Scilab Textbook Companion for Solid State Physics: Structure And Properties Of Materials by M. A. Wahab¹

Created by Pankaj Biswas Electronics Physics Shri Mata Vaishno Devi University College Teacher Dr. Kamni Cross-Checked by Dr. Jitendra Sharma

May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Physics: Structure And Properties Of Materials
Author: M. A. Wahab
Publisher: Narosa Publishing House Pvt. Ltd. New Delhi
Edition: 2
Year: 2010
ISBN: 978-81-7319-603-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Atoms in Crystals	5
2	Atomic Bonding	21
3	Atomic Packing	29
4	Atomic Shape and Size	35
5	Crystal Imperfections	42
6	Atomic Diffusion	61
7	Lattice or Atomic Vibrations	74
8	Diffraction of Waves and Particles by Crystals	78
9	Thermal Properties of Materials	94
10	Free Electrons in Crystals	100
11	Band Theory	115
13	Semiconducting Properties of Materials	117
14	Dielectric Properties of Materials	124
15	Optical Properties of Materials	130

16 Magnetic Properties of Materials	134
17 Superconductivity	138

List of Scilab Codes

Exa 1.1	Relationship among cyrstal elements	5
Exa 1.2	Primitive unit cell	5
Exa 1.3	Number of Lattice points per unit cell	6
Exa 1.4	Lattice constant of a unit cell	$\overline{7}$
Exa 1.5	Density of diamond	8
Exa 1.6	Calculating Unit cell dimensions	9
Exa 1.17	Angle between two crystal directions	10
Exa 1.18	Angle between two directions of cubic crystal	10
Exa 1.19	Miller indices of the crystal plane	11
Exa 1.20	Indices of lattice plane	12
Exa 1.21	Length of the intercepts	12
Exa 1.22	Miller indices of lattice planes	13
Exa 1.23	Indices of tetragonal lattice	14
Exa 1.24	Miller Bravias indices for Miller indices	15
Exa 1.25	Miller Bravias indices of lattice plane	16
Exa 1.26	Lattice parameter of a cubic crystal	18
Exa 1.27	Interplanar spacing in tetragonal crystal	19
Exa 1.28	Interplanar spacing in cubic crystal	19
Exa 2.1	Molecular stability based on bond dissociation energy	21
Exa 2.2	Conversion of eV into kcal per mol	22
Exa 2.3	Potential energy of the ionic solids	22
Exa 2.4	Compressibility and energy of ionic crystal	23
Exa 2.5	Potential energy and dissociation energy of a diatomic	
	molecule	24
Exa 2.6	Binding force and critical separation of a diatomic molecule	25
Exa 2.7	Bond formation energy of ionic solid	26
Exa 2.8	Energy liberation during electron transfer	27
Exa 3.1	Packing of spheres in 2D square lattice	29

Exa 3.2	Packing efficiency in diamond structure	30
Exa 3.3	Radius of largest sphere at octahedral void	31
Exa 3.4	Radius of largest sphere at tetrahedral void	31
Exa 3.5	Diameter of the largest atom at tetrahedral void	32
Exa 3.6	Void space in cubic close packing	32
Exa 3.7	The Minimum value of radius ratio in a compound	33
Exa 4.1	Bohr orbit for the hydrogen atom	35
Exa 4.2	Ionization potentials of hydrogen atom	35
Exa 4.3	Univalent radii of ions	36
Exa 4.4	Ionic Radius of Si ions in silicon dioxide	38
Exa 4.5	Ionic Radius occupying an octahedral position	38
Exa 4.6	Percentage ionic character of a covalent molecule	39
Exa 4.7	Metallic radius from unit cell dimension	39
Exa 4.8	Metallic radii from unit cell dimension	40
Exa 4.9	Metallic diameter and unit cell dimension of aluminium	40
Exa 5.1	Variation of atomic fraction with temperature	42
Exa 5.2	Vacancy formation in copper	43
Exa 5.3	Concentration of Schottky imperfections	43
Exa 5.4	Number of Schottky imperfections in NaCl crystal	44
Exa 5.5	Average energy required to create one Schottky defect	45
Exa 5.6	Ratio of Frenkel defects at two different temperatures	46
Exa 5.7	Dislocation density of bcc structure of iron	47
Exa 5.8	Minimum dislocation density in aluminium	48
Exa 5.9	Total force from its resolved component in a given di-	
	rection	48
Exa 5.10	Resolved componet of shearing force in a given direction	49
Exa 5.11	Dependence of applied stress on the slip direction	50
Exa 5.12	Resolved stress in a direction from applied stress in other	
	direction	51
Exa 5.13	Critical resolved shear stress from applied stress in a	
	given direction	52
Exa 5.14	Initiation of slip by the applied stress	53
Exa 5.15	Applied tensile stress in a direction to initiate plastic	
	deformation	54
Exa 5.16	Dislocation width in copper	55
Exa 5.17	Change in number of vacancies due to disloaction motion	56
Exa 5.18	Minimum number of dislocations in motion from shear-	
	ing rate	57

Exa 5.19	Elastic energy of line imperfection
Exa 5.20	Spacing between dislocations in a tilt boundary 58
Exa 5.21	Tilt angle from dislocation spacing in the boundary 59
Exa 5.22	Tilt angle from dislocation spacing
Exa 6.1	Rate of diffusion of nitrogen through steel wall 61
Exa 6.2	Rate of diffusion of copper through pure Al sheet 61
Exa 6.3	Rate of diffusion of carbon through steel bar 62
Exa 6.4	Diffusion through a cylinder
Exa 6.5	Diffusion length of Li in Ge
Exa 6.6	Diffusion time of Li in Ge
Exa 6.7	Diffusion coefficient of Cu in Al
Exa 6.8	Activation energy for diffusion of Ag in Si
Exa 6.9	Arrhenius rate law
Exa 6.10	Activation energy for diffusion rates at different temper-
D 0.11	$atures \dots \dots$
Exa 6.11	Time required for carburizing of steel
Exa 6.12	Carbon concentration of carburized steel at certain depth 70
Exa 6.13	Depth of decarburization below the surface of steel 71
Exa 6.14	Diffusion depth of P type semiconductor
Exa 7.1	Cut off frequency of the linear lattice of a solid 74
Exa 7.2	Comparison of frequency of waves in a monoatomic and diatomic linear systems
Exa 7.3	Reflection of electromagentic radiation from a crystal . 76
Exa 8.1	Shortest wavelength and frequency of X rays from ac-
	celerating potential
Exa 8.2	Impinging electrons on the target and characteristics of X rays 70
Exa 8.3	Wavelength of characteristic X rays
Exa 84	Atomic number of an unknown element 81
Exa 8.5	Wavelength of copper using Moseley law 81
Exa 8.6	Atomic number from wavelength using Moselev law 82
Exa 87	Wavelengths of tin and barium using Moselev law 83
Exa 8.8	Percentage transmitted energy of X rays
Exa 8.9	Thickness of lead piece by using two equal intensity X
	ray wavelengths
Exa 8.10	Angle of reflection by using wavelength of X rays 85
Exa 8.11	Wavelength of diffracted X rays

Exa 8.12	Reciprocal lattice parameters from 2D direct lattice pa-	
	rameters	87
Exa 8.13	Bragg angle and the indices of diffraction of Powder Lines	88
Exa 8.14	Minimum distance from the centre of the Laue pattern	89
Exa 8.15	Unit cell height along the axis of a rotation photograph	90
Exa 8.16	Diffraction of thermal neutrons from planes of Ni crystal	91
Exa 8.17	Diffraction of electrons from fcc crystal planes	92
Exa 9.1	Exception of Dulong Petit law at room temperature .	94
Exa 9.2	Specific heat of copper from Debye temperature	95
Exa 9.3	Vibrational frequency and molar heat capacity of dia-	
	mond	96
Exa 9.4	Debye temperature of copper at low temperature	97
Exa 9.5	Debye temperature for gold	97
Exa 9.6	Heat transference into rock salt at low temperature	98
Exa 10.1	Particle moving in one dimensional potential well	100
Exa 10.2	Motion of a ground state electron in a 3D potential well	101
Exa 10.3	Motion of an electron excited next to the ground state	
	in a 3D potential well	101
Exa 10.4	Degeneracy of energy level	103
Exa 10.5	Fermi energy of zinc at absolute zero	105
Exa 10.6	Electron probability above Fermi energy	106
Exa 10.7	The electroic specific heat of Cu	107
Exa 10.8	Electrical resitivity of sodium metal	108
Exa 10.9	Electrical conductivity of Cu	109
Exa 10.10	Electron mobility inside conductors	110
Exa 10.11	Lorentz number calculation of a solid	111
Exa 10.12	Increase in electrical resistivity of a metal with temper-	
	ature	112
Exa 10.13	Thermionic emission of a filament	113
Exa 10.14	Hall coefficient of sodium based on free electron model	114
Exa 11.2	Ratio between kinetic energy of an electron in 2D square	
	lattice	115
Exa 13.3	Intrinsic concentration of charge carriers in semiconduc-	
	tors	117
Exa 13.4	Comparison of intrinsic carrier densities of two semicon-	
	ductors	118
Exa 13.5	Shift in fermi level with change in concentration of im-	
	purities	118

Exa 13.6	Electrical resistivity of Ge	119
Exa 13.7	Electrical conductivity of intrinsic and extrinsic Si	120
Exa 13.8	Resistance of intrinsic Ge Rod	121
Exa 13.9	Hall effect in Si semiconductor	122
Exa 13.10	Forward current of a pn diode using diode equation	122
Exa 13.11	Voltage from net forward current using Diode Equation	123
Exa 14.1	Polarization of water molecule	124
Exa 14.2	Dielectric constant from electric polarizability of the	
	atom	125
Exa 14.3	Electric polarizability of a molecule from its susceptibility	125
Exa 14.4	Electric polarizability of oxygen atom	126
Exa 14.5	Dipolar polarization of HCl molecule	127
Exa 14.6	Effect of molecular deformation on polarizability	128
Exa 15.1	Photon count from Planck quantum law	130
Exa 15.2	Inicient energy of photon in photoelectric effect	130
Exa 15.3	photon count for green wavelength of Hg	131
Exa 15.4	Photoelectric effect in a photocell	132
Exa 15.5	Energy required to stimulate the emission of Na doublets	133
Exa 16.1	Response of copper to magnetic field	134
Exa 16.2	Diamagnetic susceptibility of copper	135
Exa 16.3	Magnetic induction from orientational energy equivalent	
	of thermal energy	135
Exa 16.4	Behaviour of paramagnetic salt when placed in uniform	
	magnetic field	136
Exa 17.1	Variation of critical magnetic field with temperature .	138
Exa 17.2	Temperature variation of critical magnetic field for tin	138
Exa 17.3	Critical current for a lead wire from its critical temper-	
	ature	139
Exa 17.4	Dependence of London penetration depth on tempera-	
	ture	140

Chapter 1

Atoms in Crystals

Scilab code Exa 1.1 Relationship among cyrstal elements

```
1 // Scilab Code Ex1.1 Relationship among cyrstal
     elements: Page-2 (2010)
2 f = 18; // Number of faces of the quartz crystal
            // Number of angles in the quratz crystal
3 c = 14;
4 // The relationship amongst the crystal elements can
      be
5 // expressed by the following formula:
6 // f + c = e + 2;
7 // Solving for e
8 = f + c - 2;
9 disp (e, "The number of edges of the quartz crystal
     is : ");
10
11 // Result
12 // The number of edges of the quartz crystal is :
13 //
         30
```

Scilab code Exa 1.2 Primitive unit cell

- 1 // Scilab Code Ex1.2 Primitive unit cell: Page-4
 (2010)
 2 a = 3, b = 3; // Lattice translation vectors
- along X and Y direction, angstrom
- 3 c_bar = 3; // Assumed translation vector along Z direction , angstrom
- 4 c = 1.5*(a+b+c_bar); // Real translation vector along Z direction, angstrom
- 5 printf("\n%3.1f is the body centered position of a
 cubic unit cell defined by the primitive
 translation vectors a, b and c_bar.", c);
- 6 V_con = a^3; // Volume of conventional unit cell, metre cube
- 7 V_primitive = 1/2*V_con; // Volume of primitive unit cell, metre cube
- 8 printf("\nThe volume of conventional unit cell: %2d
 angstrom cube", V_con);
- 9 printf("\nThe volume of primitive unit cell: %4.1f
 angstrom cube", V_primitive);
- 10
- 11 // Result
- 12 // 13.5 is the body centered position of a cubic unit cell defined by the primitive translation vectors a, b and c_bar.
- 13 // The volume of conventional unit cell: 27 angstrom cube
- 14 // The volume of primitive unit cell: 13.5 angstrom cube

Scilab code Exa 1.3 Number of Lattice points per unit cell

```
1 // Scilab Code Ex1.3 Number of Lattice points per
unit cell Page-9 (2010)
2 a = 3.60D-10; // Lattice parameter, m:
```

3 M = 63.6; // Atomic weight, gram per mole

```
4 d = 8960D+03; // Density of copper, g per metre
cube
5 N = 6.023D+23; // Avogadro's No.
6 // Volume of the unit cell is given by
7 // a^3 = M*n/(N*d)
8 // Solving for n
9 n = a^3*d*N/M; // Number of lattice points per unit
cell
10 disp (n, "The number of atoms per unit cell for an
fcc lattice of copper crystal is :");
11
12 // Result
13 // The number of atoms per unit cell for an fcc
lattice of copper crystal
14 // 3.9588702
```

Scilab code Exa 1.4 Lattice constant of a unit cell

- 1 // Scilab Code Ex 1.4 Lattice constant of a unit cell: Page-9 (2010) 2 M = 52 5: // Atomic weight of NaCl gram a
- 2 M = 58.5; // Atomic weight of NaCl, gram per mole
- 3 d = 2180D+03; // Density of rock salt, per metre cube
- 4 n = 4; // No. of atoms per unit cell for an fcc lattice of NaCl crystal
- 5 N = 6.023D+23; // Avogadro's No.
- 6 // Volume of the unit cell is given by
- $7 // a^3 = M*n/(N*d)$
- 8 // Solving for a
- 9 a = (n*M/(d*N))^(1/3); // Lattice constant of unit cell of NaCl
- 10 disp (a/1D-10, "Lattice constant for the rock salt (
 NaCl) crystal, in angstrom, is : ");

```
11
```

```
12 // Result
13 // Lattice constant for the rock salt (NaCl) crystal
    , in angstrom, is :
14 // 5.6275
```

Scilab code Exa 1.5 Density of diamond

```
1 // Scilab Code Ex 1.5 Density of diamond: Page-9
(2010)
```

- 2 a = 3.57D-10; // Lattice parameter of a diamond crystal
- 3 M = 12D-03; // Atomic weight of diamond, kg per mole
- 4 n1 = 8; // No. of corner atoms in the diamond cubic unit cell
- 5 n2 = 6; // No. of face centered atoms in the diamond cubic unit cell
- 6 n3 = 4; // No. of atoms completely within the unit cell

```
7 n = 1/8*n1+1/2*n2+1*n3; // No. of atoms per unit
cell for an fcc lattice of NaCl crystal
```

- 8 N = 6.023D+23; // Avogadro's No.
- 9 // Volume of the unit cell is given by
- 10 // $a^3 = M*n/(N*d)$
- 11 // Solving for d
- 12 d = M*n/(N*a^3); // Density of diamond cubic unit cell

```
14
```

```
15 // Result
```

16 // Density of diamond cubic unit cell, in kg per metre cube, is :

```
17 // 3503
```

Scilab code Exa 1.6 Calculating Unit cell dimensions

```
1 // Scilab Code Ex 1.6 Calculating Unit cell
     dimensions: Page-9 (2010)
2 d = 2.7D+03; // Density of fcc structure of
     aluminium, kg per metre cube
3 M = 26.98D-03; // Atomic weight of aluminium, kg
     per mole
               // No. of atoms per unit cell of fcc
4 n = 4;
     lattice structure of aluminium
5 \text{ N} = 6.023\text{D}+23; // Avogadro's No.
6 // Volume of the unit cell is given by
7 // a^3 = M*n/(N*d)
8 // Solving for a
9 a = ((M*n)/(N*d))^{(1/3)}; // Lattice parameter of
     alumitnium unit cell
10 // For an fcc cryatal lattice,
11 / / 2^{(1/2)} = 4R = 2D
12 // Solving for D
13 D = (a/2^(1/2)); // Diameter of aluminium atom
14 disp (a/1D-10, "The Lattice parameter of aluminium,
     in angstrom, is : ");
15 disp(D/1D-10, "The diameter of aluminium atom, in
     angstrom, is : ");
16
17 // Result
18 // The Lattice parameter of aluminium, in angstrom,
     is :
19 // 4.0486332
20 // The diameter of aluminium atom, in angstrom, is :
21 //
          2.862816
```

Scilab code Exa 1.17 Angle between two crystal directions

```
1 // Scilab Code Ex 1.17 Angle between two crystal
      directions: Page -23 (2010)
2 h1 = 1;k1 = 1;l1 = 1; // Miller indices of first set
      of planes
3 h2 = 0; k2 = 0; l2 = 1; // Miller indices of second
     set of planes
4 // We know that
5 // cos(theta) = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+k1))
     11^{2} + sqrt(h1^{2}+k1^{2}+l1^{2}))
6 // Solving for theta
7 theta = acos((h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1
      ^2) * sqrt(h2^2+k2^2+12^2)));
8 printf("\nThe angle between [%d%d%d] and [%d%d%d]
      directions in the cubic crystal, in degrees, is :
      %4.2 f", h1,k1,l1,h2,k2,l2, theta*180/%pi);
9
10 // Result
11 // The angle between [111] and [001] directions in
     the cubic crystal, in degrees, is :
12 //
     54.74
```

Scilab code Exa 1.18 Angle between two directions of cubic crystal

- 1 // Scilab Code Ex 1.18 Angle between two directions of cubic crystal: Page-23(2010) 2 h1 = 1; k1 = 1; l1 = 1 // Miller indices for first set of planes 3 h2 = -1; k2 = -1; l2 = 1; // Miller indices for second set of planes 4 // We know that 5 // cos(theta) = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+ l1^2)*sqrt(h2^2+k2^2+l2^2))
- 6 // Solving for theta

Scilab code Exa 1.19 Miller indices of the crystal plane

```
1 // Scilab Code Ex 1.19 Miller indices of the crystal
      plane: Page-25 (2010)
2 m = 2; n = 3; p = 6; // Coefficients of intercepts
      along three axes
3 \text{ m_inv} = 1/\text{m};
                        // Reciprocate the first
      coefficient
4 n_{inv} = 1/n;
                        // Reciprocate the second
      coefficient
5 p_{inv} = 1/p;
                        // Reciprocate the third
      coefficient
6 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
     m. of m, n and p
7 m1 = m_inv*mul_fact; // Clear the first fraction
                          // Clear the second fraction
8 m2 = n_inv*mul_fact;
9 m3 = p_inv*mul_fact; // Clear the third fraction
10 printf("\nThe required miller indices are : (%d %d
     %d) ", m1,m2,m3);
11
12 // Result
13 // The required miller indices are : (3 \ 2 \ 1)
```

