State Space Design#7.35#Integral Control of a Motor Speed System#Ex7_35_f1.pdf#3432/CH7/EX7.35/Ex7_35_f1.pdf#R##118842 7#State Space Design#7.35#Integral Control of a Motor Speed System#Ex7_35_f0.pdf#3432/CH7/EX7.35/Ex7_35_f0.pdf#R##118841 7#State Space Design#7.35#Integral Control of a Motor Speed System#Ex7_35.sce#3432/CH7/EX7.35/Ex7_35.sce#S##118840 7#State Space Design#7.35#Integral Control of a Motor Speed System#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.34#Servomechanism increasing the velocity constant through zero assignment#Ex7_34_model.xcos#3432/CH7/EX7.34/Ex7_34_model.xcos#X##118839 7#State Space Design#7.34#Servomechanism increasing the velocity constant through zero assignment#Ex7_34_f4.pdf#3432/CH7/EX7.34/Ex7_34_f4.pdf#R##118838 7#State Space Design#7.34#Servomechanism increasing the velocity constant through zero assignment#Ex7_34_f0.pdf#3432/CH7/EX7.34/Ex7_34_f0.pdf#R##118837 7#State Space Design#7.34#Servomechanism increasing the velocity constant through zero assignment#Ex7_34.sce#3432/CH7/EX7.34/Ex7_34.sce#S##118836 7#State Space Design#7.34#Servomechanism increasing the velocity constant through zero assignment#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.34#Servomechanism increasing the velocity constant through zero assignment#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.33#DC servo system redesign with modified with dominant second order pole locations#Ex7_33.sce#3432/CH7/EX7.33/Ex7_33.sce#S##118835 7#State Space Design#7.33#DC servo system redesign with modified with dominant second order pole locations#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.33#DC servo system redesign with modified with dominant second order pole locations#zpk_dk.sci#3432/DEPENDENCIES/zpk_dk.sci#D#ZPK computation#1188 7#State Space Design#7.32#Redesign of the Dc servo compensator using SRL#Ex7_32_model.xcos#3432/CH7/EX7.32/Ex7_32_model.xcos#X##118834 7#State Space Design#7.32#Redesign of the Dc servo compensator using SRL#Ex7_32_f2.pdf#3432/CH7/EX7.32/Ex7_32_f2.pdf#R##118833 7#State Space Design#7.32#Redesign of the Dc servo compensator using SRL#Ex7_32_f0.pdf#3432/CH7/EX7.32/Ex7_32_f0.pdf#R##118832 7#State Space Design#7.32#Redesign of the Dc servo compensator using SRL#Ex7_32.sce#3432/CH7/EX7.32/Ex7_32.sce#S##118831 7#State Space Design#7.32#Redesign of the Dc servo compensator using SRL#zpk_dk.sci#3432/DEPENDENCIES/zpk_dk.sci#D#ZPK computation#1188 7#State Space Design#7.32#Redesign of the Dc servo compensator using SRL#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.32#Redesign of the Dc servo compensator using SRL#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.31#Reduced Order Estimatortor Design for DC Servo#Ex7_31.sce#3432/CH7/EX7.31/Ex7_31.sce#S##118896 7#State Space Design#7.31#Reduced Order Estimatortor Design for DC Servo#Ex7_31_f0.pdf#3432/CH7/EX7.31/Ex7_31_f0.pdf#R##118830 7#State Space Design#7.31#Reduced Order Estimatortor Design for DC Servo#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.30#Full Order Compensator Design for DC Servo#Ex7_30_f0.pdf#3432/CH7/EX7.30/Ex7_30_f0.pdf#R##118828 7#State Space Design#7.30#Full Order Compensator Design for DC Servo#Ex7_30.sce#3432/CH7/EX7.30/Ex7_30.sce#S##120576 7#State Space Design#7.30#Full Order Compensator Design for DC Servo#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.30#Full Order Compensator Design for DC Servo#zpk_dk.sci#3432/DEPENDENCIES/zpk_dk.sci#D#ZPK computation#1188 7#State Space Design#7.29#A reduced order compensator design for a satellite attitude control#Ex7_29_f1.pdf#3432/CH7/EX7.29/Ex7_29_f1.pdf#R##118847 7#State Space Design#7.29#A reduced order compensator design for a satellite attitude control#Ex7_29.sce#3432/CH7/EX7.29/Ex7_29.sce#S##118845 7#State Space Design#7.29#A reduced order compensator design for a satellite attitude control#Ex7_29_f0.pdf#3432/CH7/EX7.29/Ex7_29_f0.pdf#R##118846 7#State Space Design#7.29#A reduced order compensator design for a satellite attitude control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.29#A reduced order compensator design for a satellite attitude control#zpk_dk.sci#3432/DEPENDENCIES/zpk_dk.sci#D#ZPK computation#1188 7#State Space Design#7.28#Full order compensator design for satellite attitude control#Ex7_28_f1.pdf#3432/CH7/EX7.28/Ex7_28_f1.pdf#R##118823 7#State Space Design#7.28#Full order compensator design for satellite attitude control#Ex7_28_f0.pdf#3432/CH7/EX7.28/Ex7_28_f0.pdf#R##118822 7#State Space Design#7.28#Full order compensator design for satellite attitude control#Ex7_28.sce#3432/CH7/EX7.28/Ex7_28.sce#S##118821 7#State Space Design#7.28#Full order compensator design for satellite attitude control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.28#Full order compensator design for satellite attitude control#zpk_dk.sci#3432/DEPENDENCIES/zpk_dk.sci#D#ZPK computation#1188 7#State Space Design#7.27#SRL estimator design for a simple pendulum#Ex7_27_f0.pdf#3432/CH7/EX7.27/Ex7_27_f0.pdf#R##118820 7#State Space Design#7.27#SRL estimator design for a simple pendulum#Ex7_27.sce#3432/CH7/EX7.27/Ex7_27.sce#S##118819 7#State Space Design#7.27#SRL estimator design for a simple pendulum#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.26#A reduced order estimator design for pendulum#Ex7_26_f0.pdf#3432/CH7/EX7.26/Ex7_26_f0.pdf#R##118818 7#State Space Design#7.26#A reduced order estimator design for pendulum#Ex7_26.sce#3432/CH7/EX7.26/Ex7_26.sce#S##118817 7#State Space Design#7.26#A reduced order estimator design for pendulum#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.25#An estimator design for a simple pendulum#Ex7_25_f0.pdf#3432/CH7/EX7.25/Ex7_25_f0.pdf#R##118816 7#State Space Design#7.25#An estimator design for a simple pendulum#Ex7_25.sce#3432/CH7/EX7.25/Ex7_25.sce#S##118815 7#State Space Design#7.25#An estimator design for a simple pendulum#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.24#LQR Design for a Tape Drive#Ex7_24_f0.pdf#3432/CH7/EX7.24/Ex7_24_f0.pdf#R##118814 7#State Space Design#7.24#LQR Design for a Tape Drive#Ex7_24.sce#3432/CH7/EX7.24/Ex7_24.sce#S##118813 7#State Space Design#7.24#LQR Design for a Tape Drive#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.23#SRL design for an inverted pendulum#Ex7_23_f1.pdf#3432/CH7/EX7.23/Ex7_23_f1.pdf#R##118812 7#State Space Design#7.23#SRL design for an inverted pendulum#Ex7_23_f0.pdf#3432/CH7/EX7.23/Ex7_23_f0.pdf#R##118811 7#State Space Design#7.23#SRL design for an inverted pendulum#Ex7_23.sce#3432/CH7/EX7.23/Ex7_23.sce#S##118810 7#State Space Design#7.23#SRL design for an inverted pendulum#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.23#SRL design for an inverted pendulum#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.22#SRL design for satellite attitude control#Ex7_22_f0.pdf#3432/CH7/EX7.22/Ex7_22_f0.pdf#R##118809 7#State Space Design#7.22#SRL design for satellite attitude control#Ex7_22.sce#3432/CH7/EX7.22/Ex7_22.sce#S##118808 7#State Space Design#7.22#SRL design for satellite attitude control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.22#SRL design for satellite attitude control#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.21#Symmetric root locus for servo speed control#Ex7_21_f0.pdf#3432/CH7/EX7.21/Ex7_21_f0.pdf#R##118807 7#State Space Design#7.21#Symmetric root locus for servo speed