Scilab code Exa 1.20 Indices of lattice plane

```
1 // Scilab Code Ex 1.20 Indices of lattice plane:
     Page - 25 (2010)
2 m = 10000; // Coefficient of intercept along x-axis,
      can be taken as some large value
3 n = 2; // Coefficient of intercept along y-axis
4 p = 1/2; // Coefficient of intercept along z-axis
5 m_inv = 1/m; // Reciprocate m
                 // Reciprocate n
6 n_{inv} = 1/n;
7 p_{inv} = 1/p; // Reciprocate p
8 mul_fact = n; // multiplicative factor
9 m1 = m_inv*mul_fact; // Clear the first fraction
                         // Clear the second fraction
10 m2 = n_inv*mul_fact;
11 m3 = p_inv*mul_fact; // Clear the third fraction
12 printf("\nThe required miller indices are : %d, %d,
     %d ", m1,m2,m3);
13
14 // Result
15 // The required miller indices are :
16 //
      0, 1, 4
```

Scilab code Exa 1.21 Length of the intercepts

```
1 // Scilab Code Ex 1.21 Length of the intercepts:
Page-26 (2010)
2 a = 1.21D-10; // Lattice parameter of the unit
cell, m
3 b = 1.84D-10; // Lattice parameter of the unit
cell, m
4 c = 1.97D-10; // Lattice parameter of the unit
cell, m
```

```
5 p = 1/2; // Reciprocal of miller index on x-axis
6 q = 1/3; // Reciprocal of miller index on y-axis
7 r = 1/(-1); // Reciprocal of miller index on z-
     axis
8 l1 = 1.21D-10; // Actual length of the intercept
     along x-axis, m
9 mul_fact = l1/(p*a); // Calculate multiplication
     factor
10 l2 = mul_fact*q*b; // Actual length of the
     interceptalong y-axis, m
11 13 = mul_fact*r*c; // Actual length of the
     intercept along z-axis, m
12 disp(12/1D-10, "The length of the intercept along y-
     axis, in angstrom, is : ");
13 disp(13/1D-10, "The length of the intercept along z-
     axis, in angstrom, is : ");
14
15 // Result
16 // The length of the intercept along y-axis, in
     angstrom, is :
17 // 1.2266667
18 // The length of the intercept along z-axis, in
     angstrom, is :
19 // - 3.94
```

Scilab code Exa 1.22 Miller indices of lattice planes

1 // Scilab Code Ex 1.22 Miller indices of lattice plane: Page-26 (2010) 2 a = 4; // Lattice parameter of the unit cell 3 b = 3; // Lattice parameter of the unit cell 4 c = 2; // Lattice parameter of the unit cell 5 l1 = 2; // Length of the intercept along x-axis, m 6 l2 = 3; // Length of the intercept along y-axis,

m $7 \ 13 = 4;$ // Length of the intercept along z-axis, m 8 l = l1/a;// Intercept per unit translation along x-axis 9 m = 12/b;// Intercept per unit translation along v-axis 10 n = 13/c; // Intercept per unit translation along z-axis // Reciprocal of l 11 r1 = 1/1;// Reciprocal of m 12 r2 = 1/m; 13 r3 = 1/n; // Reciprocal of n // miller index along x-axis 14 m1 = 2*r1; // miller index along y-axis 15 m2 = 2*r2;16 m3 = 2 *r3;// miller index along z-axis 17 printf("The required miller indices of the plane are : %d %d %d", m1, m2, m3); 18 19 // Result 20 // The required miller indices of the plane are : 21 // 4, 2, 1

Scilab code Exa 1.23 Indices of tetragonal lattice

- 1 // Scilab Code Ex 1.23 Indices of tetragonal lattice : Page-26 (2010)
- 2 // For a tetragonal system we have a = b
- 3 a = 1; // Lattice parameter of the unit cell along x-axis
- 4 b = 1; // Lattice parameter of the unit cell along y-axis
- 5 c = 1.5; // Lattice parameter of the unit cell along z-axis
- 6 11 = 3; // Length of the intercept along x-axis, angstrom

 $7 \ 12 = 4;$ // Length of the intercept along y-axis, angstrom // Length of the intercept along z-axis, $8 \ 13 = 3;$ angstrom $9 \ 1 = 11/a;$ // Intercept per unit translation along x-axis // Intercept per unit translation along 10 m = 12/b; y-axis 11 n = 13/c; // Intercept per unit translation along z-axis // Reciprocal of l 12 r1 = 1/1; // Reciprocal of m 13 r2 = 1/m; 14 r3 = 1/n; // Reciprocal of n 15 mul_fact = double(lcm(int32([1,m,n]))); 16 m1 = mul_fact*r1; // miller index along x-axis 17 m2 = mul_fact*r2; // miller index along y-axis
18 m3 = mul_fact*r3; // miller index along z-axis 19 printf("The required miller indices of the plane are : %d %d %d", m1, m2, m3); 2021 // Result 22 // The required miller indices of the plane are : 4 3 6

Scilab code Exa 1.24 Miller Bravias indices for Miller indices

```
1 // Scilab Code Ex 1.24 Miller-Bravias indices for
Miller indices: Page-29 (2010)
2 function [i] = f(h,k)
3 i = -(h + k);
4 endfunction
5 h1 = 1; k1 = 1; l1 = 0 ; // First set of Miller
indices
6 h2 = 1; k2 = -1; l2 = 0; // Second set of miller
indices
```

```
7 h3 = 3; k3 = 4; l3 = 5; // Third set of miller
     indices
8 h4 = 3; k4 = -4; l4 = 5; // Fourth set of miller
     indices
9 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (\%d \%d \%d), = (\%d \%d \%d \%d)
     ", h1, k1, l1, h1, k1, f(h1,k1), l1);
10 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (\%d \%d \%d), = (\%d \%d \%d \%d)
     ", h2, k2, l2, h2, k2, f(h2,k2), l2);
11 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (\%d \%d \%d), = (\%d \%d \%d \%d)
     ", h3, k3, l3, h3, k3, f(h3,k3), l3);
12 printf("\nThe Miller-Bravias indices corresponding
     to the miller indices (\%d \%d \%d), = (\%d \%d \%d \%d)
     ", h4, k4, l4, h4, k4, f(h4,k4), l4);
13
14 // Result
15 // The Miller-Bravias indices corresponding to the
      miller indices (1 \ 1 \ 0), = (1 \ 1 \ -2 \ 0)
 // The Miller-Bravias indices corresponding to the
16
      miller indices (1 -1 0), = (1 -1 0 0)
  // The Miller-Bravias indices corresponding to the
17
      miller indices (3 \ 4 \ 5), = (3 \ 4 \ -7 \ 5)
18 // The Miller-Bravias indices corresponding to the
      miller indices (3 - 4 5), = (3 - 4 1 5)
```

Scilab code Exa 1.25 Miller Bravias indices of lattice plane

```
1 // Scilab Code Ex 1.25 Miller Bravias indices of
lattice planes: Page-30 (2010)
2 function [h] = fh(H,K) // Function for
calculating (2H-K)/3
3 h = (2*H - K)/3;
4 endfunction
```

```
5
 6 function [k] = fk(H,K) // Function for
      calculating (2K-H)/3
      k = (2 * K - H)/3;
 7
 8 endfunction
 9
10 function [i] = f(h,k) // Function for calculating
       i
       i = -(h + k);
11
12 endfunction
13
14 function [1] = fl(L) // Function for calculating
      1
15
       1 = L;
16 endfunction
17
18 H1 = 1; K1 = 0; L1 = 0 ; // First set of Miller
      indices
19 H2 = 0; K2 = 1; L2 = 0; // Second set of miller
      indices
20 H3 = 1; K3 = 1; L3 = 0; // Third set of miller
      indices
21

22 h1 = fh(H1,K1)*3; // Call function fk

23 l-1 = fk(H1,K1)*3; // Call function fk

// Call function fl
21
25 \text{ i1} = f(h1, k1);
                         // Call function
26
27 h2 = fh(H2,K2)*3;
- fk(H2,K2)*3;
                         // Call function fh
                         // Call function fk
                         // Call function 12
29 \ 12 = f1(L2) *3;
                         // Call function f
30 \text{ i2} = f(h2, k2);
31
                         // Call function f
35 \quad i3 = f(h3,k3);
36
```

37	printf("\n Th	e Miller	Bravias	indices	of [%d%d	.%d]
	are [%d %d	%d %d]",	H1, K1,	L1, h1,	k1,i1,l	1);
38	printf("\n Th	e Miller	Bravias	indices	of $[\%d\%d]$.%d]
	are [%d %d	%d %d]",	H2, K2,	L2, h2,	k2,i2,1	2);
39	printf("\n Th	e Miller	Bravias	indices	of [%d%d	.%d]
	are [%d %d	%d %d]",	НЗ, КЗ,	L3, h3,	k3,i3,1	3);
40						
41	// Result					
42	// The Miller	Bravias	indices	of [100]	are [2	$-1 \ -1$
	0]				_	
43	// The Miller	Bravias	indices	of [010]	are $[-1]$	2 - 1
	0]					
44	// The Miller	Bravias	indices	of [110]	are [1	1 - 2
	0]					

Scilab code Exa 1.26 Lattice parameter of a cubic crystal

1 // Scilab Code Ex 1.26 Lattice parameter of a cubic crystal: Page-33 (2010)2 h = 1; k = 1; l = 1; // Miller Indices for planes in a cubic crystal $3 \, d = 2D - 10;$ // Interplanar spacing, m 4 // For cubic crystals, the interplanar spacing is given by 5 // d = a/($h^2+k^2+l^2$) 1/2; 6 // Solving for a 7 a = $(h^2+k^2+l^2)(1/2)*d;$ // lattice parameter of cubic crystal, m 8 disp(a/1D-10, "The lattice parameter of the cubic crystal, in angstrom, is :"); 9 10 // Result 11 // The lattice parameter of the cubic crystal, in angstrom, is : 12 / / 3.4641016

Scilab code Exa 1.27 Interplanar spacing in tetragonal crystal

```
1 // Scilab Code Ex 1.27 Interplanar spacing in
     tetragonal crystal: Page-33 (2010)
2 h = 1; k = 0; l = 1; // Miller Indices for planes in
     a cubic crystal
3 = 2.42D-10; b = 2.42D-10; c = 1.74D-10; //
     Lattice parameters of a tetragonal crystal, each
    in m
4 d = [(h^2+k^2)/a^2 + l^2/c^2](-1/2); // The
    interplanar spacing for cubic crystal, m
5 disp(d/1D-10, "The interplanar spacing between
     consecutive (101) planes : in angstrom, is :");
6
7 // Result
8 // The interplanar spacing between consecutive (101)
     planes : in angstrom, is :
 // 1.4127338
9
```

Scilab code Exa 1.28 Interplanar spacing in cubic crystal

```
1 // Scilab Code Ex 1.28 Interplanar spacing in cubic
crystal: Page-36 (2010)
2 h = 3; k = 2; l = 1; // Miller Indices for planes in
a cubic crystal
3 a = 4.21D-10; // Interatomic spacing, m
4 d = a/(h^2+k^2+l^2)^(1/2); // The interplanar
spacing for cubic crystals, m
5 disp(d/1D-10, "The interplanar spacing between
consecutive (321) planes : in angstrom, is :");
6
```

- 7 // Result 8 // The interplanar spacing between consecutive (321) planes : in angstrom, is :
- 9 // 1.1251698

Chapter 2

Atomic Bonding

Scilab code Exa 2.1 Molecular stability based on bond dissociation energy

```
1 // Scilab Code Ex2.1 Stability of molecule based on
     bond dissociation energy: Page-61 (2010)
2 e = 1.6D-19; // Electronic charge, C
3 \text{ N} = 6.023\text{D}+23; // Avogadro's number
4 e0 = 8.854D-12; // Absolute Electrical permitivitty
     of free space, coulomb square per newton per
     metre square
5 Re = 3D-10; // Equilibrium separation, m
6 IE = 502;
                // First ionization energy of A, kJ/mol
               // Electron affinity for atom B, kJ/mol
7 \text{ EA} = 335;
8 \text{ IS} = 3D - 10;
                  // Interatomic separation between A+
     and B-, m
9 Ue = -(e^2*N)/(4*%pi*e0*Re*1D+3); // Potential
     energy at equilibrium separation of A+B- molecule
     , kJ/mol
10 DE = Ue + IE - EA; // Bond dissociation energy of A+
     B- molecule, kJ/mol
11 printf("\nThe bond dissociation energy of A+B-
     molecule is : %d kJ/mol", DE);
12 if (DE < 0)
      disp("The molecule A+B- is stable..");
13
```

Scilab code Exa 2.2 Conversion of eV into kcal per mol

```
1 // Scilab Code Ex2.2 Conversion of eV into kcal/mol:
      Page - 64 (2010)
2 e = 1.6D-19; // Electronic charge, C
3 N = 6.023D+23; // Avogadro's number
4 J = 4.184D+3; // Joule's mechanical equivalent of
     heat
           // Potential difference, V
5 V = 1;
6 eV = e*V; // Energy equivalent of 1 electron-volt, J
7 eVpm = eV*N; // Electron-volt per mole, J/mol
8 Ecal = eVpm/J; // Energy equivalent of 1eV, kcal/
     mole
9 printf("\n1 eV is approximately equal to %6.3 f kcal/
     mol", Ecal);
10
11 //Result
12 // 1 eV is approximately equal to 23.033 kcal/mol
```

Scilab code Exa 2.3 Potential energy of the ionic solids

```
1 // Scilab Code Ex2.3 Potential energy of the system
    of Na+ and Cl- ions: Page-68 (2010)
2 e = 1.6D-19; // Electronic charge, C
```

```
3 ep_0 = 8.854D-12; // Absolute electrical
    permittivity of free space, coulomb square per
    newton per metre square
4 Re = 2D-10; // Equilibrium separation between Na+
    and Cl- ions, m
5 U = -e/(4*%pi*ep_0*Re); // Potential energy of NaCl
    molecule at equilibrium separation, electron-volt
6 printf("\nThe potential energy of NaCl molecule at
    equilibrium separation5 is : %3.1f eV", U);
7
8 //Result
9 // The potential energy of NaCl molecule at
    equilibrium separation5 is : -7.2 eV
```

Scilab code Exa 2.4 Compressibility and energy of ionic crystal

- 1 // Scilab Code Ex2.4 Compressibility and ionic energy of NaCl crystal: Page-68 (2010)
- 2 e = 1.6D-19; // Electronic charge, C
- 4 Re = 2.81D-10; // Equilibrium separation between Na+ and Cl- ions, m
- 5 A = 1.7496; // Madelung constant
- 6 n = 9; // Power of R in the repulsive term of potential energy of two particles
- 7 IP_Na = 5.14; // Ionization potential of sodium, eV
- 8 EA_Cl = 3.61; // Electron Affinity of chlorine, eV
- 9 K0 = (72*%pi*ep_0*Re^4)/((n 1)*A*e^2); //
 Compressibility of NaCl crystal, metre square
 newton
- 10 U = -(A*e)/(4*%pi*ep_0*Re)*(1-1/n); // Potential energy of NaCl molecule at equilibrium separation , electron-volt

```
11 U_bar = U/2; // Potential energy per ion, electron-
     volt
12 delta_E = IP_Na - EA_Cl; // Energy required to
     produce the ion-pair, eV
13 E_ion = delta_E/2; // Energy required to produce per
      ion, eV
14 C_E = U_bar + E_ion; // Cohesive energy per ion, eV
15 printf("\nThe compressibility of NaCl crystal is %4
     .2 e metre square newton", KO);
16 printf("\nThe cohesive energy of NaCl crystal is %4
     .2 f eV", C_E);
17
18 // Result
19 // The compressibility of NaCl crystal is 3.48e-011
     metre square newton
20 // The cohesive energy of NaCl crystal is -3.21 eV
```

Scilab code Exa 2.5 Potential energy and dissociation energy of a diatomic molecule

- 1 // Scilab Code Ex2.5 Potential energy and dissociation energy of a diatomic molecule: Page -69 (2010)
- 2 e = 1.6D-19; // Electronic charge, C
- 3 A = 1.44D-39; // Constant corresponding to the attractive term in potential energy, joule metre square
- 4 B = 2.19D-115; // Constant corresponding to the repulsive term in potential energy, joule metre raised to power 10
- 5 Re = (5*B/A)^(1/8); // Equilibrium spacing of diatomic molecule, m
- 6 n = 2; // Power of R in the attractive term of potential energy of two particles
- 7 m = 10; // Power of R in the repulsive term of

```
potential energy of two particles
8 D = A/(Re^2*e)*(1-n/m);// Dissociation energy of
diatomic molecule, eV
9 printf("\nThe equilibrium spacing of diatomic
molecule is %4.2e m", Re);
10 printf("\nThe dissociation energy of diatomic
molecule is %4.2e eV", D);
11
12 //Result
13 // The equilibrium spacing of diatomic molecule is
    4.08e-010 m
14 // The dissociation energy of diatomic molecule is
    4.34e-002 eV
```

Scilab code Exa 2.6 Binding force and critical separation of a diatomic molecule

- 1 // Scilab Code Ex2.6 Binding force and critical separation of a diatomic molecule: Page-69 (2010)
- 2 Re = 3D-10; // Equilibrium spacing of diatomic molecule, m
- 3 e = 1.6D-19; // Electronic charge, C
- 4 D = 4*e; // Dissociation energy of diatomic molecule , eV
- 5 n = 2; // Power of R in the attractive term of potential energy of two particles
- 6 m = 10; // Power of R in the repulsive term of potential energy of two particles
- 7 Ue = -D; // Potential energy of diatomic molecule at equilibrium separation, joule
- 8 A = -(Ue*Re^n)/(1-n/m); // Constant corresponding to the attractive term in potential energy, joule metre square
- 9 B = A*Re^8/5; // Constant corresponding to the repulsive term in potential energy, joule metre

raised to power 10

- 10 Rc = (55/3*B/A)^(1/8); // Critical separation between the nuclei, m
- 11 F_min = -2*A/Rc^3*(1-(Re/Rc)^8); // The minimum force required to dissociate the moleule, N
- 12 disp(A,"The constant A corresponding to the attractive potential energy, in joule metre square, is :");
- 13 disp(B,"The constant B corresponding to the repulsive potential energy, in joule metre raised to power 10, is :");

```
16
```