control#Ex7_21.sce#3432/CH7/EX7.21/Ex7_21.sce#S##118806 7#State Space Design#7.21#Symmetric root locus for servo speed control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.20#Pole Placement as a Dominant Second Order System#Ex7_20_f1.pdf#3432/CH7/EX7.20/Ex7_20_f1.pdf#R##118805 7#State Space Design#7.20#Pole Placement as a Dominant Second Order System#Ex7_20_f0.pdf#3432/CH7/EX7.20/Ex7_20_f0.pdf#R##118804 7#State Space Design#7.20#Pole Placement as a Dominant Second Order System#Ex7_20.sce#3432/CH7/EX7.20/Ex7_20.sce#S##118803 7#State Space Design#7.20#Pole Placement as a Dominant Second Order System#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.20#Pole Placement as a Dominant Second Order System#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.2.b#Cruise control system step response#Ex7_2.sce#3432/CH7/EX7.2.b/Ex7_2.sce#S##118786 7#State Space Design#7.2.b#Cruise control system step response#Ex7_2_f0.pdf#3432/CH7/EX7.2.b/Ex7_2_f0.pdf#R##118785 7#State Space Design#7.2.b#Cruise control system step response#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.19#Reference input to Type1 control system DC Motor#Ex7_19_f0.pdf#3432/CH7/EX7.19/Ex7_19_f0.pdf#R##118802 7#State Space Design#7.19#Reference input to Type1 control system DC Motor#Ex7_19.sce#3432/CH7/EX7.19/Ex7_19.sce#S##118801 7#State Space Design#7.19#Reference input to Type1 control system DC Motor#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.19#Reference input to Type1 control system DC Motor#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.18#Introducing the reference input#Ex7_18_f0.pdf#3432/CH7/EX7.18/Ex7_18_f0.pdf#R##118800 7#State Space Design#7.18#Introducing the reference input#Ex7_18.sce#3432/CH7/EX7.18/Ex7_18.sce#S##118799 7#State Space Design#7.18#Introducing the reference input#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.18#Introducing the reference input#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.17#How zero location affect control law#Ex7_17.sce#3432/CH7/EX7.17/Ex7_17.sce#S##118798 7#State Space Design#7.17#How zero location affect control law#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.16#Ackermanns formula for undamped oscillator#Ex7_16.sce#3432/CH7/EX7.16/Ex7_16.sce#S##118797 7#State Space Design#7.16#Ackermanns formula for undamped oscillator#acker_dk.sci#3432/DEPENDENCIES/acker_dk.sci#D#State feedback gain matrix computation#1187 7#State Space Design#7.15#Control law for a pendulum#Ex7_15_f0.pdf#3432/CH7/EX7.15/Ex7_15_f0.pdf#R##118796 7#State Space Design#7.15#Control law for a pendulum#Ex7_15.sce#3432/CH7/EX7.15/Ex7_15.sce#S##118795 7#State Space Design#7.15#Control law for a pendulum#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 7#State Space Design#7.14#Analysis of state equations of Tape Drive#Ex7_14.sce#3432/CH7/EX7.14/Ex7_14.sce#S##118794 7#State Space Design#7.13#Zeros for the Thermal System from a State Description#Ex7_13.sce#3432/CH7/EX7.13/Ex7_13.sce#S##118793 7#State Space Design#7.12#Transformation of Thermal System from state description#Ex7_12.sce#3432/CH7/EX7.12/Ex7_12.sce#S##118792 7#State Space Design#7.11#Poles and Zeros of Tape Drive System#Ex7_11.sce#3432/CH7/EX7.11/Ex7_11.sce#S##118791 7#State Space Design#7.10#Transformation of Thermal System from Control to Modal Form#Ex7_10.sce#3432/CH7/EX7.10/Ex7_10.sce#S##118790 6#The Frequency Response Design Method#6.9#Nyquist plot for a third order system#Ex6_9_f1.pdf#3432/CH6/EX6.9/Ex6_9_f1.pdf#R##118725 6#The Frequency Response Design Method#6.9#Nyquist plot for a third order system#Ex6_9_f0.pdf#3432/CH6/EX6.9/Ex6_9_f0.pdf#R##118724 6#The Frequency Response Design Method#6.9#Nyquist plot for a third order system#Ex6_9.sce#3432/CH6/EX6.9/Ex6_9.sce#S##118723 6#The Frequency Response Design Method#6.9#Nyquist plot for a third order system#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.8#Nyquist plot for a second order system#Ex6_8_f1.pdf#3432/CH6/EX6.8/Ex6_8_f1.pdf#R##118720 6#The Frequency Response Design Method#6.8#Nyquist plot for a second order system#Ex6_8_f0.pdf#3432/CH6/EX6.8/Ex6_8_f0.pdf#R##118719 6#The Frequency Response Design Method#6.8#Nyquist plot for a second order system#Ex6_8.sce#3432/CH6/EX6.8/Ex6_8.sce#S##118718 6#The Frequency Response Design Method#6.8#Nyquist plot for a second order system#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.7#Computation of Kv#Ex6_7.sce#3432/CH6/EX6.7/Ex6_7.sce#S##120573 6#The Frequency Response Design Method#6.7#Computation of Kv#EX6_7_f0.pdf#3432/CH6/EX6.7/EX6_7_f0.pdf#R##120574 6#The Frequency Response Design Method#6.6#Bode Plot for Complex Poles and Zeros#Ex6_6_f0.pdf#3432/CH6/EX6.6/Ex6_6_f0.pdf#R##118711 6#The Frequency Response Design Method#6.6#Bode Plot for Complex Poles and Zeros#Ex6_6.sce#3432/CH6/EX6.6/Ex6_6.sce#S##118710 6#The Frequency Response Design Method#6.6#Bode Plot for Complex Poles and Zeros#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.4#Bode Plot with Complex Poles#Ex6_4_f0.pdf#3432/CH6/EX6.4/Ex6_4_f0.pdf#R##118705 6#The Frequency Response Design Method#6.4#Bode Plot with Complex Poles#Ex6_4.sce#3432/CH6/EX6.4/Ex6_4.sce#S##118704 6#The Frequency Response Design Method#6.4#Bode Plot with Complex Poles#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.3#Bode Plot for Real Poles and Zeros#Ex6_3_f1.pdf#3432/CH6/EX6.3/Ex6_3_f1.pdf#R##118700 6#The Frequency Response Design Method#6.3#Bode Plot for Real Poles and Zeros#Ex6_3_f0.pdf#3432/CH6/EX6.3/Ex6_3_f0.pdf#R##118699 6#The Frequency Response Design Method#6.3#Bode Plot for Real Poles and Zeros#Ex6_3.sce#3432/CH6/EX6.3/Ex6_3.sce#S##118698 6#The Frequency Response Design Method#6.3#Bode Plot for Real Poles and Zeros#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.2.b#Frequency response characteristics of Lead compensator#Ex6_2_f0.pdf#3432/CH6/EX6.2.b/Ex6_2_f0.pdf#R##118697 6#The Frequency Response Design Method#6.2.b#Frequency response characteristics of Lead compensator#Ex6_2.sce#3432/CH6/EX6.2.b/Ex6_2.sce#S##118696 6#The Frequency Response Design Method#6.2.b#Frequency response characteristics of Lead compensator#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.19#PID compensation design for spacecraft attitude control#Ex6_19_f1.pdf#3432/CH6/EX6.19/Ex6_19_f1.pdf#R##118783 6#The Frequency Response Design Method#6.19#PID compensation design for spacecraft attitude control#Ex6_19_f0.pdf#3432/CH6/EX6.19/Ex6_19_f0.pdf#R##118782 6#The Frequency Response Design Method#6.19#PID compensation design for spacecraft attitude control#Ex6_19.sce#3432/CH6/EX6.19/Ex6_19.sce#S##118781 6#The Frequency Response Design Method#6.19#PID compensation design for spacecraft attitude control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.18#Lag compensation for DC motor#Ex6_18_f1.pdf#3432/CH6/EX6.18/Ex6_18_f1.pdf#R##118780 6#The Frequency Response Design Method#6.18#Lag compensation for DC motor#Ex6_18_f0.pdf#3432/CH6/EX6.18/Ex6_18_f0.pdf#R##118779 6#The Frequency Response Design Method#6.18#Lag compensation for DC motor#Ex6_18.sce#3432/CH6/EX6.18/Ex6_18.sce#S##118778 6#The Frequency Response Design Method#6.18#Lag compensation for DC motor#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.17#Lag compensation for Temperature Control System#Ex6_17_f1.pdf#3432/CH6/EX6.17/Ex6_17_f1.pdf#R##118777 6#The Frequency Response Design Method#6.17#Lag compensation for Temperature Control