- 17 //Result
- 18 // The constant A corresponding to the attractive potential energy, in joule metre square, is : // 7.200D-38
- 19 // The constant B corresponding to the repulsive potential energy, in joule metre raised to power 10, is : // 9.44D-115
- 20 // The critical separation between the nuclei, in angstrom, is :
- 21 // 3.529D-10
- 22 // The minimum force required to dissociate the molecule, in N, is :

```
23 / / -2.383D - 09
```

Scilab code Exa 2.7 Bond formation energy of ionic solid

```
1 // Scilab Code Ex2.7 Bond formation Energy for K+
and Cl- ion pair: Page-70 (2010)
2 eps_0 = 8.854D-12; // Absolute electrical
```

permittivity of free space, coulomb sqaure per newton per metre square

- 3 e = 1.6D-19; // Electronic charge, C
- 4 IP_K = 4.1; // Ionization potential of potassium, electron-volt
- 5 EA_Cl = 3.6; // Electron affinity of chlorine, electron-volt
- 6 delta_E = IP_K EA_Cl; // Net energy required to produce the ion-pair, electron-volt
- 7 Ec = delta_E; // Coulomb energy equals net energy required to produce the ion pair, in electronvolt
- 8 // Since $Ec = -e/(4*\% pi*eps_0*R)$, solving for R
- 9 R = -e/(4*%pi*eps_0*Ec); // Separation between K+
 and Cl- ion pair, m
- 10 disp(Ec, "The bond formation energy for K+ and Clion pair, in eV, is : ");
- 12
- 13 // Result
- 14 // The bond formation energy for K+ and Cl- ion pair , in eV, is :
- 15 // 0.5
- 16 // The separation between K+ and Cl- ion pair, in angstrom, is :
- 17 // 28.760776

Scilab code Exa 2.8 Energy liberation during electron transfer

- 1 // Scilab Code Ex2.8 Energy liberated during electron transfer between ions of a molecule: Page-71 (2010)

```
newton per metre square
3 e = 1.6D-19; // Electronic charge, C
4 R = 5D-10; // Separation between the ions M and X
, m
5 IP_M = 5; // Ionization potential of M, eV
6 EA_X = 4; // Electron affinity of X, eV
7 U = -e/(4*%pi*eps_0*R); // The potential energy of
MX molecule, eV
8 delta_E = IP_M - EA_X; // The net energy required to
produce the ion pair, eV
9 Er = delta_E + U; // Energy required to transfer an
electron from M to X atom, eV
10 printf("\nThe energy required to transfer an
electron from M to X atom = %4.2 f eV", Er);
11
```

11

12 // Result

13 // The energy required to transfer an electron from M to X atom = -1.88 eV

Chapter 3

Atomic Packing

Scilab code Exa 3.1 Packing of spheres in 2D square lattice

1 // Scilab Code Ex3.1 Packing of equal spheres in two dimensional square lattice: Page-88 (2010) 2 // Here we may assume square of unit length i.e. a =1 such that radius of sphere, R = a/2 = 0.5// Length of the side of the square, unit 3 a = 1;4 R = a/2; // Radius of the sphere, unit 5 r = (sqrt(2)-1)*R; // Radius of the sphere introduced within the void produced by the packing of equal spheres on square lattice, unit $6 A = \% pi * R^2;$ // Area associated with a sphere, square units $7 \text{ FA} = a^2 - A;$ // Free area occupied by void in square lattice, square units $8 \text{ FA_per} = \text{FA}*100;$ // Percentage free area in square lattice 9 printf("\nFree area in square lattice is : %4.1f percent", FA_per); 10 //Result 11 // Free area in square lattice is : 21.5 percent

Scilab code Exa 3.2 Packing efficiency in diamond structure

- 1 // Scilab Code Ex3.2 Packing efficiency in diamond structure: Page-92 (2010)
- 2 // For simplicity we may take radius of the atom, R = 1 unit

- 4 nc = 8; // Number of corner atoms in diamond structure
- 5 nfcc = 6; // Number of face centred atoms in diamond structure
- 6 na = 4; // Number of atoms completely within the unit cell
- 7 n = 1/8*nc+1/2*nfcc+1*na; // Effective number of atoms in the diamond structure
- 8 V_atom = 8*4/3*%pi*R^3; // Volume of atoms within the unit cell, unit cube
- 9 // Since for a diamond cubic crystal, the space lattice is fcc, with two atos per lattice point, such that 8*R = sqrt(3)*a, solving for a
- 10 a = 8*R/sqrt(3); // lattice parameter of diamond structure, unit
- 12 eta = V_atom/V_cell*100; // Packing efficiency in diamond structure
- 13 printf("\nThe packing efficiency in diamond structure is : %2.0f percent", eta);

15 // The packing efficiency in diamond structure is : 34 percent

^{14 //}Result
Scilab code Exa 3.3 Radius of largest sphere at octahedral void

- 1 // Scilab Code Ex3.3 Radius of largest sphere that can be placed at the octahedral void: Page-100 (2010)
- 2 // For simplicity we may take radius of the atom, R = 1 unit
- 3 R = 1; // Radius of the atom in bcc lattice, unit
- 4 // For a bcc lattice, 4*R = a*sqrt(3), solving for a
- 5 a = 4*R/sqrt(3); // lattice parameter of bcc crystal
 , unit
- 6 // Since R + Rx = a/2, solving for Rx
- 7 Rx = a/2 R; // Radius of the largest sphere that will fit into the octahedral void, unit
- 9 //Result
- 10 // The radius of the largest sphere that will fit into the octahedral void is : 0.155R

Scilab code Exa 3.4 Radius of largest sphere at tetrahedral void

- 1 // Scilab Code Ex3.4 Radius of largest sphere that can be placed at the tetrahedral void: Page-100 (2010)
- 2 // For simplicity we may take radius of the atom, RL = 1 unit
- 3 RL = 1; // Radius of the atom in bcc lattice, unit
- 4 // For a bcc lattice, 4*RL = a*sqrt(3), solving for a
- 5 a = 4*RL/sqrt(3); // Lattice parameter of bcc crystal, unit
- 6 // Further RL + Rx = sqrt(5)*a/4, solving for Rx
- 7 Rx = sqrt(5)*a/4-RL; // Radius of the largest

```
sphere that will fit into the octahedral void,
unit

8 printf("\nThe radius of the largest sphere that will
fit into the tetrahedral void is : %5.3fRL", Rx)
;

9 //Result

10 // The radius of the largest sphere that will fit
into the tetrahedral void is : 0.291RL
```

Scilab code Exa 3.5 Diameter of the largest atom at tetrahedral void

```
1 // Scilab Code Ex3.5 Diameter of the largest atom
     that would fit into the tetrahedral void:5 Page
     -101 (2010)
2 a = 3.52D - 10;
                   // Lattice parameter for Ni, m
3 // For an fcc lattice, sqrt(2)*a = 4*R, solving for
     R
4 R = sqrt(2)*a/4; // Radius of the atom in fcc
     lattice, m
5 R_oct = 0.414*R; // Radius of the octahedral void
      in fcc close packing, m
6 D = 2 * R_oct;
                 // Diameter of the octahedral void
     in the fcc structure of nickel, m
7 disp(D/1D-10, "The diameter of the octahedral void
     in the fcc structure of nickel, in angstrom, is :
      ");
8 //Result
9 // The diameter of the octahedral void in the fcc
     structure of nickel, in angstrom, is :
10 / / 1.0304526
```

Scilab code Exa 3.6 Void space in cubic close packing

```
1 // Scilab Code Ex3.6 Void space in cubic close
     packing: Page-101 (2010)
         // For simplicity, radius of the sphere, m
2 R = 1;
3 // For cubic close packing, side of the unit cell
     and the radius of the sphere is related as
         sqrt(2) * a = 4 * R, solving for a
4 //
5 a = 2*sqrt(2)*R; // Lattice parameter for cubic
     close packing, m
6 V_cell = a^3; // Volume of the unit cell
7 n = 4; // Number of lattice points in fcc unit
     cell
8 V_occupied = 4*4/3*%pi*((1.000)^3+(0.414)
     ^3+2*(0.225)^3; // Volume occupied by the atoms,
      metre cube
9 void_space = V_cell - V_occupied; // Void space
     in the close packing
10 percent_void = void_space/V_cell*100; // Percentage
     void space
11 printf("\nThe void space in the close packing is :
     %2.0f percent", percent_void);
12 //Result
13 // The void space in the close packing is : 19
     percent
```

Scilab code Exa 3.7 The Minimum value of radius ratio in a compound

- 1 // Scilab Code Ex3.7 The minimum value of radius ratio in AX-compound: Page-104 (2010)
- 2 // For simplicity we may assume a = 1
- 3 a = 1; // Lattice parameter of the crystal, unit
- 4 b = 2/3*a*sin(%pi/3); // Lattice parameter of the crystal, unit
- 5 // Here a = 2*Rx, where a is the lattice parameter and Rx is the radius of X-ions representing the bigger spheres, solving for Rx

6 Rx = 0.5*a;

- 7 // Also b = RA + Rx, solving for RA
- 8 RA = b Rx; // Radius of A-ion representing teh smaller sphere, unit
- 9 Rad_ratio = RA/Rx; // Radius ratio in AX compound
- 11 // Result
- 12 // The minimum value of radius ratio in AX compound is : 0.155

Chapter 4

Atomic Shape and Size

Scilab code Exa 4.1 Bohr orbit for the hydrogen atom

```
1 // Scilab Code Ex4.1 Bohr's orbit for the hydrogen
     atom: Page - 126 (2010)
            // The ground state orbit of hydrogen atom
2 n = 1;
3 Z = 1; // The atomic number of hydrogen
4 h = 6.626D-34; // Plank's constant, Js
5 eps_0 = 8.85D-12; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
6 = 1.602D-19; // Electronic charge, C
7 m = 9.1D - 31;
                  // Electronic mass, kg
8 r_B = (n^2*h^2*eps_0)/(%pi*m*Z*e^2); // Radius of
     first Bohr's orbit (Bohr radius), m
9 disp(r_B/1D-10, "The radius of first Bohr orbit, in
     angstrom, is : ");
10 // Result
11 // The radius of first Bohr orbit, in angstrom, is :
12 / / 0.5295779
```

Scilab code Exa 4.2 Ionization potentials of hydrogen atom

```
1 // Scilab Code Ex4.2 Ionization potentials of
     hydrogen atom: Page - 126 (2010)
2 Z = 1;
          // The atomic number of hydrogen
3 h = 6.626D-34; // Plank's constant, Js
4 eps_0 = 8.85D-12; // Absolute electrical
      permittivity of free space, coulomb square per
      newton per metre square
5 e = 1.602D - 19;
                    // Electronic charge, C
6 m = 9.1D-31; // Electronic mass, kg
7 E = zeros(1, 3); // Initialize three potentials to 0
       value in a vector
8
  for n = 1:1:3
9
       select n
10
       case 1 then
           state = "First";
11
12
       case 2 then
           state = "Second";
13
14
       else
           state = "Third";
15
16
       end
17 E(1,n) = -(m*Z<sup>2</sup>*e<sup>4</sup>)/(8*eps_0<sup>2</sup>*n<sup>2</sup>*h<sup>2</sup>*e);
                                                       Energy of nth bohr orbit, eV
18 printf("\nThe %s Ionization Potential is : %5.3 f eV"
      ,state, E(1,n));
19 end
20 // Result
21 // The First Ionization Potential is : -13.600 eV
22 // The Second Ionization Potential is : -3.400 eV
23 // The Third Ionization Potential is : -1.511 eV
```

Scilab code Exa 4.3 Univalent radii of ions

```
1 // Scilab Code Ex4.3 Univalent radii of ions: Page
-130 (2010)
2 S = 4.52; // Screening constant for neon like
```

configurations

3 Cn = 1; // A constant determined by the quantum number, m; for simplicity it can be assumed as unity 4 Z_Na = 11; // Atomic number of sodium

5 Z_F = 9; // Atomic number of fluorine

- $6 Z_0 = 8;$ // Atomic number of oxygen
- 7 r_Na = Cn/(Z_Na S); // Radius of sodium ion, m
- $8 r_F = Cn/(Z_F S);$ // Radius of fluorine ion, m
- 9 r_ratio = r_Na/r_F; // Radius ratio
- 10 r_Na = r_F*r_ratio; // Calculating radius of sodium ion from r_ratio, m
- 11 // Given that $r_Na + r_F = 2.31D-10$,
- 12 // or $r_Na + r_Na/0.69 = 2.31D-10$,
- 13 // or $r_Na(1 + 1/0.69) = 2.31D-10$, solving for r_Na
- 14 r_Na = 2.31D-10/(1+1/0.69); // Calculating radius of sodium, m
- 15 r_F = 2.31D-10 r_Na; // Calculating radius of fluorine from r_Na, m
- 16 Cn = $r_Na*(Z_Na S)$; // Calculating Cn, m
- 17 $r_0 = Cn/(Z_0 S);$ // Radius of oxygen, m
- 19 disp(r_F/1D-10, "Radius of fluorine ion, in angstrom
 , is :");
- 21 disp(r_0/1D-10, "Radius of oxygen, in angstrom, is :
 ");

```
22 // Result
```

```
23 // Radius of sodium ion, in angstrom, is :
```

```
24 // 0.9431361
```

```
25 // Radius of fluorine ion, in angstrom, is :
```

- $26 \ // \ 1.3668639$
- 27 // Constant determined by quantum number, in angstrom, is :

```
28 // 6.1115219
```

29 // Radius of oxygen, in angstrom, is :

$30 \hspace{0.1in} // \hspace{0.1in} 1.7561845$

Scilab code Exa 4.4 Ionic Radius of Si ions in silicon dioxide

```
1 // Scilab Code Ex4.4 Ionic Radius of Si ions in
     silicon dioxide: Page-131 (2010)
2 = 7.12D - 10;
                // Lattice parameter of the
     crystal. m
3 d = sqrt(3*a^2/16); // Si-Si distance from (0,0,0)
     to (1/4, 1/4, 1/4)
4 RO = 1.40D-10; // Radius of oxygen, m
  // Distance of oxygen ions between the two Si ions
5
     is 2*RSi+2*RO = d, solving for RSi
6 RSi = (d - 2*RO)/2; // Radius of silicon ion, m
  disp(RSi/1D-10, "The radius of Si4+ ion, in angstrom
7
    , is : ");
8 //Result
9 // The radius of Si4+ ion, in angstrom, is :
10 / / 0.1415252
```

Scilab code Exa 4.5 Ionic Radius occupying an octahedral position

```
1 // Scilab Code Ex4.5 Ionic Radius occupying an
octahedral position: Page-138 (2010)
2 R_ratio = 0.414; // Radius ratio for an
octahedral void in am M+X- ionic lattice
3 R_x = 2.5D-10; // Critical radius of X- anion, m
4 R_m = R_x*0.414; // Radius of M+ cation, m
5 disp(R_m/1D-10, "The radius of cation occupying
octahedral position in an M+X- ionic solid, in
angstrom, is : ");
6 // Result
```

```
7 // The radius of cation occupying octahedral
    position in an M+X- ionic solid , in angstrom , is
    :
8 // 1.035
```

Scilab code Exa 4.6 Percentage ionic character of a covalent molecule

Scilab code Exa 4.7 Metallic radius from unit cell dimension

```
1 // Scilab Code Ex4.8 Calculating metallic radius
from unit cell dimension: Page-146 (2010)
2 a = 2.81D-10; // Unit cell dimension of bcc
structure of iron, m
3 // For bcc structure we have
4 // sqrt(3)*a = 4*R, solving for R
5 R = sqrt(3)/4*a; // Metallic radius of iron atom,
m
6 printf("\nThe metallic radius of iron atom is %4.2f
angstrom", R/1D-10);
7 //Result
```

Scilab code Exa 4.8 Metallic radii from unit cell dimension

```
1 // Scilab Code Ex4.9 Calculating metallic radii from
      unit cell dimensions: Page-146 (2010)
                     // Unit cell dimension of fcc
2 a_Au = 4.08e - 10;
     structure of gold, m
3 a_Pt = 3.91e-10; // Unit cell dimension of fcc
     structure of platinum, m
4 // For fcc structure we have
       \operatorname{sqrt}(2) * a = 4 * R, solving for R
5 //
6 R_Au = sqrt(2)/4*a_Au; // Metallic radius of gold
      atom, m
7 R_Pt = sqrt(2)/4*a_Pt; // Metallic radius of gold
      atom, m
  printf("\nThe metallic radius of gold atom, in
8
     angstrom, is : \%4.2 \text{ f}", R_Au/1D-10);
9 printf("\nThe metallic radius of platinum atom, in
     angstrom, is : %4.2 f", R_Pt/1D-10);
10 //Result
11 // The metallic radius of gold atom, in angstrom, is
      : 1.44
12 // The metallic radius of platinum atom, in angstrom
     , is : 1.38
```

Scilab code Exa 4.9 Metallic diameter and unit cell dimension of aluminium

```
1 // Scilab Code Ex4.10 Calculating metallic diameter
and unit cell dimension of aluminium: Page-146
(2010)
```

2 Z_Al = 13; // Atomic number of aluminium 3 A_Al = 26.98; // Atomic mass of aluminium, g

4 d_Al = 2700D3; // Density of aluminium, g per metre cube // number of atoms in the fcc structure of 5 n = 4;aluminium // Avogadro's number 6 N = 6.023D+23;7 // We have number of atoms per fcc unit cell given \mathbf{as} $8 // n = (V*d_Al*N)/A_Al$, solving for V 9 // V = $(n*A_Al)/(d_Al*N)$, V is the volume of the unit cell 10 // or $a^3 = (n*A_Al)/(d_Al*N)$, solving for a 11 $a = ((n*A_Al)/(d_Al*N))^{(1/3)};$ // unit cell parameter of aluminium 12 // For an fcc structure we have 13 // sqrt(2) * a = 4 * R = 2 * D, solving for D 14 D = a/sqrt(2); // metallic diameter of aluminium having fcc structure 15 printf("\nThe unit cell dimension of aluminium, is : %4.2f angstrom", a/1D-10); 16 printf("\nThe metallic diametre of aluminium, is : %4.2 f angstrom", D/1D-10); 17 //Result 18 // The unit cell dimension of aluminium, is : 4.05angstrom 19 // The metallic diametre of aluminium, is : 2.86 angstrom