System#Ex6_17_f0.pdf#3432/CH6/EX6.17/Ex6_17_f0.pdf#R##118776 6#The Frequency Response Design Method#6.17#Lag compensation for Temperature Control System#Ex6_17.sce#3432/CH6/EX6.17/Ex6_17.sce#S##118775 6#The Frequency Response Design Method#6.17#Lag compensation for Temperature Control System#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.16#Lead compensation for Servomechanism System#Ex6_16_f0.pdf#3432/CH6/EX6.16/Ex6_16_f0.pdf#R##118774 6#The Frequency Response Design Method#6.16#Lead compensation for Servomechanism System#Ex6_16.sce#3432/CH6/EX6.16/Ex6_16.sce#S##118773 6#The Frequency Response Design Method#6.16#Lead compensation for Servomechanism System#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.15#Lead compensation for Temperature Control System#Ex6_15_f0.pdf#3432/CH6/EX6.15/Ex6_15_f0.pdf#R##118771 6#The Frequency Response Design Method#6.15#Lead compensation for Temperature Control System#Ex6_15.sce#3432/CH6/EX6.15/Ex6_15.sce#S##118770 6#The Frequency Response Design Method#6.15#Lead compensation for Temperature Control System#Ex6_15_f1.pdf#3432/CH6/EX6.15/Ex6_15_f1.pdf#R##118772 6#The Frequency Response Design Method#6.15#Lead compensation for Temperature Control System#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.14#Lead compensation for DC motor#Ex6_14_model.xcos#3432/CH6/EX6.14/Ex6_14_model.xcos#X##118769 6#The Frequency Response Design Method#6.14#Lead compensation for DC motor#Ex6_14_f2.pdf#3432/CH6/EX6.14/Ex6_14_f2.pdf#R##118768 6#The Frequency Response Design Method#6.14#Lead compensation for DC motor#Ex6_14_f1.pdf#3432/CH6/EX6.14/Ex6_14_f1.pdf#R##118767 6#The Frequency Response Design Method#6.14#Lead compensation for DC motor#Ex6_14.sce#3432/CH6/EX6.14/Ex6_14.sce#S##118766 6#The Frequency Response Design Method#6.14#Lead compensation for DC motor#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.13#Use of simple design criterion for spacecraft attitude control#Ex6_13_f3.pdf#3432/CH6/EX6.13/Ex6_13_f3.pdf#R##118765 6#The Frequency Response Design Method#6.13#Use of simple design criterion for spacecraft attitude control#Ex6_13_f0.pdf#3432/CH6/EX6.13/Ex6_13_f0.pdf#R##118764 6#The Frequency Response Design Method#6.13#Use of simple design criterion for spacecraft attitude control#Ex6_13.sce#3432/CH6/EX6.13/Ex6_13.sce#S##118763 6#The Frequency Response Design Method#6.13#Use of simple design criterion for spacecraft attitude control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.12#Nyquist plot for a system with Multiple Crossover frequencies#Ex6_12.sce#3432/CH6/EX6.12/Ex6_12.sce#S##118760 6#The Frequency Response Design Method#6.12#Nyquist plot for a system with Multiple Crossover frequencies#Ex6_12_f1.pdf#3432/CH6/EX6.12/Ex6_12_f1.pdf#R##118762 6#The Frequency Response Design Method#6.12#Nyquist plot for a system with Multiple Crossover frequencies#Ex6_12_f0.pdf#3432/CH6/EX6.12/Ex6_12_f0.pdf#R##118761 6#The Frequency Response Design Method#6.12#Nyquist plot for a system with Multiple Crossover frequencies#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.11#Stability properties for a conditionally stable system#Ex6_11_f1.pdf#3432/CH6/EX6.11/Ex6_11_f1.pdf#R##118741 6#The Frequency Response Design Method#6.11#Stability properties for a conditionally stable system#Ex6_11_f0.pdf#3432/CH6/EX6.11/Ex6_11_f0.pdf#R##118740 6#The Frequency Response Design Method#6.11#Stability properties for a conditionally stable system#Ex6_11.sce#3432/CH6/EX6.11/Ex6_11.sce#S##118739 6#The Frequency Response Design Method#6.11#Stability properties for a conditionally stable system#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 6#The Frequency Response Design Method#6.10#Nyquist