46

Chapter 5

Crystal Imperfections

Scilab code Exa 5.1 Variation of atomic fraction with temperature

1 // Scilab Code Ex5.1 Variation of fraction of atoms in a solid with temperature Page-158 (2010) // Energy of the solid, electron-volt 2 E = 1.5;// First absolute temperature, K 3 T1 = 300;4 T2 = 1500;// Second absolute temperature, K 5 k = 8.614D-5;// Boltzmann constant, electronvolt/K // Now fraction of atoms = $f_{atom} = n/N = \exp(-E/(k*))$ 6 T) 7 f_atom_300 = $\exp(-E/(k*T1))$; // Fraction of atoms in the solid at 300 K 8 f_atom_1000 = $\exp(-E/(k*T2));$ // Fraction of atoms in the solid at 1000 K 9 printf("\nThe fraction of atoms in the solid at 300 K, is : $\%5.3e^{\circ}$, f_atom_300); 10 printf("\nThe fraction of atoms in the solid at 1000 K, is : %5.3e", f_atom_1000); 11 //Result 12 // The fraction of atoms in the solid at 300 K, is : 6.185 e - 02613 // The fraction of atoms in the solid at 1000 K, is

: 9.084 e - 006

Scilab code Exa 5.2 Vacancy formation in copper

1 // Scilab Code Ex5.2 Vacancy formation in copper Page - 159 (2010)// Energy of formation of vacancy in 2 E = 1;copper, electron-volt 3 T = 1356; // Melting point of copper, K 4 k = 8.614D-5; // Boltzmann constant, electronvolt 5 N = 6.023D23; // Avogadro's number 6 // Now fraction of vacancies = f_vacancy = n/N = exp (-E/(k*T))7 f = $\exp(-E/(k*T))$; // Fraction of vacancies in the solid at 300 K 8 n = N*f; // Number of vacancy per mole 9 delta_d = n + N; // Change in the density due to creation of vacancy 10 f_d = delta_d/N; // Relative change in the density of copper due to vacancy formation 11 printf("\nThe relative change in the density of copper due to vacancy formation (n+N)/N, is : %9 .7 f : 1", f_d); 12 //Result 13 // The relative change in the density of copper due to vacancy formation (n+N)/N, is : 1.0001914 : 1

Scilab code Exa 5.3 Concentration of Schottky imperfections

```
1 // Scilab Code Ex5.3 Concentration of Schottky
imperfections Page-159 (2010)
2 N = 6.023D23; // Avogadro's number
```

3 k = 8.614D-5; // Boltzmann's constant, eV/K4 T1 = 27+273; // First absolute temperature, K 5 T2 = 1000; // Second absolute temperature, K 6 C_300 = 1D-10; // Concentration of Schottky defects in an fcc crystal at 300 K temperature $7 n = C_{300*N};$ // Number of Schottky imperfections per mole $8 \, d = 1D - 10;$ // Interatomic spacing assumed to be unit angstrom, m 9 V = d^3; // Volume of the unit cube, metre cube 10 V_mole = V*N; // Volume occupied by one mole of atoms in fcc crystal, metre cube 11 V_per_defect = V_mole/n; // Volume per defect , metre cube 12 a = $(V_per_defect)^{(1/3)}$; // Average separation between the defects, m 13 E_v = 23.03*k*T1; // Energy of the solid, electron-volt 14 C_1000 = $\exp(-E_v/(k*T2));$ // Schottky defect concentration at 1000 K 15 printf("\nThe average separation between the defects , is : %3.1e m", a); 16 printf("\nThe expected concentration of Schottky defect at 1000 K, n/N, is : %3.1e", C_1000); 17 //Result 18 // The average separation between the defects, is : 2.2 e - 007 m19 // The expected concentration of Schottky defect at 1000 K, n/N, is : 1.0e-003

Scilab code Exa 5.4 Number of Schottky imperfections in NaCl crystal

```
1 // Scilab Code Ex5.4 Number of Schottky
    imperfections in NaCl crystal Page-160 (2010)
2 N = 6.023D23; // Avogadro's number
```

- 3 k = 8.614D-5; // Boltzmann's constant, eV/K
- 4 T = 27+273; // Absolute room temperature, K
- 5 Ep = 2; // Energy required to remove a pair of Na + and Cl- ions, electron-volt
- 6 // Now Concentration of imperfections in a crystal is given by
- $7 // n/N = \exp(-Ep/(2*k*T))$, solving for n
- 8 n = N*exp(-Ep/(2*k*T)); // No. of Schottky
 imperfections present in NaCl crystal
- 9 printf("\nNo. of Schottky imperfections present in NaCl crystal is : %4.2e", n);
- 10 V = 26.83; // Volume of one mole of the crystal, cm cube
- 11 n = n/V; // Number per mole volume of the crystal , per cm cube
- 13 //Result
- 14 // No. of Schottky imperfections present in NaCl crystal is : 9.42e+006
- 15 // Concentration of Schottky imperfections present in NaCl crystal is : 3.51e+005 per cm cube

Scilab code Exa 5.5 Average energy required to create one Schottky defect

1 // Scilab Code Ex5.5 Average energy required to create one Schottky defect in NaCl Page-160 (2010) 2 N = 6.023D23; // Avogadro's number 3 k = 8.614D-5; // Boltzmann's constant, eV/K 4 T = 27+273; // Absolute room temperature, K 5 r = 2.82D-10; // Interatomic separation of NaCl cryastal, m

6 n = 5D+11; // Density of defects, per metre cube 7 / Ep = 2;// Energy required to remove a pair of Na+ and Cl- ions, electron-volt 8 = 2*r;// Lattice parameter of unit cell of NaCl, m $9 V = a^3;$ // Volume of the unit cell of sodium , metre cube 10 n_ip = 4; // Number of ion-pairs of NaCl 11 N = n_ip/V; // No. of ion-pairs in unit volume of an ideal NaCl crystal 12 // Now n/N = $\exp(-Ep/(2*k*T))$, solving for Ep 13 Ep = 2*k*T*log(N/n); // Average energy required to create one Schottky defect, electron-volt 14 **printf(**"\nThe Average energy required to create one Schottky defect in NaCl crystal is : %4.2f eV", Ep); 15 //Result 16 // The Average energy required to create one Schottky defect in NaCl crystal is : 1.98 eV

Scilab code Exa 5.6 Ratio of Frenkel defects at two different temperatures

- 1 // Scilab Code Ex5.6 Ratio of Frenkel defects at two different temperatures in an ionic crystal Page -161 (2010) 2 k = 8.614D-5; // Boltzmann's constant, eV/K 3 Ef = 1.4; // Average energy required to create a Frenkel defect, eV 4 T1 = 300; // First absoluite temperature, K
- 5 T2 = 600; // Second absolute temperature, K
- 6 // The concentration of Frenkel defect for given Ef and absolute temperature T is given by
- 7 // n = $A*\exp(-Ef/(2*k*T))$, per metre cube, so that
- 8 // n1 = A*exp(-Ef/(2*k*T1)), per metre cube, and

Scilab code Exa 5.7 Dislocation density of bcc structure of iron

1 // Scilab Code Ex5.7 Dislocation density of bcc structure of iron Page-163 (2010) // Length of the strip, m 2 L = 0.15;// Thickness of the iorn strip, m 3 t = 0.02;// Radius of curvature of the bent, m 4 r = 0.12;5 a = 2.81D - 10;// Lattice parameter of the bcc structure of iron, m 6 b = sqrt(3)*a/2;// Magnitude of Burger vector, m 7 // For n positive edge dislocations 8 // n*b = L*t/r, solving for n/(L*t)9 // n/(L*t) = 1/(r*b), Number of dislocation line piercing through a unit area of the plane of the paper, per metre square 10 d = 1/(r*b);// Dislocation density in bcc structure of iron, number per metre square 11 printf("\nThe dislocation density in bcc structure of iron : %4.2e, dislocations per Sq. m", d); 12 //Result 13 // The dislocation density in bcc structure of iron : 3.42e+010, dislocations per Sq. m

Scilab code Exa 5.8 Minimum dislocation density in aluminium

- 1 // Scilab Code Ex5.8 Minimum dislocation density in aluminium Page-164 (2010)
- 2 b = 3D-10; // Magnitude of Burgers vector, m
- 3 r = 0.05; // Radius of curvatur of the aluminium crystal, m
- 4 // For n positive edge dislocations
- 5 // n*b = L*t/r, solving for n/(L*t)
- 6 // n/(L*t) = 1/(r*b), Number of dislocation line piercing through a unit area of the plane of the paper, per Sq.m
- 7 d = 1/(r*b); // Minimum dislocation density in aluminium, number per Sq. m
- 8 printf("\nThe minimum dislocation density in aluminium, %4.1e, dislocations per Sq. m", d); 9 //Result
- 10 // The minimum dislocation density in aluminium, 6.7 e+010, dislocations per Sq. m

Scilab code Exa 5.9 Total force from its resolved component in a given direction

- 1 // Scilab Code Ex5.9 Determining total force from its resolved component in a given direction: Page -168 (2010)
- 2 h1 = 1; k1 = -1; l1 = 0 // Miller indices for first set of planes
- 3 h2 = 1; k2 = 0; l2 = 0; // Miller indices for second set of planes
- 4 F_100 = 130; // Resolved component of force along [100] direction , N

Scilab code Exa 5.10 Resolved componet of shearing force in a given direction

1 // Scilab Code Ex5.10 Determining resolved componet of shearing force in a given direction: Page-168 (2010)2 h1 = 1; k1 = 1; l1 = 1 // Miller indices for first set of planes 3 h2 = 1; k2 = 1; l2 = 0; // Miller indices for second set of planes 4 F_111 = 660; // Shearing force along [111] direction, N $5 \text{ cos_theta} = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1))$ ^2)*sqrt(h2^2+k2^2+l2^2)); // Cosine of angle between $\begin{bmatrix} 1 & -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 100 \end{bmatrix}$ directions $6 // As F_110/F_111 = cos_theta$, solving for F_110 7 F_110 = F_111*cos_theta; // Resolved component of shearing force along [110] direction, N printf("\nThe resolved component of shearing force 8 along [110] direction, $F_{-110} = \%3d$ N", F_{-110} ; 9 // Result 10 // The resolved component of shearing force along [110] direction, $F_{-110} = 538$ N

Scilab code Exa 5.11 Dependence of applied stress on the slip direction

```
1 // Scilab Code Ex5.11 Dependence of applied stress
     on the slip direction of a copper: Page -169
     (2010)
2 tau_critical = 1; // Critical shear stress for
     the \langle -110 \rangle \{111\} slip system, mega-pascal (MPa)
3 // For directions [001] and [-111]
4 h1 = 0; k1 = 0; l1 = 1 // Miller indices for
     first set of planes
5 h2 = -1; k2 = 1; 12 = 1; // Miller indices for
     second set of planes
6 cos_phi = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1^2)*
     sqrt(h2^2+k2^2+l2^2)); // Cosine of angle
     between [001] and [-111] directions
7 // For directions [001] and [101]
8 h1 = 0; k1 = 0; l1 = 1 // Miller indices for
     first set of planes
9 h2 = 1; k2 = 0; l2 = 1; // Miller indices for
     second set of planes
10 cos_lambda = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1
     ^2)*sqrt(h2^2+k2^2+l2^2)); // Cosine of angle
     between [001] and [101] directions
11 sigma = tau_critical/(cos_phi*cos_lambda);
                                                 11
     Stress along [001] direction, newton per metre
     square
12 printf("\nThe stress required to be applied along
      [001] direction to produce slip in the [101]
     direction on the (-111) plane = \%4.2 f MPa", sigma
     );
13 // For directions [001] and [110]
14 h1 = 0; k1 = 0; l1 = 1 // Miller indices for
     first set of planes
15 h2 = 1; k2 = 1; l2 = 0; // Miller indices for
```

```
second set of planes
16 cos_lambda = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1
     ^2) * sqrt(h2^2+k2^2+l2^2));
                                    // Cosine of angle
     between [001] and [110] directions
17 if cos_lambda <> 0 then
18
       sigma = tau_critical/(cos_phi*cos_lambda);
                                                      11
           Stress along [001] direction, newton per
          metre square
19
       printf("\nThe stress required to be applied
          along [001] direction to produce slip in the
          [110] direction on the (-111) plane = \%4.2 f
         MPa", sigma);
20 else
       printf("\nSince \cos_{lambda} = 0, this implies
21
          that slip cannot occur in [110] direction
          when the stress is applied along [001]
          direction");
22 end
23 // Result
24 // The stress required to be applied along [001]
     direction to produce slip in the [101] direction
     on the (-111) plane = 2.45 MPa
25 // Since cos_lambda = 0, this implies that slip
     cannot occur in [110] direction when the stress
     is applied along [001] direction
```

Scilab code Exa 5.12 Resolved stress in a direction from applied stress in other direction

```
1 // Scilab Code Ex5.12 Resolved stress in a direction
from applied stress in some other direction of
bcc iron: Page-169 (2010)
2 sigma = 123; // Axial stress applied in the
direction [110] of bcc iron, MPa
3 // For directions [010] and [110]
```

```
// Miller indices for
4 h1 = 0; k1 = 1; 11 = 0
     first set of planes
5 h2 = 1; k2 = 1; 12 = 0;
                              // Miller indices for
     second set of planes
6 cos_phi = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1^2)*
     sqrt(h2^2+k2^2+12^2));
                              // Cosine of angle
     between [010] and [110] directions
7 // For directions [110s] and [101]
8 h1 = 1; k1 = 0; l1 = 1
                           // Miller indices for
     first set of planes
9 h2 = 1; k2 = 1; l2 = 0; // Miller indices for
     second set of planes
10 cos_lambda = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1
     ^2) * sqrt(h2^2+k2^2+12^2));
                                   // Cosine of angle
     between [110] and [101] directions
11 tau = sigma*cos_phi*cos_lambda; // Resolved shear
      stress in the [101] direction on the (010) plane
     , MPa
12 printf("\nThe resolved shear stress in the [101]
     direction on the (010) plane = \%4.1 f MPa", tau);
13 // Result
14 // The resolved shear stress in the [101] direction
     on the (010) plane = 43.5 MPa
```

Scilab code Exa 5.13 Critical resolved shear stress from applied stress in a given direction

```
1 // Scilab Code Ex5.13 Determining critical resolved
shear stress from applied stress in a given
direction of aluminium: Page-170 (2010)
2 sigma_critical = 3.5; // Applied stress in the [1
-1 1] direction, MPa
3 // For directions [111] and [1 -1 1]
4 h1 = 1; k1 = 1; l1 = 1; // Miller indices for
first set of planes
```

```
5 h2 = 1; k2 = -1; l2 = 1; // Miller indices for
      second set of planes
6 cos_phi = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1^2)*
      between [111] and [1 -1 1] directions
7 // For directions [1 - 1 \ 0] and [1 - 1 \ 1]
8 h1 = 1; k1 = -1; l1 = 0 // Miller indices for
      first set of planes
9 h2 = 1; k2 = -1; l2 = 1; // Miller indices for
      second set of planes
10 cos_lambda = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1
      ^2)*sqrt(h2^2+k2^2+l2^2)); // Cosine of angle
      between \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} and \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} directions
11 tau_c = sigma_critical*cos_phi*cos_lambda; // The
       critical resolved shear stress in the \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}
      direction on the (111) plane, MPa
12 printf("\n Critical resolved shear stress in the
      \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} direction on the (111) plane = \%4.2 f MPa
      ", tau_c);
13 // Result
14 // The critical resolved shear stress in the [1 -1]
      0] direction on the (111) plane = 0.95 MPa
```

Scilab code Exa 5.14 Initiation of slip by the applied stress

- 1 // Scilab Code Ex5.14 Determining the direction in which slip is initiated by the applied stress in zinc: Page-170 (2010)
- 2 sigma = 2.3; // Applied stress when the plastic deformation is first observed, MPa
- 3 phi = 60; // Angle which the normal to the basal plane makes with the tensile axis of zinc, degree
- 4 // Function to find the value of resolved shear stress
- 5 function[tau] = stress(lambda)

```
6
       tau = sigma*cosd(phi)*cosd(lambda);
7 endfunction
8 lambda = [38 45 84]; // Angles which the three
      slip directions x1, x2 and x3 respectively makes
      with the tensile axis, degrees
9 t = zeros(1,3);
                       // Initialize a one-
     dimensional vector of three elements
10 for i = 1:1:3
       t(i) = stress(lambda(i)); // Calculate the
11
          value of resolved shear stress by calling
          stress function
12
       printf(" \ max{au}\%d = \%5.3 f MPa", i, t(1,i));
                                                      11
          Display resloved shear stress for each
          direction, MPa
13 end
14 // Locate for the largest resolved stress value
15 big = t(1,1);
16 \text{ for } i = 2:1:3
17
       if t(1,i) > big then
           big = t(1,i) // Set largest values of
18
              resolved stress if the condition meets
19
       end
20 end
21 printf("\nThe slip is initiated along direction x1
      at tau_c = \%5.3 f MPa", big);
22 // Result
23 // tau1 = 0.906 MPa
24 \ // \ tau2 = 0.813 \ MPa
25 // tau3 = 0.120 MPa
26 // The slip is initiated along direction x1 at tau_c
      = 0.906 MPa
```

Scilab code Exa 5.15 Applied tensile stress in a direction to initiate plastic deformation

```
1 // Scilab Code Ex5.15 Determining applied tensile
      stress in a direction to initiate plastic
      deformation: Page - 170 (2010)
2 tau_critical = 0.7; // Critical resolved shear
      stress for fcc crystal, MPa
3 // For directions [100] and [1 1 1]
4 h1 = 1; k1 = 0; l1 = 0; // Miller indices for
      first set of planes
5 h2 = 1; k2 = 1; l2 = 1; // Miller indices for
      second set of planes
6 cos_phi = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1^2)*
      between [100] and [1 1 1] directions
7 // For directions \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} and \begin{bmatrix} 1 & -1 & 0 \end{bmatrix}
8 h1 = 1; k1 = 0; l1 = 0 // Miller indices for
      first set of planes
9 h2 = 1; k2 = -1; l2 = 0; // Miller indices for
      second set of planes
10 cos_lambda = (h1*h2+k1*k2+l1*l2)/(sqrt(h1^2+k1^2+l1
      ^2) * sqrt (h2^2+k2^2+l2^2)); // Cosine of angle
      between \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} and \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} directions
11 sigma_c = tau_critical/(cos_phi*cos_lambda);
                                                          11
      The critical resolved shear stress in the [1 - 1]
      0] direction on the (1 1 1) plane, MPa
12 printf("\nThe critical resolved shear stress in the
      \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} direction on the \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} plane = \%3.1 f
      MPa", sigma_c);
13 // Result
14 // The critical resolved shear stress in the [1 -1]
      0] direction on the (1 \ 1 \ 1) plane = 1.7 MPa
```

Scilab code Exa 5.16 Dislocation width in copper

1 // Scilab Code Ex5.16 Dislocation width in copper: Page-175 (2010)