plot for an Open loop unstable system#Ex6_10_f1.pdf#3432/CH6/EX6.10/Ex6_10_f1.pdf#R##118736 6#The Frequency Response Design Method#6.10#Nyquist plot for an Open loop unstable system#Ex6_10_f0.pdf#3432/CH6/EX6.10/Ex6_10_f0.pdf#R##118735 6#The Frequency Response Design Method#6.10#Nyquist plot for an Open loop unstable system#Ex6_10.sce#3432/CH6/EX6.10/Ex6_10.sce#S##118734 6#The Frequency Response Design Method#6.10#Nyquist plot for an Open loop unstable system#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.9#Root locus for the system having complex multiple roots#Ex5_9_f1.pdf#3432/CH5/EX5.9/Ex5_9_f1.pdf#R##118618 5#The Root Locus Design method#5.9#Root locus for the system having complex multiple roots#Ex5_9_f0.pdf#3432/CH5/EX5.9/Ex5_9_f0.pdf#R##118617 5#The Root Locus Design method#5.9#Root locus for the system having complex multiple roots#Ex5_9.sce#3432/CH5/EX5.9/Ex5_9.sce#S##118616 5#The Root Locus Design method#5.9#Root locus for the system having complex multiple roots#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.8#Root locus for noncollocated case#Ex5_8_f1.pdf#3432/CH5/EX5.8/Ex5_8_f1.pdf#R##118615 5#The Root Locus Design method#5.8#Root locus for noncollocated case#Ex5_8_f0.pdf#3432/CH5/EX5.8/Ex5_8_f0.pdf#R##118614 5#The Root Locus Design method#5.8#Root locus for noncollocated case#Ex5_8.sce#3432/CH5/EX5.8/Ex5_8.sce#S##118613 5#The Root Locus Design method#5.8#Root locus for noncollocated case#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.7#Root locus for satellite control with a Collocated Flexibility#Ex5_7_f1.pdf#3432/CH5/EX5.7/Ex5_7_f1.pdf#R##118612 5#The Root Locus Design method#5.7#Root locus for satellite control with a Collocated Flexibility#Ex5_7_f0.pdf#3432/CH5/EX5.7/Ex5_7_f0.pdf#R##118611 5#The Root Locus Design method#5.7#Root locus for satellite control with a Collocated Flexibility#Ex5_7.sce#3432/CH5/EX5.7/Ex5_7.sce#S##118610 5#The Root Locus Design method#5.7#Root locus for satellite control with a Collocated Flexibility#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.6#Root locus for satellite attitude control with a Transition value for the pole#Ex5_6_f0.pdf#3432/CH5/EX5.6/Ex5_6_f0.pdf#R##118609 5#The Root Locus Design method#5.6#Root locus for satellite attitude control with a Transition value for the pole#Ex5_6.sce#3432/CH5/EX5.6/Ex5_6.sce#S##118608 5#The Root Locus Design method#5.6#Root locus for satellite attitude control with a Transition value for the pole#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.5#Root locus for satellite control with Lead compensator#Ex5_5_f0.pdf#3432/CH5/EX5.5/Ex5_5_f0.pdf#R##118607 5#The Root Locus Design method#5.5#Root locus for satellite control with Lead compensator#Ex5_5.sce#3432/CH5/EX5.5/Ex5_5.sce#S##118606 5#The Root Locus Design method#5.5#Root locus for satellite control with Lead compensator#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.4#Root locus for satellite attitude control with modified PD control or Lead compensator#Ex5_4_f0.pdf#3432/CH5/EX5.4/Ex5_4_f0.pdf#R##118605 5#The Root Locus Design method#5.4#Root locus for satellite attitude control with modified PD control or Lead compensator#Ex5_4.sce#3432/CH5/EX5.4/Ex5_4.sce#S##118604 5#The Root Locus Design method#5.4#Root locus for satellite attitude control with modified PD control or Lead compensator#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.3#Root locus for satellite attitude control with PD control#Ex5_3_f0.pdf#3432/CH5/EX5.3/Ex5_3_f0.pdf#R##118603 5#The Root Locus Design method#5.3#Root locus for satellite attitude control with PD control#Ex5_3.sce#3432/CH5/EX5.3/Ex5_3.sce#S##118602 5#The Root Locus Design method#5.3#Root