2 mu = 1; // For simplicity, assume shear modulus of copper to be unity, netwon per metre square 3 tau_PN = mu/1e+05; // Shear stress to initiate plastic deformation, newton per metre square 4 a = 3.61e-010; // Lattice parameter of copper, m 5 b = a/sqrt(2); // Burger vector magnitude for fcc crystal of copper, m 6 // As stress necessary to move a dislocation in a crystal is given by 7 // tau_PN = mu*exp(-2*% pi*w/b), solving for w 8 w = $b*\log(mu/tau_PN)/(2*\%pi)$; // Width of the dislocation in copper, m 9 printf("\nThe width of dislocation in copper = %4.2eangstrom", w/1d-10); 10 // Result 11 // The width of dislocation in copper = 4.68e-010angstrom

Scilab code Exa 5.17 Change in number of vacancies due to disloaction motion

```
1 // Scilab Code Ex5.17 Change in number of vacancies
    due to disloaction motion: Page-176 (2010)
2 l = 1e-03; // Edge dislocation length of simple
    cubic crystal, m
3 d = 1e-06; // Distance of dislocation climb in, m
4 a = 3e-10; // Lattice parameter of scc, m
```

```
5 A = a^2; // Area of the unit cell, metre square
```

```
6 A_affected = l*d; // Affected area when the dislocation climbs down, metre square
```

- 7 // N.B.: Area of one unit cell in scc contributes one atom
- 8 N = A_affected/A; // Number of vacancies created within the affected area
- 9 printf("\nThe number of vacancies lost or created =

```
%3.1e", N);
10 // Result
11 // The number of vacancies lost or created = 1.1e
+010
```

Scilab code Exa 5.18 Minimum number of dislocations in motion from shearing rate

- 1 // Scilab Code Ex5.18 Minimum number of dislocations in motion from shearing rate of copper: Page-176 (2010) 2 a = 3.61e-010; // Lattice parameter of copper, m
- 3 epsilon_dot = 10/60; // Strain rate of plastic deformation, mm per sec
- 4 v_d = 1e+06; // Velocity of dislocation, mm per sec
- 5 V = 1e+03; // Volume of the crystal, mm cube
- 6 b = a*1e+03/sqrt(2); // Burger vector magnitude for fcc crystal of copper, mm

```
7 // Strain rate of plastic deformation is given by
```

```
8 // epsilon_dot = rho*b*v_d, solving for rho
```

```
9 rho = epsilon_dot/(b*v_d); // Density of the
mobile disloacations, per mm cube
```

- 10 N = round(rho*V); // Number of dislocations in motion in the whole cube

```
12 // Result
```

13 // The number of dislocations in motion in the whole cube = 653

Scilab code Exa 5.19 Elastic energy of line imperfection

```
1 // Scilab Code Ex5.19 Elastic energy of line
     imperfection stored in Al: Page - 178 (2010)
2 \text{ rho} = 1e+010;
                   // Dislocation density of Al, per
     metre square
3 \text{ mu} = 25.94 \text{e} + 09;
                   // Shear molulus of aluminium,
     newton per metre square
                  // Lattice parameter of aluminium,
4 a = 4.05e - 010;
      m
5 b = a/sqrt(2); // Burger vector magnitude for fcc
      crystal of Al, m
6 E_bar = mu*b^2/2;
                      // Elastic energy per unit
     length of the dislocation, joule per metre
  E = E_bar*rho; // Elastic energy stored in the
7
     crystal, joule per metre cube
8 printf("\nThe elastic energy stored in the crystal =
      %5.2f joule per metre cube", E);
9 // Result
10 // The elastic energy stored in the crystal = 10.64
     joule per metre cube
```

Scilab code Exa 5.20 Spacing between dislocations in a tilt boundary

1 // Scilab Code Ex5.20 Spacing between dislocations in a tilt boundary in fcc Ni: Page-187 (2010) 2 theta = 2; // Angle of tilt, degree 3 a = 3.52e-010; // Lattice parameter of Al, m 4 b = a/sqrt(2); // Burger vector magnitude for fcc Ni, m 5 h = b/tand(theta); // The vertical spacing between two neighbouring edge dislocations, m 6 printf("\nThe spacing between dislocations in a tilt boundary in fcc Ni = %4.1f angstrom", h/1D-10); 7 // Result 8 // The spacing between dislocations in a tilt boundary in fcc Ni = 71.3 angstrom Scilab code Exa 5.21 Tilt angle from dislocation spacing in the boundary

1 // Scilab Code Ex5.21 Determining tilt angle from dislocation spacing in the boundary of Cu: Page -188(2010)// Lattice parameter of Cu, m 2 = 3.61e - 010;3 b = a/sqrt(2); // Burger vector magnitude for fcc Cu, m 4 h = 1.5e-06; // The vertical spacing between two neighbouring edge dislocations, m 5 tan_theta = atand(b/h)*(%pi/180); // tangent of tilt angle between two tilt boundaries of Cu, radian 6 printf("\nThe tilt angle between two tilt boundaries of Cu = %3.1e radian", theta); 7 // Result 8 // The tilt angle between two tilt boundaries of Cu = 1.7 e - 004 radian

Scilab code Exa 5.22 Tilt angle from dislocation spacing

- 1 // Scilab Code Ex5.22 Determining tilt angle from dislocation spacing in the boundary of Cu: Page -188 (2010)
- 2 b = 0.4e-09; // Burger vector magnitude for fcc Cu, m
- 3 h = 3.0e-06; // The vertical spacing between two neighbouring edge dislocations, m
- 4 tan_theta = atand(b/h)*(%pi/180); // tangent of tilt angle between two tilt boundaries of Cu, radian

- 5 printf("\nThe tilt angle between two tilt boundaries of Cu = %4.2e radian", theta);
- 6 // Result
- 7 // The tilt angle between two tilt boundaries of Cu = 1.33e-004 radian

Chapter 6

Atomic Diffusion

Scilab code Exa 6.1 Rate of diffusion of nitrogen through steel wall

1 // Scilab Code Ex6.1 Rate of diffusion of nitrogen through steel wall: Page-195 (2010) 2 D = 1e-019; // Diffusion coeffcient of nitrogen in steel at room temperature, metre square per sec // Concentration of nitrogen at the 3 dc = 10;inner surface of the tank, kg per metre cube 4 dx = 10e-03; // Thickness of the steel wall, m // Fick's first law giving outward 5 J = D*(dc/dx); flux of nitrogen through steel wall of the tank, kg per metre square per second 6 printf("\nThe rate at which nitrogen escapes through the tank wall = %1.0 e kg per metre square per sec", J); 7 // Result 8 // The rate at which nitrogen escapes through the tank wall = 1e - 016 kg per metre square per sec

Scilab code Exa 6.2 Rate of diffusion of copper through pure Al sheet

- 1 // Scilab Code Ex6.2 Rate of diffusion of copper through pure Al sheet: Page-196 (2010)
- 2 a = 4.05e-010; // Lattice parameter of fcc Al, m
- 3 N = 4; // Number of Al atoms per unit cell of fcc Al
- 4 n = N/a^3; // Number of Al atoms per unit volume, per metre cube
- 5 D = 5.25e-013; // Diffusion coeffcient of copper in Al at 550 degree celsius, metre square per sec
- 6 c1 = 0.19e-02; // Atomic percent of copper at the surface, per unit volume
- 7 c2 = 0.18e-02; // Atomic percent of copper at the the depth 1.2 mm from the surface, per unit volume
- 8 dc = (c2 c1)*n; // Change in concentration of copper at 1.2 mm depth of the surface, per metre cube
- 9 dx = 1.2e-03; // Thickness of the pure Al sheet, m
- 10 J = -D*(dc/dx); // Fick's first law giving
 outward flux of copper through the Al sheet, Cu
 atoms per metre square per second
- 11 printf("\nThe outward flux of copper through the Al sheet = %4.2 e Cu atoms per metre square per sec", J);
- 12 // Result
- 13 // The outward flux of copper through the Al sheet = 2.63e+015 Cu atoms per metre square per sec

Scilab code Exa 6.3 Rate of diffusion of carbon through steel bar

```
1 // Scilab Code Ex6.3 Rate of diffusion of carbon
through steel bar: Page-196 (2010)
```

```
2 a = 3.65e-010; // Lattice parameter of fcc
structure of iron, m
```

```
3 D = 3e-011; // Diffusion coeffcient of carbon in
     iron at 1000 degree celsius, metre square per sec
              // Number of unit cells per carbon atom
4 n1 = 20;
     at the surface of steel
5 n2 = 30; // Number of unit cells per carbon atom
     at a depth 1 mm from the surface of steel
6 c1 = 1/(n1*a^3); // Atomic percent of carbon at
     the surface, per metre cube
7 c2 = 1/(n2*a^3); // Atomic percent of carbon at a
      depth 1 mm from the surface, per metre cube
8 dx = 1e-03; // Thickness of the steel bar, m
9 J = -D*((c2-c1)/dx); // Fick's first law giving
     outward flux of carbon through the Steel bar, C
     atoms per metre square per second
10 J_uc = J*a^2*60; // The number of carbon atoms
     diffusing through each unit cell per minute
11 printf("\nThe number of carbon atoms diffusing
     through each unit cell per minute = %2d atoms per
      minute", J_uc);
12 // Result
13 // The number of carbon atoms diffusing through each
```

13 // The number of carbon atoms diffusing through each unit cell per minute = 82 atoms per minute

Scilab code Exa 6.4 Diffusion through a cylinder

1 // Scilab Code Ex6.4 Diffusion through a cylinder: Page-199 (2010)

```
2 r = 12; // Radius of cylindrical crystal, mm
```

- 3 A1 = %pi*r^2; // Cross-sectional area for diffusion through the cylinder, milli-metre square
- 4 t = 4e-07; // Assume effective thickness of the surface to be 4 angstrom = two atomic diameters, mm

```
5 A2 = 2*%pi*r*t; // Cross-sectional area for
```

```
diffusion along the surface, milli-metre square
6 ratio = A2/A1; // Ratio of two cross-sectional
areas
7 printf("\nThe ratio of two cross-sectional areas =
    %4.2e", ratio);
8 // Result
9 // The ratio of two cross-sectional areas = 6.67e
    -008
```

Scilab code Exa 6.5 Diffusion length of Li in Ge

```
1 // Scilab Code Ex6.5 Diffusion length of Li in Ge:
     Page - 203 (2010)
2 D = 1e - 010;
                 // Diffusion coefficient for Li in Ge
    , metre square per sec
3 t = 1*60*60;
                // Time taken by diffusing Li to
    travel diffusion depth, sec
4 T = 500+273;
                  // absolute temperature of the
    system, kelvin
5 x = sqrt(D*t); // Diffusion length of Li in Ge, m
6 printf("\nThe diffusion length of Li in Ge = \%1.0 e m
    ", x);
7 // Result
8 // The diffusion length of Li in Ge = 6e - 004 m
```

Scilab code Exa 6.6 Diffusion time of Li in Ge

1 // Scilab Code Ex6.6 Diffusion time of Li in Ge: Page-203 (2010) 2 D = 1e-010; // Diffusion coefficient for Li in Ge , metre square per sec 3 T = 500+273; // Absolute temperature of the

```
system, kelvin
```

4 x = 0.2e-03; // Diffusion length of Li in Ge, m
5 // Diffusion length is given by
6 // x = sqrt(D*t), solving for t
7 t = x^2/D; // Time taken by diffusing Li to
travel diffusion depth of 0.2 mm, sec
8 printf("\nThe time taken by diffusing Li to travel
diffusion depth of 0.2 mm = %3d s", t);
9 // Result
10 // The time taken by diffusing Li to travel
diffusion depth of 0.2 mm = 400 s

Scilab code Exa 6.7 Diffusion coefficient of Cu in Al

- 1 // Scilab Code Ex6.7 Diffusion coefficent of Cu in Al: Page 206 (2010)
- 3 T = 550+273; // Absolute temperature of the system, kelvin

4 R = 8.314; // Molar gas constant,
$$J/mol/K$$

- 5 Q = 121e+03; // The activation energy for diffusion, joule per mole
- 6 t = 1*60*60; // Time taken by Cu to diffuse into Al, sec
- 7 D = D0*exp(-Q/(R*T)); // Diffusion coefficient of Cu in Al at 550 degree celsius, metre square per sec

```
8 x = sqrt(D*t); // Diffusion length of Cu in Al, m
```

- 9 printf("\nThe diffusion coefficient of Cu in Al at
 550 degree celsius = %4.2e metre square per sec",
 D);
- 10 printf("\nThe diffusion length of Cu in Al = %5.3 f
 mm", x*1000);

```
11 // Result
```

```
12 // The diffusion coefficient of Cu in Al at 550
degree celsius = 5.22e-013 metre square per sec
13 // The diffusion length of Cu in Al = 0.043 mm
```

Scilab code Exa 6.8 Activation energy for diffusion of Ag in Si

1 // Scilab Code Ex6.8 Activation energy for diffusion of silver in silicon: Page 206 (2010) 2 R = 8.314;// Molar gas constant, J/mol/K 3 T1 = 1350+273; // First temperature at which difuusion of Ag into Si takes place, kelvin 4 T2 = 1100+273; // Second temperature at which difuusion of Ag into Si takes place, kelvin // Ratio of diffusion rates of Ag in Si DRR = 8;5at T1 and T2 6 // As diffusion coefficient at temperature T1 is D1 = D0 * exp(-Q/(R*T1))7 // and that at temperature T2 is $D1 = D0 * \exp(-Q/(R*$ T2)), so that the diffusion rates ratio 8 // D1/D2 = DRR = $\exp(Q/R*(1/T2-1/T1))$, solving for Q , we have 9 Q = $R*\log(DRR)/((1/T2-1/T1)*1000);$ // Activation energy for diffusion of Ag in Si, kJ/mol 10 printf("\nThe activation energy for diffusion of Ag in Si = %3d kJ/mol, Q); 11 // Result 12 // The activation energy for diffusion of Ag in Si =154 kJ/mol

Scilab code Exa 6.9 Arrhenius rate law
- 1 // Scilab Code Ex6.9 Activation energy and diffusion constant of a diffusion system obeying Arrhenius rate law: Page 207 (2010)
- 2 R = 1.987; // Molar gas constant, cal/mol/K
- 3 D_1100 = 8e-013; // Diffusivity of Ga in Si at 1100 degree celsius, cm square per sec
- 4 D_1300 = 1e-010; // Diffusivity of Ga in Si at 1300 degree celsius, cm square per sec
- 5 T1 = 1100+273; // First temperature at which diffusion of Ga into Si takes place, kelvin
- 6 T2 = 1300+273; // Second temperature at which diffusion of Ga into Si takes place, kelvin
- 7 // Arrehenius equation in log10 form is given by
- $8 // \log 10 (D) = \log 10 (D0) Q/(2.303 * R*T) ---- (a)$
- 9 // Thus log10(D_1100) = log10(D0)-Q/(2.303*R*T1) ---- (i)
- 10 // $\log 10 (D_1300) = \log 10 (D0) Q/(2.303 * R*T2)$ ---- (ii),
- 11 // On subtracting (ii) from (i), we get
- 12 // log10(D_1100/D_1300) = -Q/(2.303*R)*(1/T2-1/T1), solving for Q
- 14 // Putting Q in (ii) and solving for D0 $\,$
- 15 D0 = exp(2.303*log10(D_1100)+Q/(R*T1))
- 16 // D0 = exp(2.303*log10(D_1300)+Q/(R*T2)); // Pre -exponential diffusion constant independent of temperature, cm square per sec
- 17 T = 1200+273; // Temperature at which diffusion of Ga into Si is to be calculated, kelvin
- 18 // Substituting D0, Q, R and T in (a) and solving for D, we have

- 21 printf("\nThe pre-exponential diffusion constant, D0

= %5d cm square per sec", D0); 22 printf("\nThe diffusivity of the system = %4.2e cm square per sec", D); 23 // Result 24 // The activation energy for diffusion of Ga in Si = 103 kcal/mol 25 // The pre-exponential diffusion constant, D0 = 24893 cm square per sec 26 // The diffusivity of the system = 1.05e-011 cm square per sec

Scilab code Exa 6.10 Activation energy for diffusion rates at different temperatures

1 // Scilab Code Ex6.10 Activation energy for diffusion rates at different temperatures: Page 208 (2010)// Molar gas constant, J/mol/K 2 R = 8.314;3 T1 = 500+273;// First temperature at which diffusion of A into B takes place, kelvin T2 = 850+273; // Second temperature at which 4 diffusion of A into B takes place, kelvi // Penetration depth ratio at 500 5 PDR = 1/4; degree celsius and 850 degree celsius 6 // x1/x2 = sqrt(D1/D2) i.e. PDR = sqrt(DRR), DRR is the diffusion rate ratio 7 // solving for DRR $8 \text{ DRR} = \text{PDR}^2;$ // Diffusion rate ratio D1/D2 of A in B 9 // As diffusion coefficient at temperature T1 is D1 = D0 * exp(-Q/(R*T1))10 // and that at temperature T2 is $D1 = D0 * \exp(-Q/(R*$ (T2)), so that the diffusion rates ratio 11 // D1/D2 = DRR = $\exp(Q/R*(1/T2-1/T1))$, solving for Q

11 // $D1/D2 = DRR = \exp(Q/R*(1/12-1/11))$, solving for Q , we have

```
12 Q = R*log(DRR)/((1/T2-1/T1)*1000); // Activation
energy for diffusion of A in B, kJ/mol
```

- 14 // Result
- 15 // The activation energy for diffusion of A in $B=57.17\ \rm kJ/mol$

Scilab code Exa 6.11 Time required for carburizing of steel

- 1 // Scilab Code Ex6.11 Time required for carburizing of steel: Page 209 (2010)
- 2 CO = 0.0018; // Intial carbon concentration of steel
- 3 Cx = 0.0030; // Carbon concentration of steel at 0.60 mm below the surface of the gear
- 4 Cs = 0.01; // Carbon concentration of steel at the surface
- 5 x = 0.6e-03; // Diffusion depth below the surface of the gear, m
- 6 D_927 = 1.28e-011; // Diffusion coefficient for carbon in iron, metre square per sec
- 7 erf_Z = (Cs-Cx)/(Cs-CO); // Error function of Z as a solution to Fick's second law
- 8 Z1 = 1.0, Z2 = 1.1; // Preceding and succeeding values about Z from error function table
- 9 erf_Z1 = 0.8427, erf_Z2 = 0.8802; // Preceding and succeeding values about erf_Z from error function table
- $10 \ Z = poly(0, 'Z');$
- 11 Z = roots((Z-Z1)/(Z2-Z1)-(erf_Z-erf_Z1)/(erf_Z2erf_Z1));
- 12 // As $Z = x/(2*sqrt(D_927*t))$, where Z is a constant argument of error function as erf(Z)
- 13 // Solving for t, we have

14 t = (x/(2*Z))^2/D_927; // Time necessary to increase the carbon content of steel, sec 15 printf("\nThe time necessary to increase the carbon content of steel = %3d minutes", t/60); 16 // Result 17 // The time necessary to increase the carbon content of steel = 110 minutes

Scilab code Exa 6.12 Carbon concentration of carburized steel at certain depth

1 // Scilab Code Ex6.12 Carbon concentration of carburized steel at certain depth: Page 210 (2010)2 CO = 0.0020; // Initial carbon concentration of steel3 Cs = 0.012;// Carbon concentration of steel at the surface 4 t = 10*60*60; // Carburizing time of steel, sec 5 x = 0.06*25.4*1e-03; // Diffusion depth below the surface of the gear, mm 6 D_927 = 1.28e-011; // Diffusion coefficient for carbon in iron, metre square per sec 7 Z = $x/(2*sqrt(D_927*t))$, // A constant argument of error function as erf(Z) $8 \quad Z1 = 1.1, \quad Z2 = 1.2;$ // Preceding and succeeding values about Z from error function table 9 erf_Z1 = 0.8802, erf_Z2 = 0.9103; // Preceding and succeeding values about erf_Z from error function table 10 efZ = poly(0, 'efZ');11 efZ = roots((efZ-erf_Z1)/(erf_Z2-erf_Z1)-(Z-Z1)/(Z2-Z1)); // Error function of Z as a solution to Fick's second law 12 Cx = poly(0, 'Cx');

- 14 printf("\nThe carbon concentration of carburized steel at 0.06 inch depth = %4.2f percent", Cx *100);
- 15 // Result
- 16 // The carbon concentration of carburized steel at 0.06 inch depth = 0.31 percent

Scilab code Exa 6.13 Depth of decarburization below the surface of steel

1 // Scilab Code Ex6.13 Depth of decarburization below the surface of steel: Page 211 (2010) 2 C2 = 0.012; // Initial carbon concentration of steel 3 Cx = 0.008; // Carbon concentration of carburized steel at x metre depth 4 Cs = 0;// Carbon concentration of steel at the surface 5 t = 5*60*60; // Carburizing time of steel, sec 6 D_927 = 1.28e-011; // Diffusion coefficient for carbon in iron, metre square per sec 7 $erf_Z = abs((Cs-Cx)/(C2-Cs));$ // Error function of Z as a solution to Fick's second law 8 Z1 = 0.65, Z2 = 0.70; // Preceding and succeeding values about Z from error function table 9 erf_Z1 = 0.6420, erf_Z2 = 0.6778; // Preceding and succeeding values about erf_Z from error function table 10 Z = poly(0, 'Z');11 Z = roots((Z-Z1)/(Z2-Z1)-(erf_Z-erf_Z1)/(erf_Z2-

erf_Z1));

12 // As $Z = x/(2*sqrt(D_927*t))$, where Z is a constant argument of error function as erf(Z)

13 // Solving for x, we have

- 15 printf("\nThe minimum depth upto which post machining is to be done = %4.2 f mm", x*1000);
- 16 // Result
- 17 // The minimum depth upto which post machining is to be done = 0.66 mm

Scilab code Exa 6.14 Diffusion depth of P type semiconductor

```
1 // Scilab Code Ex6.14 Diffusion depth of P-type
     semiconductor (B into Si): Page 212 (2010)
           // Initial boron concentration of silicon
2 CO = 0;
3 Cx = 1e+17; // Boron concentration at depth x
     below the silicon surface
                 // Boron concentration of silicon at
4 Cs = 1e+18;
     the surface
5 T = 1100 + 273;
                   // Absolute temperature of the
     system, kelvin
6 t = 2*60*60;
                  // Time taken to diffuse boron into
     silicon, sec
7 D_{1100} = 4e - 013;
                    // Diffusion coefficient for
     boron in silicon, cm square per sec
8 erf_Z = abs((Cs-Cx)/(Cs-C0)); // Error function
     of Z as a solution to Fick's second law
9 Z1 = 1.1, Z2 = 1.2; // Preceding and succeeding
     values about Z from error function table
10 erf_Z1 = 0.8802, erf_Z2 = 0.9103; // Preceding
     and succeeding values about erf_Z from error
     function table
11 Z = poly(0, 'Z');
12 Z = roots((Z-Z1)/(Z2-Z1)-(erf_Z-erf_Z1)/(erf_Z2-
     erf_Z1));
13 // As Z = x/(2*sqrt(D_927*t)), where Z is a constant
```

argument of error function as erf(Z)

- 14 // Solving for x, we have
- 15 x = Z*2*sqrt(D_1100*t); // Diffusion depth of boron
 into silicon
- 16 printf("\nThe diffusion depth of boron into silicon $= \%4.2 \,\mathrm{e} \,\mathrm{cm}$ ", x);
- 17 // Result
- 18 // The diffusion depth of boron into silicon = 1.25e -004 cm

Chapter 7

Lattice or Atomic Vibrations

Scilab code Exa 7.1 Cut off frequency of the linear lattice of a solid

```
1 // Scilab Code Ex7.1 Cut-off frequency of the linear
      lattice of a solid: Page-238 (2010)
2 v = 3e+03; // Velocity of sound in the solid, m/s
3 = 3e - 010;
                // Interatomic distance, m
4 // As cut-off frequency occurs at k = \% pi/a and k =
     2*%pi/lambda, this gives
 lambda = 2*a; // Cut-off wavelength for the solid
5
     , m
6 f = v/lambda; // Cut-off frequency (v = f*lambda)
     for the linear lattice, hertz
7 printf("\nThe cut-off frequency for the linear
     lattice of a solid = \%1.0 \,\mathrm{e} Hz", f);
8 // Result
9 // The cut-off frequency for the linear lattice of a
      solid = 5e + 012 Hz
```

Scilab code Exa 7.2 Comparison of frequency of waves in a monoatomic and diatomic linear systems

1 // Scilab Code Ex7.2 Comparison of frequency of waves in a monoatomic and diatomic linear systems : Page - 238 (2010)2 a = 2.5e-010; // Interatomic spacing between two identical atoms, m 3 v0 = 1e+03; // Velocity of sound in the solid, m/ \mathbf{S} 4 lambda = 10e-010; // Wavelength of the sound wave , m 5 omega = v_0*2*%pi/lambda; // Angular frequency of sound wave in a monoatomic lattice, rad per sec 6 printf("\nThe frequency of sound waves in a monoatomic lattice = $\%4.2 \,\mathrm{e} \,\mathrm{rad}/\mathrm{sec}$ ", omega); 7 // For acoustic waves in a diatomic lattice (M = m), the angular frequency, omega = 0 at k = 0 and 8 // omega = $(2*K/m)^{(1/2)}$ — (i) at k = %pi /(2*a)9 // As v0 = $a*(2*K/m)^{(1/2)}$ ---- (ii) 10 // From (i) and (ii), we have 11 omega_min = 0; // Angular frequency of acoustic waves at k = 0, rad per sec 12 omega_max = v0/a; // Angular frequency of acoustic waves at k = % pi/(2*a), rad per sec 13 printf("\n\nThe frequency of acoustic waves wave in a diatomic lattice : $\n \%$ d rad/sec for k = 0 $\n \%$ 1 $.0 \, \text{e} \, \text{rad}/\text{sec} \, \text{for} \, k = pi/(2*a)$ ", omega_min, omega_max); 14 // For optical waves in a diatomic lattice (M = m), the angular frequency 15 // omega = $sqrt(2) * (2*K/m)^{(1/2)}$ ---- (iii) at k = 016 // As v0 = a * (2 * K/m) (1/2) ---- (iv) 17 // From (iii) and (iv), we have 18 omega_max = sqrt(2)*v_0/a; // Angular frequency of optical waves at k = 0, rad per sec 19 // For optical waves in a diatomic lattice (M = m), the angular frequency 20 // omega = $(2*K/m)^{(1/2)}$ ---- (iii) at k = %pi

```
/(2*a)
21 // As v0 = a * (2 * K/m)^{(1/2)} ---- (iv)
22 // From (iii) and (iv), we have
23 omega_min = v_0/a; // Angular frequency of
      optical waves at k = \% pi/(2*a), rad per sec
24 printf("\n the frequency of optical swaves wave in
      a diatomic lattice :\n \%4.2 \text{ e rad/sec} for k = 0 \n
       \%1.0 \text{ e rad/sec} for k = pi/(2*a)", omega_max,
      omega_min);
25 // Result
26 // The frequency of sound waves in a monoatomic
      lattice = 6.28 \text{ e} + 012 \text{ rad} / \text{sec}
27
28 // The frequency of acoustic waves wave in a
      diatomic lattice :
29 // 0 rad/sec for k = 0
30 // 4e+012 rad/sec for k = pi/(2*a)
31
32 // The frequency of optical swaves wave in a
      diatomic lattice :
33 // 5.66 e+012 rad/sec for k = 0
34 // 4e + 012 \text{ rad/sec for } k = pi/(2*a)
```

Scilab code Exa 7.3 Reflection of electromagentic radiation from a crystal

1 // Scilab Code Ex7.3 Reflection of electromagentic radiation from a crystal: Page-239(2010) 2 c = 3.0e+08; // Speed of electromagnetic wave in vacuum, m/s 3 a = 5.6e-010; // Lattice parameter of NaCl crystal, m 4 Y = 5e+010; // Modulus of elasticity along [100] direction of NaCl, newton per metre square 5 m = 23; // Atomic weight of sodium, amu 6 M = 37; // Atomic weight of chlorine, amu

7 amu = 1.67e-027; // Kg equivalent of 1 amu 8 K = a*Y; // Force constant of springs when the extension along [100] direction is neglected, N/m 9 omega_plus_max = (2*K*(1/(M*amu)+1/(m*amu)))^(1/2); // The maximum angular frequency of the reflected electromagnetic radiation, rad per sec 10 lambda = 2*%pi*c/omega_plus_max; // The wavelength at which the electromagnetic radiation is strongly reflected, m 11 printf("\nThe wavelength at which the electromagnetic radiation is strongly reflected by the crystal = $\%4.2 \,\mathrm{e}$ m", lambda); 12 // Result 13 // The wavelength at which the electromagnetic radiation is strongly reflected by the cystal = $3.88 \, e - 005 \, m$

Chapter 8

Diffraction of Waves and Particles by Crystals

Scilab code Exa 8.1 Shortest wavelength and frequency of X rays from accelerating potential

```
1 // Scilab Code Ex08.1 Determination of shortest
     wavelength and frequency of X-rays from
     accelerating potential Page-250 (2010)
2 V = 50e+03; // Accelerating potential, volt
             // Speed of light in free space
3 c = 3e + 08;
4 Lambda_min = 1.24e-06/V; // Minimum wavelength,
     metre
                         // Maximum frequency, Hz
5 F_max = c/Lambda_min;
6 printf("\nThe shortest wavelength present in X-rays
     = %4.2 f angstrom", Lambda_min/1D-10);
7 printf("\nThe maximum frequency present in X-rays =
     %3.1 e Hz", F_max);
8 // Result
9
  // The shortest wavelength present in X-rays = 0.25
     angstrom
10 // The maximum frequency present in X-rays = 1.2e+19
      Hz
```

Scilab code Exa 8.2 Impinging electrons on the target and characteristics of X rays

1 // Scilab Code Ex8.2 Calculation of impinging electrons on the target and characteristics of Xrays Page-253 (2010) 2 I = 2.5e-03; // Current through X-ray tube, ampere 3 V = 6e+03; // Potential across the X-ray tube, volt 4 e = 1.6e-19; // Charge on an electron, coulomb 5 m = 9.1e-031; // mass of an electron, kg 6 t = 1; // Transit time, second // Total charge flowing per second $7 \ Q = I * t;$ through the x-ray tube, coulomb 8 n = Q/e; // Number of electrons striking the target per second 9 // We have $eV = 1/2 * m * v^2$ (stopping potential = maximum Kinetic energy) 10 // Solving for v 11 v = sqrt(2*e*V/m); // speed of electrons striking the target, m/s 12 Lambda_min = 1.24e-06/V; // Minimum wavelength of X-rays produced, metre 13 printf("\nThe number of electrons striking the $target = \%4.2e^{"},n);$ 14 printf("\nThe velocity of electrons striking the target = %4.2 e m/s", v);15 printf("\nThe shortest wavelength present in X-rays = %4.2 e m", Lambda_min); 16 // Result 17 // The number of electrons striking the target = $\frac{17}{100}$ 1.56e + 01618 // The velocity of electrons striking the target =

```
\begin{array}{rl} 4.59\,\mathrm{e}{+007}\,\mathrm{m/s}\\ 19 & // \mathrm{The \ shortest} \ \mathrm{wavelength} \ \mathrm{present} \ \mathrm{in} \ \mathrm{X-rays} = 2.07\,\mathrm{e}\\ & -010 \ \mathrm{m} \end{array}
```

Scilab code Exa 8.3 Wavelength of characteristic X rays

1 // Scilab Code Ex8.3 Calculation of wavelength of characteristic X-rays Page-253 (2010) // Planck's constant, Js 2 h = 6.626 e - 0.034;// Speed of light in free space, m/s 3 c = 3e+08;4 e = 1.602e - 019;// Charge on an electron, coulomb // Energy of K shell for platinum, keV $5 E_K = -78;$ // Energy of L shell for platinum, keV $6 E_L = -12;$ 7 $E_M = -3$; // Energy of M shell for platinum, keV 8 E_K_alpha = E_L - E_K; // Energy of K_alpha line, keV $E_K_{beta} = E_M - E_K;$ // Energy of K_beta line, 9 keV // We have E = h * f, where f = c/Lambda this implies 10 E = h * c / lambda11 // Solving for Lambda 12 // Lambda = h * c / E13 lambda_K_alpha = h*c/(E_K_alpha*e*1e+03); 11 Wavelength of K_alpha line, metre lambda_K_beta = h*c/(E_K_beta*e*1e+03); 14 11 Wavelength of K_beta line, metre 15 printf("\nThe wavelength of K_alpha line = %4.2 f angstrom", lambda_K_alpha/1D-10); 16 printf("\nThe wavelength of K_beta line = %4.2 fangstrom", lambda_K_beta/1D-10); 17 // Result 18 // The wavelength of K_alpha line = 0.19 angstrom 19 // The wavelength of K_beta line = 0.17 angstrom

Scilab code Exa 8.4 Atomic number of an unknown element

1 // Scilab Code Ex8.4 Calculation of atomic number of an unknown element Page-255 (2010) 2 lambda_Pt = 1.321e-010; // Wavelength of L_alpha line of Pt, m 3 Z_Pt = 78; // Atomic number of platinum 4 b = 7.4; // Constant lambda_x = 4.174e-010; // Wavelength of unknown 5element, m // We have $f = [a*(Z-b)]^2$ (Moseley's law) 6 7 // As $f_Pt = c/lambda_Pt = [a*(Z_Pt-b)]^2$ 8 // Similarly $f_x = c/lambda_x = [a*(Z_x-b)]^2$ 9 // Dividing f_Pt by f_x and solving for x 10 Z_x = b + sqrt(lambda_Pt/lambda_x)*(Z_Pt-b); 11 Atomic number of unknown element 11 printf("\nThe atomic number of unknown element = %4.1f", Z_x); 12 // Result 13 // The atomic number of unknown element = 47.1

Scilab code Exa 8.5 Wavelength of copper using Moseley law

```
1 // Scilab Code Ex8.5 Calculation of wavelength of
      copper using Moseley's law Page-256 (2010)
2 c = 3.0e+08; // Speed of light, m/s
3 lambda_W = 210e-010; // Wavelength of K_alpha
      line of W, m
4 Z_W = 74; // Atomic number of tungsten
5 Z_Cu = 29; // Atomic number of copper
6 b = 1; // Constant for K-series
```

```
7 // f_W = c/lambda_W = (a*73)^2, The frequency
K_alpha line for tungsten, Hz
8 // f_Cu = c/lambda_Cu = (a*28)^2, The frequency
K_alpha line for copper, Hz
9 // Dividing f_W by f_Cu and solving for lambda_Cu
10 lambda_Cu = ((Z_W-b)/(Z_Cu-b))^2*lambda_W; //
```

```
\frac{10 \text{ lambda_cu}}{\text{Wavelength of K_alpha line of Cu, m}}
```

- 11 printf("\nThe wavelength of K_alpha line of copper =
 %4.0f angstrom", lambda_Cu/1D-10);
- 12 // Result
- 13 // The wavelength of K_alpha line of copper = 1427 angstrom

Scilab code Exa 8.6 Atomic number from wavelength using Moseley law

```
1 // Scilab Code Ex8.6 Calculation of atomic number
     from wavelength using Moseley's law Page-256
     (2010)
2 c = 3.0e+08; // Speed of light, m/s
3 h = 6.626e-034; // Planck's constant, Js
4 epsilon_0 = 8.85e-012; // Absolute electrical
     permittivity of free space, coulomb square per
     newton per metre square
                   // Mass of an electron, kg
5 m = 9.1e - 0.031;
                // Charge on an electron, C
6 = 1.6e - 0.19;
7 \text{ lambda} = 0.7185e-010;
                         // Wavelength of K_alpha
     line of unknown element
8 b = 1; // Mosley's constant for K-series
9 n_1 = 1; n_2 = 2; // Lower and upper energy
     levels
10 // We know that f = c/lambda = m*e^4*(Z-b)^2/(8*
     epsilon_0^2 * h^3 * (1/n_2^2 - 1/n_1^2)
11 // This implies that lambda = (8*epsilon_0^2*c*h^3/(
     m * e^{4} (Z-b)^{2} (1/n_2^2-1/n_1^2)
12 // Solving for Z
```

- 14 printf("\nThe atomic number unknown element = %2d",
 Z);
- 15 // Result
- 16 // The atomic number unknown element = 42

Scilab code Exa 8.7 Wavelengths of tin and barium using Moseley law

```
1 // Scilab Code Ex8.7 Calculation of wavelengths of
     tin and barium using Moseley's law Page-257
     (2010)
2 Z_Fe = 26;
                 // Atomic number of iron
                // Atomic number of platinum
3 \text{ Z_Pt} = 78;
4 \ Z_Sn = 50;
                // Atomic number of tin
5 \ Z_Ba = 56;
                // Atomic number of barium
         // Mosley's constant for K-series
6 b = 1;
 lambda_Fe = 1.93e-010; // Wavelength of K_alpha
7
     line of Fe
  lambda_Pt = 0.19e-010; // Wavelength of K_alpha
8
     line of Pt
9 // From Moseley's Law,
10 // f = a*(Z-1)^2. This implies lambda = C*1/(Z-1)^2
11 // so that lambda_Fe = C*1/(Z_Fe-1)^2 and lambda_Sn
       = C*1/(Z_Sn-1)^2
12 // Dividing lambda_Sn by lambda_Fe and solving for
     lambda_Sn
  lambda_Sn = (Z_Fe-1)^2/(Z_Sn-1)^2*lambda_Fe;
                                                    11
13
     Wavelength of K_alpha line for tin, m
 lambda_Ba = (Z_Pt-1)^2/(Z_Ba-1)^2*lambda_Pt;
14
                                                    11
     Wavelength of K_alpha line for barium, m
15 printf("\nThe wavelengths of tin and barium = \%3.1 f
     angstrom and %4.2f angstrom respectively",
     lambda_Sn/1D-10, lambda_Ba/1D-10);
16 // Result
```