locus for satellite attitude control with PD control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.2#Root locus with respect to a plant open loop pole#Ex5_2_f0.pdf#3432/CH5/EX5.2/Ex5_2_f0.pdf#R##118601 5#The Root Locus Design method#5.2#Root locus with respect to a plant open loop pole#Ex5_2.sce#3432/CH5/EX5.2/Ex5_2.sce#S##118600 5#The Root Locus Design method#5.2#Root locus with respect to a plant open loop pole#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.12#Negative root Locus for an Airplane#Ex5_12_f0.pdf#3432/CH5/EX5.12/Ex5_12_f0.pdf#R##118844 5#The Root Locus Design method#5.12#Negative root Locus for an Airplane#Ex5_12.sce#3432/CH5/EX5.12/Ex5_12.sce#S##118625 5#The Root Locus Design method#5.12#Negative root Locus for an Airplane#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.11#A second Lead compensation Design#Ex5_11_f2.pdf#3432/CH5/EX5.11/Ex5_11_f2.pdf#R##118624 5#The Root Locus Design method#5.11#A second Lead compensation Design#Ex5_11_f1.pdf#3432/CH5/EX5.11/Ex5_11_f1.pdf#R##118623 5#The Root Locus Design method#5.11#A second Lead compensation Design#Ex5_11.sce#3432/CH5/EX5.11/Ex5_11.sce#S##118622 5#The Root Locus Design method#5.11#A second Lead compensation Design#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.10#Design using Lead compensator#Ex5_10_f1.pdf#3432/CH5/EX5.10/Ex5_10_f1.pdf#R##118621 5#The Root Locus Design method#5.10#Design using Lead compensator#Ex5_10_f0.pdf#3432/CH5/EX5.10/Ex5_10_f0.pdf#R##118620 5#The Root Locus Design method#5.10#Design using Lead compensator#Ex5_10.sce#3432/CH5/EX5.10/Ex5_10.sce#S##118619 5#The Root Locus Design method#5.10#Design using Lead compensator#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 5#The Root Locus Design method#5.1#Root locus of a Motor Position Control#Ex5_1_f0.pdf#3432/CH5/EX5.1/Ex5_1_f0.pdf#R##118599 5#The Root Locus Design method#5.1#Root locus of a Motor Position Control#Ex5_1.sce#3432/CH5/EX5.1/Ex5_1.sce#S##118598 5#The Root Locus Design method#5.1#Root locus of a Motor Position Control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 4#Basic properties of feedback#4.8#Equivalent discrete controller for DC motor speed control#Ex4_8_f1.pdf#3432/CH4/EX4.8/Ex4_8_f1.pdf#R##118597 4#Basic properties of feedback#4.8#Equivalent discrete controller for DC motor speed control#Ex4_8_f0.pdf#3432/CH4/EX4.8/Ex4_8_f0.pdf#R##118596 4#Basic properties of feedback#4.8#Equivalent discrete controller for DC motor speed control#Ex4_8.sce#3432/CH4/EX4.8/Ex4_8.sce#S##118595 4#Basic properties of feedback#4.8#Equivalent discrete controller for DC motor speed control#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 4#Basic properties of feedback#4.7#Discrete Equivalent#Ex4_7.sce#3432/CH4/EX4.7/Ex4_7.sce#S##118594 4#Basic properties of feedback#4.7#Discrete Equivalent#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 4#Basic properties of feedback#4.6#PID Control of DC Motor Speed#Ex4_6_f1.pdf#3432/CH4/EX4.6/Ex4_6_f1.pdf#R##118593 4#Basic properties of feedback#4.6#PID Control of DC Motor Speed#Ex4_6_f0.pdf#3432/CH4/EX4.6/Ex4_6_f0.pdf#R##118592 4#Basic properties of feedback#4.6#PID Control of DC Motor Speed#Ex4_6.sce#3432/CH4/EX4.6/Ex4_6.sce#S##120572 3#Dynamic Responses#3.9#Final value theorem#Ex3_9.sce#3432/CH3/EX3.9/Ex3_9.sce#S##118569 3#Dynamic Responses#3.8#Partial fraction expansion for distinct real roots#Ex3_8.sce#3432/CH3/EX3.8/Ex3_8.sce#S##118568 3#Dynamic Responses#3.4#Frequency response#Ex3_4_f1.pdf#3432/CH3/EX3.4/Ex3_4_f1.pdf#R##118567 3#Dynamic Responses#3.4#Frequency response#Ex3_4_f0.pdf#3432/CH3/EX3.4/Ex3_4_f0.pdf#R##118566 3#Dynamic Responses#3.4#Frequency response#Ex3_4.sce#3432/CH3/EX3.4/Ex3_4.sce#S##118565 