17 // The wavelengths of tin and barium = 0.5 angstrom and 0.37 angstrom respectively

Scilab code Exa 8.8 Percentage transmitted energy of X rays

1 // Scilab Code Ex8.8 Percentage transmitted energy of X-rays: Page 259 (2010) 2 mu = 139; // Attenuation co-efficient of aluminium, per metre 3 x = 0.005;// Thickness of aluminium sheet, m 4 // If X% is the intensity of the X-ray transmitted through the aluminium sheet then $5 / X = I / I_0$ 6 // or X/100 = $\exp(-absorb_coeff * x)$ 7 // Solving for X 8 X = 100*exp(-mu*x); // Transmitted percentage of X-rays 9 printf("\nThe intensity of the X-ray transmitted through the aluminium sheet = %g percent", round(X)); 10 // Result 11 // The intensity of the X-ray transmitted through the aluminium sheet = 50 percent

Scilab code Exa 8.9 Thickness of lead piece by using two equal intensity X ray wavelengths

- 1 // Scilab code Ex8.9 : Determination of thickness of lead piece by using two equal intensity X-ray wavelengths : Page 259 (2010)
- 2 lambda_1 = 0.064e-010; // First wavelength of Xray, metre

```
3 lambda_2 = 0.098e-010; // Second wavelength of X-
     ray, metre
4 I1_ratio_I2 = 3; // Ratio of attenuated beam
     intensity
5 mu_m1 = 0.164; // Mass absorption coefficient for
      first wavelength, metre square per kg
6 mu_m2 = 0.35; // Mass absorption coefficient for
     second wavelength, metre square per kg
7 d = 0.164; // Density of the lead, kg per metre
     cube
8 mu1 = mu_m1*d; // absorption co-efficient of the
     lead for first wavelength, per metre
  mu2 = mu_m2*d;
                  // absorption co-efficient of the
9
     lead for second wavelength, per metre
10 x = poly(0, "x"); // Declare 'x' as the thickness
     variable
11 // Now I = \exp(-ac * x) thus
12 // I1_ratio_I2 = \exp(-ac_1*x)/\exp(-ac_2*x)
13 // or 3 = \exp(2109.24) *x this implies
14 / / 2104.24 \times x = \log(3) and assume
15 p = 2104.24 \times -\log(3);
16 printf("\nThe thickness of lead piece = \%4.2 \,\mathrm{e} m",
     roots(p));
17 // Result
18 // The thickness of lead piece = 5.22 e - 004 m
```

Scilab code Exa 8.10 Angle of reflection by using wavelength of X rays

```
1 // Scilab code Ex8.10: Determining angle of
reflection by using wavelength of X-ray Page 261
(2010)
2 lambda = 0.440e-010; // Wavelength of X-rays, m
3 d = 2.814e-010; // Interplanar spacing of
rocksalt crystal, m
4 // 2*d*sin(theta) = n*lambda **Bragg's law, n is
```

```
the order of diffraction
5 // Solving for theta, we have
6 // theta = asin(n*lambda/(2*d))
7 // Declare a function for converting angle into
     degrees and minutes
8 function [d,m] = degree_minute(n)
            d = int(n);
9
            m = (n-int(n))*60;
10
11 endfunction
12 for n = 1:1:5 // For diffraction order from 1 to
     5
       theta = asind(n*lambda/(2*d)); // Bragg's
13
          angle
14
       [deg, mint] = degree_minute(theta);
                                              // Call
          conversion function
       printf("\nTheta%d = \%2d degree(s), \%2d minute(s)
15
         ", n, deg, mint);
16 end
17 // Result
18 // Theta1 = 4 degree(s), 29 minute(s)
19 // Theta2 = 8 degree(s), 59 minute(s)
20 // Theta3 = 13 degree(s), 33 minute(s)
21 // Theta4 = 18 degree(s), 13 minute(s)
22 // Theta5 = 23 degree(s), 0 minute(s)
```

Scilab code Exa 8.11 Wavelength of diffracted X rays

```
6 // lambda = 2*d*\sin(\text{theta})/n;
7 printf("\nThe first four wavelengths of diffracted
     beam are:");
                    // For diffraction order from 1 to
8 for n = 1:1:5
     5
9
       lambda = 2*d*sind(theta)/n;
                                         // Wavelength of
           X-rays, m
10
       if lambda >= 0.2e-010 & lambda <= 1.0e-010 then
           printf("\hlambda\%d = \%6.4e angstrom", n,
11
              lambda/1D-10);
12
       end
13 end
14 // Result
15 // The first four wavelengths of diffracted beam are
16 // Lambda1 = 8.8041e-001 angstrom
17 // Lambda2 = 4.4021e-001 angstrom
18 // Lambda3 = 2.9347 e - 001 angstrom
19 // Lambda4 = 2.2010 e - 001 angstrom
```

Scilab code Exa 8.12 Reciprocal lattice parameters from 2D direct lattice parameters

- 1 // Scilab code Ex8.12: Reciprocal lattice parameters
 from 2-D direct lattice parameters Page 277
 (2010)
- 2 a = 3e-010; // First lattice parameter of direct lattice
- 3 b = 5e-010; // Second lattice parameter of direct lattice
- 4 theta = 60; // Angle between two lattice vectors of the direct lattice
- 5 // if a_prime and b_prime are the lattice vectors for the reciprocal lattice, then
- $6 // a_prime * a = 2*\% pi$ and $a_prime * b = 0$

```
7 // Similarly, b_prime*b = 2*%pi and b_prime*a = 0
8 // Solving for a_prime and b_prime, we have
9 a_prime = 2*%pi/(a*cosd(90-theta)); // Lattice
vector for reciprocal lattice, per metre
10 b_prime = 2*%pi/(b*cosd(90-theta)); // Lattice
vector for reciprocal lattice, per metre
11 printf("\nThe reciprocal lattice vectors are:\n
a_prime = %5.2 f per angstrom and b_prime = %5.2 f
per angstrom", a_prime*1e-010, b_prime*1e-010);
12 // Result
13 // The reciprocal lattice vectors are:
14 // a_prime = 2.42 per angstrom and b_prime = 1.45
per angstrom
```

Scilab code Exa 8.13 Bragg angle and the indices of diffraction of Powder Lines

```
1 // Scilab code Ex8.13: Bragg angle and the indices
     of diffraction of Powder Lines Page 285 (2010)
2 n = 1; // Cosider first order diffraction
3 = 6e - 010;
                 // First lattice parameter of direct
     lattice, m
4 \text{ lambda} = 1.54e-010;
                       // Wavelength used in
      diffraction of X-rays by Powder Method, m
  // Declare a function for converting angle into
5
     degrees and minutes
6 function [d,m] = degree_minute(n)
7
            d = int(n);
8
            m = (n - int(n)) * 60;
9 endfunction
10 // Calculate the hkl and hence interpalnar spacing '
     d' for three lowest powder lines
11 printf("\nThe Bragg angles and the indices of
      diffraction for the three lowest powder lines are
     :");
```

```
12 \text{ for } h = 0:1:2
       for k = 0:1:2
13
           for 1 = 0:1:1
14
                if (modulo(h,2) == 1 & modulo(k,2) == 1
15
                   & modulo (1,2) == 1) | (modulo(h,2)
                   == 0 \& modulo(k,2) == 0 \& modulo(1)
                   ,2) == 0) then
16
                    if (h <> 0) then
                         N = h^{2}+k^{2}+1^{2};
17
                         d = a/sqrt(N);
                                            // Interplanar
18
                             spacing, metre
19
                         theta = asind(n*lambda/(2*d));
20
                         [deg, mint] = degree_minute(
                                        // Call conversion
                            theta);
                             function
                         printf ("\nd[%d%d%d] = %4.2 e and
21
                            theta [\%d\%d\%d] = \%d \deg \%d \min
                            ", h, k, l, d, h, k, l, deg,
                            mint);
22
                     end
23
                end
24
             end
25
       end
26 end
  // Result
27
28
  // The Bragg angles and the indices of diffraction
      for the three lowest powder lines are:
29 // d[111] = 3.46 e - 010 and theta [111] = 12 deg 50 min
30 // d[200] = 3.00e - 010 and theta [200] = 14 deg 52 min
31 // d[220] = 2.12e - 010 and theta [220] = 21 deg 17 min
```

Scilab code Exa 8.14 Minimum distance from the centre of the Laue pattern

1 // Scilab code Ex8.14: Minimum distance from the

centre of the Laue pattern of an fcc crystal Page 289 (2010) 2 n = 1; // Consider the first order diffraction

- 3 a = 4.5e-010; // Lattice parameter for fcc lattice, m
- 4 V = 50e+03; // Potential difference across the Xray tube, volt
- 5 D = 5; // Crystal to film distance, cm
- 6 h = 1, k = 1, l = 1; // Incides for the planes of maximum spacing
- 7 lambda_min = 1.24e-06/V; // The cut-off wavelength of X-rays, m
- 8 d_111 = $a/sqrt(h^1+k^2+l^2);$
- 9 theta_111 = asind(n*lambda_min/(2*d_111));
- 10 // As $tan(2*theta_111) = x/D$, solving for x
- 11 x = D*tand(2*theta_111); // // Minimum distance
 from the centre of Laue pattern
- 12 printf("\nThe minimum distance from the centre of the Laue pattern at which reflections can occur from the planes of maximum spacing = %4.2 f cm", x);

```
13 // Result
```

14 // The minimum distance from the centre of the Laue pattern at which reflections can occur from the planes of maximum spacing = 0.48 cm

Scilab code Exa $8.15\,$ Unit cell height along the axis of a rotation photograph

- 1 // Scilab code Ex8.15: Calculating unit cell height along the axis of a rotation photograph Page 291 (2010)
- 2 n = 1; // Consider the first order diffraction of X-rays
- 3 S = [0.29,0.59,0.91,1.25,1.65,2.12]; // An array

```
of heights of first six layers above(below) the
      zero layer, cm
                 // Radius of the camera, cm
4 R = 3;
5 lambda = 1.54e-08; // Wavelength of the X-rays,
      cm
6 // For an a-axis rotation photograph, the unit cell
      parameter is given by
7 // a = n*lambda/S(n)*(R<sup>2</sup> + S(n)<sup>2</sup>)(1/2)
8 // Calculate 'a' for six different values of n from
     1 to 6
9 \text{ for } n = 1:1:6
       a = (n*lambda/S(n))*(R^2 + S(n)^2)(1/2);
10
11 end
12 printf("\nThe unit cell height of the crystal = \%2.0
      f angstrom", a/1D-8);
13
14 // Result
15 // The unit cell height of the crystal = 16 angstrom
```

Scilab code Exa 8.16 Diffraction of thermal neutrons from planes of Ni crystal

```
1 // Scilab code Ex8.16: Diffraction of thermal
neutrons from planes of Ni crystal Page 294
(2010)
2 k = 1.38e-023; // Boltzmann constant, J/mol/K
3 h = 6.626e-034; // Planck's constant, Js
4 theta = 28.5; // Bragg's angle, degree
5 a = 3.52e-010; // Lattice parameter of fcc
structure of nickel, m
6 m_n = 1.67e-027; // Rest mass of neutron, kg
7 // For fcc lattice, the interplanar spacing is given
by
8 d = a/sqrt(3); // Interplanar spacing of Ni, m
9 // Bragg's equation for first order diffraction (n =
```

```
    is
    lambda = 2*d*sind(theta); // Bragg's law, m
    // From kinetic interpretaion of temperature, we have
    // (1/2)*m*v<sup>2</sup> = (3/2)*k*T -- (a)
    // Further from de-Broglie relation
    // lambda = h/(m*v) -- (b)
    // From (a) and (b), solving for T, we have
    T = h<sup>2</sup>/(3*m_n*k*lambda<sup>2</sup>); // Effective temperature of the neutrons, K
    printf("\nThe effective temperature of neutrons = %d K", T);
    // Result
    // The effective temperature of neutrons = 168 K
```

Scilab code Exa 8.17 Diffraction of electrons from fcc crystal planes

```
1 // Scilab code Ex8.17: Diffraction of electrons from
      fcc crystal planes Page 295 (2010)
2 // Declare a function for converting angle into
     degrees and minutes
3 function [d,m] = degree_minute(n)
            d = int(n);
4
5
            m = (n - int(n)) * 60;
6 endfunction
7 h = 6.626e-034; // Planck's constant, Js
8 m = 9.1e-031; // Rest mass of electron, kg
9 e = 1.602e-019; // charge on an electron, coulomb
10 a = 3.5e-010; // Lattice parameter of fcc crystal
   , m
           // Accelerating potential for electrons,
11 V = 80;
     volt
12 lambda = h/sqrt(2*m*e*V); // de-Broglie
     wavelength of electrons, m
13 d_111 = a/sqrt(3); // Interplanar spacing for
```

(111) planes of fcc crystal, m

- 14 // Bragg's equation for first order diffraction (n = 1) is
- 15 // lambda = $2*d_111*sind(theta_111);$ // Bragg's law, m

- 18 printf("\nThe Bragg angle for electron diffraction = % d deg % d min", deg, mint);
- 19 // Result
- 20 // The Bragg angle for electron diffraction = 19 deg 50 min

Chapter 9

Thermal Properties of Materials

Scilab code Exa 9.1 Exception of Dulong Petit law at room temperature

- 1 // Scilab Code Ex9.1 Exception of Dulong-Petit law at room temperature: Page-303(2010)
- 2 h = 6.626e-034; // Planck's constant, joule second
- 3 k = 1.38e-023; // Boltzmann constant, joule/mol/ kelvin
- 4 T = 300; // Room temperature, kelvin
- 6 f_Dia = 2.4e+013; // Vibrational frequency for diamond, cycles/second
- 7 E_Ag = h*f_Ag; // Vibrational Energy for silver, joule
- 9 E_th = k*T; // Thermal energy at room temperature , joule
- 10 if E_th > E_Ag & E_th < E_Dia then
- 11 $printf(" \setminus nSince E_Ag < kT and E_Dia > kT$,

therefore ,");
printf("\nSilver metal obeys the Dulong Petit
law at room temperature while diamond does
not.");
a end
// Result
// Result
// Silver metal obeys the Dulong Petit law at room
temperature while diamond does not.

Scilab code Exa 9.2 Specific heat of copper from Debye temperature

1 // Scilab Code Ex9.2 Specific heat of copper from Debye temperature: Page -311(2010)2 h = 6.626 e - 0.034;// Planck's constant, joule second 3 k = 1.38e - 023;// Boltzmann constant, joule/mol/ kelvin 4 T = 30; // Given temperature, kelvin 5 N = 6.023 e+023; // Avogadro's number 6 R = N * k; // Universal gas constant, joule/kelvin // Longitudinal velocity of $7 v_1 = 4.76e+03;$ lattice waves, m/s 8 v_t = 2.32e+03; // Tranverse velocity of lattice waves, 9 rho = 8.9e+03; // Density of copper, kg per metre cube $10 \quad A_Cu = 63.5;$ // Gram atomic mass of Cu, g 11 M = $A_Cu * 1e - 03;$ // Mass of 1 mole of Cu-atoms, kg 12 V = M/rho; // Volume of copper, metre cube 13 theta_D = $(h/k)*((9*N)/((4*%pi*V)*((1/v_1^3)+(2/v_t)))$ ^3))))^(1/3); // Debye temperature of copper, Κ 14 C_v = 12/5*%pi^4*R*(T/theta_D)^3; // Specific heat of copper, kJ/kmol/kelvin

Scilab code Exa 9.3 Vibrational frequency and molar heat capacity of diamond

```
1 // Scilab Code Ex9.3 Vibrational frequency and molar
      heat capacity of diamond: Page -312(2010)
2 h = 6.626e-034; // Planck's constant, joule
     second
3 k = 1.38e-023; // Boltzmann constant, joule/mol/
     kelvin
4 T = 10;
              // Given temperature, kelvin
5 \text{ N} = 6.023 \text{e}+023; // Avogadro's number
6 R = N*k; // Universal gas constant, joule/kelvin
7 theta_D = 2230; // Debye temperature for diamond,
      kelvin
8 f_D = k*theta_D/h; // Debye frequency of diamond,
      hertz
9 C_v = 12/5*%pi^4*R*1e+03*(T/theta_D)^3;
                                            ____/
      Specific heat of diamond, J/kmol/kelvin
10 printf("\nThe highest possible vibrational frequency
      of diamond = \%4.2e per second", f_D);
11 printf("\nThe molar specific heat of diamond = \%5.3 f
      J/kmol/kelvin", C_v);
12 // Result
13 // The highest possible vibrational frequency of
     diamond = 4.64e+013 per second
14 // The molar specific heat of diamond = 0.175 \text{ J/kmol}
     /kelvin
```

Scilab code Exa 9.4 Debye temperature of copper at low temperature

```
1 // Scilab Code Ex9.4 Debye temperature of copper at
     low temperature: Page -312(2010)
2 k = 1.38e-023; // Boltzmann constant, joule/mol/
     kelvin
3 N = 6.023e+023; // Avogadro's number
4 R = N*k; // Universal gas constant, joule/kelvin
5 C_vl = 4.6e-02; // Lattice specific heat, J/kmol/
     Κ
6 // Lattice specific heat C_v l = Molar lattice
     specific heat, C_v
7 // or 12/5*\% pi^4*R/(5*theta_D^3) = C_v l
8 // \text{ solving for theta}_D, we have
9 theta_D = (12*\%pi^4*R*1e+03/(5*C_vl))^{(1/3)};
                                                  Debye temperature of copper at low temperature, K
10 printf("\nDebye temperature of copper at low
     temperature = \%3d K", theta_D);
11 // Result
12 // Debye temperature of copper at low temperature =
     348 K
```

Scilab code Exa 9.5 Debye temperature for gold

```
1 // Scilab Code Ex9.5 Debye temperature for gold :
	Page-313(2010)
2 h = 6.626e-034; // Planck's constant, Js
3 k = 1.38e-023; // Boltzmann constant, joule/mol/
	kelvin
4 N = 6.023e+023; // Avogadro's number
5 R = N*k; // Universal gas constant, joule/kelvin
6 M = 197e-03; // Gram atomic weight of gold, g
7 rho = 1.9e+04; // Density of gold, kg per metre
	cube
8 V = M/rho; // Volume of gold, metre cube
```