3#Dynamic Responses#3.4#Frequency response#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 3#Dynamic Responses#3.30#Stability versus two parameter ranges#Ex3_30_f0.pdf#3432/CH3/EX3.30/Ex3_30_f0.pdf#R##118590 3#Dynamic Responses#3.30#Stability versus two parameter ranges#Ex3_30.sce#3432/CH3/EX3.30/Ex3_30.sce#S##118589 3#Dynamic Responses#3.30#Stability versus two parameter ranges#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 3#Dynamic Responses#3.29#Stability versus parameter range#Ex3_29.sce#3432/CH3/EX3.29/Ex3_29.sce#S##118587 3#Dynamic Responses#3.29#Stability versus parameter range#Ex3_29_f0.pdf#3432/CH3/EX3.29/Ex3_29_f0.pdf#R##118588 3#Dynamic Responses#3.29#Stability versus parameter range#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 3#Dynamic Responses#3.25#Aircraft Response#Ex3_25_f0.pdf#3432/CH3/EX3.25/Ex3_25_f0.pdf#R##118586 3#Dynamic Responses#3.25#Aircraft Response#Ex3_25.sce#3432/CH3/EX3.25/Ex3_25.sce#S##118585 3#Dynamic Responses#3.25#Aircraft Response#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 3#Dynamic Responses#3.23#Oscillatory Time Response#Ex3_23_f0.pdf#3432/CH3/EX3.23/Ex3_23_f0.pdf#R##118584 3#Dynamic Responses#3.23#Oscillatory Time Response#Ex3_23.sce#3432/CH3/EX3.23/Ex3_23.sce#S##118583 3#Dynamic Responses#3.23#Oscillatory Time Response#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 3#Dynamic Responses#3.22#Response Versus Pole Locations Real Roots#Ex3_22_f0.pdf#3432/CH3/EX3.22/Ex3_22_f0.pdf#R##118582 3#Dynamic Responses#3.22#Response Versus Pole Locations Real Roots#Ex3_22.sce#3432/CH3/EX3.22/Ex3_22.sce#S##118581 3#Dynamic Responses#3.22#Response Versus Pole Locations Real Roots#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 3#Dynamic Responses#3.21#Transfer function of a simple system#Ex3_21.sce#3432/CH3/EX3.21/Ex3_21.sce#S##118580 3#Dynamic Responses#3.18#Satellite Transfer Function#Ex3_18_f3.pdf#3432/CH3/EX3.18/Ex3_18_f3.pdf#R##118849 3#Dynamic Responses#3.18#Satellite Transfer Function#Ex3_18_f1.pdf#3432/CH3/EX3.18/Ex3_18_f1.pdf#R##118578 3#Dynamic Responses#3.18#Satellite Transfer Function#Ex3_18.sce#3432/CH3/EX3.18/Ex3_18.sce#S##120571 3#Dynamic Responses#3.17#Transformations#Ex3_17.sce#3432/CH3/EX3.17/Ex3_17.sce#S##118576 3#Dynamic Responses#3.16#DC Motor Transfer Function#Ex3_16_f0.pdf#3432/CH3/EX3.16/Ex3_16_f0.pdf#R##118575 3#Dynamic Responses#3.16#DC Motor Transfer Function#Ex3_16.sce#3432/CH3/EX3.16/Ex3_16.sce#S##118574 3#Dynamic Responses#3.16#DC Motor Transfer Function#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 3#Dynamic Responses#3.15# Cruise Control Transfer Function#Ex3_15.sce#3432/CH3/EX3.15/Ex3_15.sce#S##118573 3#Dynamic Responses#3.14#Partial fraction expansion for distinct real roots#Ex3_14.sce#3432/CH3/EX3.14/Ex3_14.sce#S##118572 3#Dynamic Responses#3.11#DC gain of the system#Ex3_11.sce#3432/CH3/EX3.11/Ex3_11.sce#S##118571 3#Dynamic Responses#3.10#Incorrect use of final value theorem#Ex3_10.sce#3432/CH3/EX3.10/Ex3_10.sce#S##118570 2#Dynamic Models#2.5.b#step response of pendulum#Ex2_5_f0.pdf#3432/CH2/EX2.5.b/Ex2_5_f0.pdf#R##118564 2#Dynamic Models#2.5.b#step response of pendulum#Ex2_5.sce#3432/CH2/EX2.5.b/Ex2_5.sce#S##118563 2#Dynamic Models#2.5.b#step response of pendulum#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186 2#Dynamic Models#2.1.b#step response of Cruise control system#Ex2_1.sce#3432/CH2/EX2.1.b/Ex2_1.sce#S##118561 2#Dynamic Models#2.1.b#step response of Cruise control system#Ex2_1_f0.pdf#3432/CH2/EX2.1.b/Ex2_1_f0.pdf#R##118562 2#Dynamic Models#2.1.b#step response of Cruise control system#fig_settings.sci#3432/DEPENDENCIES/fig_settings.sci#D#figure setting file#1186