9 v = 2100; // Velocity of sound in gold medium, m/ s 10 theta_D = h*v/k*(9*N/(12*%pi*V))^(1/3); // Debye temperature for gold, K 11 printf("\nDebye temperature of gold = %3d K", theta_D); 12 // Result

13 // Debye temperature of gold = 242 K

Scilab code Exa 9.6 Heat transference into rock salt at low temperature

```
1 // Scilab Code Ex9.6 Heat transference into rock
     salt at low temperature: Page - 313(2010)
2 A = 464;
             // Atomic specific heat of rock salt,
     cal g/mol/kelvin
3 theta_D = 281; // Debye temperature of rock salt,
      Κ
4 delta_T = 10; // Rise in temperature in each
     class interval, K
5 // Define a function which returns lattice specific
     heat at constant volume
6 function [C_vl] = lattice_SH(T)
       C_vl = A*(T/theta_D)^3;
7
8 endfunction
9 Q = 0; // Initialize heat accumulator to zero,
     cal
10 \text{ for } t = 10:10:40
      mean_temp = (t + (t + 10))/2; // Calculate
11
         mean temperature of each class interval, K
       Q = Q + 2*delta_T*lattice_SH(mean_temp); //
12
         Acuumulate heat for each step
13 end
14 printf("\nThe amount of heat required to raise the
     temperature of 2 gmol of Rock salt from 10K to 50
     K = \%5.2 f cal", Q);
```

15 // Result
16 // The amount of heat required to raise the temperature of 2 gmol of Rock salt from $10\mathrm{K}$ to 50 $K = 63.99 \ cal$

Chapter 10

Free Electrons in Crystals

Scilab code Exa 10.1 Particle moving in one dimensional potential well

```
1 // Scilab Code Ex10.1 Particle Moving in One-
     Dimensional Potential Well: Page-328 (2010)
2 a = 10^{-3}; //Separation between the walls of the
      well, m
3 \text{ m} = 10^{-9}; // Mass of the dust particle, kg
4 t = 100; // Average time for successive collisons
     with the wall, s
5 h = 6.626*10<sup>-34</sup>; // Plank's constant, Js
6 v = a/t; // Velocity of the particle inside the
     potential well, m/s
7 E = 1/2*m*v^2; // Kinetic energy of the particle, J
8 // For one-dimensional potential well, the energy
      eigen value is given by
9 //
                 E = h^2 * n^2 / (8 * m * a^2)
10 // Solving for n
11 n = sqrt((8*m*a^2*E)/h^2) // Quantum number
      corresponding to the energy eigen value E
12 disp (n, "The quantum number described by this
      motion is:")
13 // Result
14 // The quantum number described by this motion is:
```

Scilab code Exa 10.2 Motion of a ground state electron in a 3D potential well

```
1 // Scilab Code Ex 10.2 Motion of a ground state
     Electron in a 3-D Potential Well: Page-329 (2010)
2 = 0.5*10^{-10}; // length of the potential box, m
3 h = 6.626*10^{-34}; // Plank's Constant, Js
4 m = 9.1*10^-31; // Mass of an Electron, kg
5 // In 3–D, the three quantum numbers nx, ny and nz
     each will have value equal to 1 for lowest energy
      state
            // Quantum number corresponding to x-
6 \text{ nx} = 1;
     direction
7 ny = 1; // Quantum number corresponding to y-
     direction
8 nz = 1;
             // Quantum number corresponding to z-
     direction
9 EG = h^2*(nx^2+ny^2+nz^2)/(8*m*a^2); // Energy eigen
      value for 3-D potential, J
10 EeV = EG/1.6D-19; // Convert energy from joule to eV
11 disp (EeV, "The lowest energy of an electron
     confined to move in a 3D-potential box, in eV, is
      : ")
12 //Result
13 // The lowest energy of an electron confined to move
      in a 3D-potential box, in eV, is :
14 // 452.30641
```

Scilab code Exa 10.3 Motion of an electron excited next to the ground state in a 3D potential well

- 1 // Scilab Code Ex 10.3 Motion of an Electron excited next to the ground state in a 3-D Potential Well : Page-329 (2010)
- 2 a = 1D-10; // length of the cubic potential box, m
- 3 h = 6.626*10⁻³⁴; // Plank's Constant, Js
- 4 m = $9.1*10^{-31}$; // Mass of an Electron, kg
- 5 k = 1.38D-23; // Boltzmann Constant, J/mol-K
- 6 // In 3-D, the three quantum numbers nx, ny and nz will have values 1, 1 and 2 respectively for first excited energy state
- 7 nx = 1; // Quantum number corresponding to xdirection
- 8 ny = 1; // Quantum number corresponding to ydirection
- 9 nz = 2; // Quantum number corresponding to zdirection
- 10 EE = h^2*(nx^2+ny^2+nz^2)/(8*m*a^2); // Energy eigen
 value for 3-D potential for first excited state,
 J
- 11 // As EE(next to the lowest) = 3/2 (k/T), where T is the absolute temperature
- 12 // Solving for T
- 13 T = 2/3*1/k*EE; // Absolute temperature at which energy next to the lowest energy state = 3/2 (k/T), K
- 14 EeV = EE/1.6D-19; // Convert energy from joule to eV
- 15 disp (EeV, "The first excited state energy of the electron confined to move in a 3D-potential box, in eV, is : ")
- 16 disp (T, "The temperature at which the average energy becomes equal to first excited state energy, in K, is : ")
- 17 //
- 18 //Result
```
20 // 226.15321
21 // The temperature at which the average energy
becomes equal to first excited state energy, in K
, is :
22 // 1748044.1
```

Scilab code Exa 10.4 Degeneracy of energy level

```
1 // Scilab Code Ex 10.4 Degeneracy of Energy Level:
     Page - 332 (2010)
2 // Function to find the factorial of a number
3 function[f] = fact(num)
       f = 1;
4
       for i = 1:1:num
5
           f = f * i;
6
7
       end
8 endfunction
9
10 // Fucntion to determine degenerate energy states
11 function [degstates] = degno(a, b, c)// degno takes
      three arguments
12
       if a == b & b == c then // check if all the
          values are same
13
           degeneracy = 3;
           degstates = fact(3)/fact(degeneracy); //
14
              calculate degenerate states
15
       end
16
       if a == b | b == c | c == a then
                                            // check if
          any two values are equal
           degeneracy = 2;
17
           degstates = fact(3)/fact(degeneracy); //
18
              calculate degenerate states
19
       end
20
       if a ~= b & b ~= c then
                                   // check if all the
          values are different
```

```
21
           degeneracy = 1;
22
           degstates = fact(3)/fact(degeneracy); //
              calculate degenerate states
23
       end
24 endfunction
25 //
26 clc
27 coef = 38; // Coefficient of H^2/(8*m*a^2)
28 \text{ nx} = \text{zeros}(1,5);
                      // Quantum number corresponding
     to x-direction
29 ny = zeros(1, 5);
                     // Quantum number corresponding
     to y-direction
30 \text{ nz} = \text{zeros}(1,5);
                      // Quantum number corresponding
     to z-direction
31 deg = zeros(1,5); // Variable to store the
      degeneracy of states
32 count = 1; // set the counter
33 sum = 0; // initialize the sum
34 // Look for all the possible set of values for nx,
     ny and ny
35 \text{ for } i = 1:1:10
       for j = 1:1:10
36
37
           for k = 1:1:10
         // Check for the condition and avoid
38
            repetition of set of values
               if ((i^2+j^2+k^2==coef) & (i+j+k)> sum)
39
                  then
                    nx(1,count)=i; // Save current i
40
                       value
                    ny(1,count)=j; // Save current j
41
                       value
                    nz(1,count)=k; // Save current k
42
                       value
                    deg(1, count) = degno(i, j, k); //
43
                       Save degeneracy for given set of
                       values
                    count = count + 1; // Increment the
44
                       counter
```

```
sum = i + j + k; // Add the three
45
                        values of quantum numbers
46
                end
            end
47
48
       end
49
  end
50 printf("\nThe %d set(s) of values of quantum number
      are : \langle n^{"}, count-1 \rangle;
51 deg_states = 0; // Intialize the variable
52 \text{ for } i = 1:1:\text{count}-1
       printf("\nx = \%d, ny = \%d, nz = \%d\n", nx(1,i),
53
           ny(1,i), nz(1,i));
54
       deg_states = deg_states + deg(1,i); //
          Accumulate the degeneracy
55 \text{ end}
56
       printf("\nThe given energy level is %d-fold
          degenerate.", deg_states);
57 //Result
58 // The 2 set(s) of values of quantum number are :
59 //
             nx = 1, ny = 1, nz = 6
              nx = 2, ny = 3, nz = 5
60 //
61 // The energy level is 9-fold degenerate
```

Scilab code Exa 10.5 Fermi energy of zinc at absolute zero

```
1 //Scilab Code Ex 10.5 Fermi energy of zinc at
absolute zero: Page-335 (2010)
2 d = 7.13D+3; // Density of Zn, in kg per m cube
3 M = 65.4D-3; // Atomic weight of Zn, kg/mol
4 me = 9.1D-31; // Mass of an electron, kg
5 meff = 0.85*me; // Effective mass of the electron
in zinc, kg
6 v = 2; // valency of divalent (Zn) metal
7 N = 6.023D+23; // Avogadro's Number
8 h = 6.626D-34; //Plank's constant, in Js
```

```
9 n = v*d*N/M; // Number of electrons per unit
     volume
10 Ef = h^2/(2*meff)*(3*n/(8*%pi))^(2/3); //Fermi
     energy in zinc at absolute zero, J
11 EfeV = Ef/1.6D-19; // Fermi energy in eV
                      // Average energy of an
12 Ebar = (3/5) * EfeV;
     electron at OK, eV
13 disp(EfeV," The fermi energy in zinc at absolute zero
     , in eV, is : ");
14 disp(Ebar," The average energy of an electron at OK,
     in eV, is : ");
15 //Result
16 // The fermi energy in zinc at absolute zero, in eV,
     is :
17 // 11.110065
18 // The average energy of an electron at OK, in eV, is
      :
19 // 6.6660389
```

Scilab code Exa 10.6 Electron probability above Fermi energy

```
1 // Scilab Code Ex 10.6 Electron probability above
     Fermi energy: Page-336 (2010)
2 k = 1.38D-23; // Boltzmann constant, in J/mol-K
              // Fermi-Dirac distribution
3 \text{ FD} = 0.10;
     probability for electrons
4 Efermi = 5.5; // Fermi Energy of silver, in eV
5 E = Efermi + 0.01*Efermi; // Allowed energy for
     electrons
6 dE = E - Efermi; //Deviation of allowed energy
    from Fermi energy, in eV
7 DEeV = dE*1.6D-19; // Convert into joule
8 // The Fermi-Dirac distribution function as at any
     temperature T is given by
9 //
                F(E) = FD = 1/(exp((E-Efermi)/kT)+1)
```

```
10 // Solving for T
11 T = DEeV/(k*log(1/FD-1)); // Absolute temperature at
      which result follows, in K
12 disp(DEeV, dE, E);
13 disp(T, "The temperature at which the given
      probability is expected, in K, is :");
14 //Result
15 // The temperature at which the given probability
      is expected, in K, is :
16 // 290.2212
```

Scilab code Exa 10.7 The electroic specific heat of Cu

```
1 // Scilab Code Ex 10.7 The Electroic Specific Heat
     of Cu: Page - 341 (2010)
2 k = 1.38D-23; //Boltzmann constant, in J/mol-K
3 N = 6.023D+23; // Avogadro's Number
4 Efermi = 7.05;
                       // Fermi energy of copper, in
     eV
5 EFeV = Efermi*1.6D-19; // Fermi energy conversion,
     in J
6 T1 = 4;
             //Lower value of temperature, in K
7 T2 = 300; //Upper value of temperature, in K
8 Ce4 = (%pi^2*k^2*T1)/(2*EFeV)*N; // Electronic
      specific heat at 4K, J/mol/K
9 Ce100 = (%pi<sup>2</sup>*k<sup>2</sup>*T2)/(2*EFeV)*N; // Electronic
      specific heat at 100K, J/mol/K
10 disp(Ce4, "The Electronic specific heat at 4K, in J/
     mol/K is :");
11 disp(Ce100, "The Electronic specific heat at 100K,
     in J/mol/K is :");
12 //Result
13 // The Electronic specific heat at 4K, in J/mol/K is
14 / / 0.0020072
```

- $16 \ // \ 0.1505404$

Scilab code Exa 10.8 Electrical resitivity of sodium metal

1 // Scilab Code Ex 10.10 Electron mobility inside conductors : Page - 346 (2010) // Electronic charge, in C 2 = 1.6D - 19;// Eelctronic mass, in kg 3 m = 9.1D - 31;// Electrical resistivity of 4 res = 1.54D-8;silver, in ohm metre 5 E = 100;// Electric field applied along the length of the wire, V/m 6 n = 5.8D+28;// Number of conduction electrons per unit volume, per metre cube 7 mu = 1/(res*n*e); // Mobility of electron through silver, metre square per volt-sec 8 vd = mu * E;// Average drift velocity of electrons, m/s 9 t = mu*m/e;// Relaxation time of the electron , s 10 disp(mu, "The mobility of electron through silver, in metre square per V-s, is : "); 11 disp(vd, "The average drift velocity of electrons, in m/s, is : "); 12 disp(t, "c "); 13 // Result 14 // The mobility of electron through silver, in metre square per V-s, is : 15 // 0.006997316 // The average drift velocity of electrons, in m/s, is : 0.6997313 17 // 18 // The average drift velocity of electrons, in m/s,

is : 19 // 3.980D-14

Scilab code Exa 10.9 Electrical conductivity of Cu

1 // Scilab Code Ex 10.9 Electrical Conductivity of Cu : Page - 345 (2010) 2 e = 1.6D-19; // Electronic charge, C 3 N = 6.023D+23; // Avogardro's number 4 d = 8920; // Density of Copper, kg per metre cube 5 A = 63.5; // Atomic weight of copper, of 6 I = 10; // Current through uniform copper wir , A 7 D = 16D - 4;//Diameter of circular crosssection of copper wire, m // Radius of circular cross-8 R = D/2; section of copper wire, m 9 n = d*N/63.5*1D+3; // The number of electrons per unit volume in copper, per metre cube 10 J = I/(%pi*R^2); // Current density of electrons in copper, ampere per metre square 11 vd = J/(n*e); // Drift velocity of electrons in copper, metre per second 12 disp(J,"The current density of electrons in copper, in ampere per metre square, is : "); 13 disp(vd," The drift velocity of electrons in copper, in metre per second, is : "); 14 //Result 15 //The current density of electrons in copper, in ampere per metre square, is : 16 // 4973592 17 // The drift velocity of electrons in copper, in metre per second, is : 18 // 0.0003674

Scilab code Exa 10.10 Electron mobility inside conductors

1 // Scilab Code Ex 10.10 Electron mobility inside conductors : Page-346 (2010) 2 e = 1.6D - 19;// Electronic charge, in C // Eelctronic mass, in kg 3 m = 9.1D - 31;4 res = 1.54D-8; // Electrical resistivity of silver, in ohm metre 5 E = 100;// Electric field applied along the length of the wire, V/m // Number of conduction electrons 6 n = 5.8D + 28;per unit volume, per metre cube 7 mu = 1/(res*n*e); // Mobility of electron through silver, metre square per volt-sec 8 vd = mu * E;// Average drift velocity of electrons, m/s // Relaxation time of the electron 9 t = mu*m/e; , s 10 disp(mu, "The mobility of electron through silver, in metre square per V-s, is : "); 11 disp(vd, "The average drift velocity of electrons, in m/s, is : "); 12 disp(t, "c "); 13 // Result 14 // The mobility of electron through silver, in metre square per V-s, is : 0.0069973 15 // 16 // The average drift velocity of electrons, in m/s, is : 0.6997313 17 // 18 // The average drift velocity of electrons, in m/s, is : 3.980D-14 19 //

Scilab code Exa 10.11 Lorentz number calculation of a solid

1 // Scilab Code Ex 10.11 Lorentz number calculation of a solid: Page -347 (2010) 2 e = 1.6D-19; // Electronic charge, in C // boltzmann constant, J/mol-K 3 k = 1.38D - 23;4 T = 293;// Absolute temperature of the solid // Thermal conductivity of copper at 293 5 K = 390;K, W/m-K // Lenght of the copper wire, m $6 \ 1 = 0.5;$ 7 d = 0.3D-3; // Diameter of cross-section of Cu, m 8 r = d/2; // Radius of copper wire, m // Resistance of copper wire, ohm 9 R = 0.12;10 // As $R = 1/con * l/(\%pi * r^2)$ 11 // Solving for R 12 con = $1/(\text{pi} + r^2 + R)$; // Conductance of copper, per ohm per metre 13 // The Lorentz number is defined as the ratio of the Thermal conductivity to the 14 // Electrical conductivity of a solid per degree rise in temperature // Experimental value of 15 Lexp = K/(con*T); Lorentz number, watt ohm per kelvin square 16 Lth = $\frac{16}{2/3*(k/e)^2}$; // Theoretical value of Lorentz number value, watt ohm per kelvin square disp(Lexp,"The experimetal value of Lorentz number, 17in watt ohm per kelvin square, is :"); 18 disp(Lth,"The theoretical value of Lorentz number, in watt ohm per kelvin square, is :"); 19 printf("\nThe theoretical value of Lorentz number is % f times higher than the experimental one.n, Lth/Lexp); 20 // Result

```
21 // The experimetal value of Lorentz number, in watt
ohm per kelvin square, is :
22 // 2.258D-08
23 // The theoretical value of Lorentz number, in watt
ohm per kelvin square, is :
24 // 2.447D-08
25 // The theoretical value of Lorentz number is times
higher than the experimental one.
26 // 1.083817
```

Scilab code Exa 10.12 Increase in electrical resistivity of a metal with temperature

```
1 // Scilab Code Ex 10.12 Increase in electrical
     resistivity of a metal with temperature: Page - 349
      (2010)
2 function [res] = final_res(T)
      alpha = 0.0001;
                       // Temperature co-efficient
3
         of resistance
      resi = 0;
                       // Initial resistivity of the
4
         nichrome which is an arbitray
5
      //constant and can be taken to be zero
6 res = resi + alpha*T; // Final resistivity of the
      nichrome as function of T
7 endfunction
            // Initial temperature of nichrome, K
8 T1 = 300;
9 T2 = 1000; // Final temperature of nichrome, K
10 res300 = final_res(T1); // Final resistivity of the
     nichrome at 300 K
11 res1000 = final_res(T2); // Final resistivity of the
      nichrome at 1000 K
12 percent_res = (res1000 - res300)*100;
                                            Percentage increase in resistivity
13 printf("\nThe percentage increase in the resistivity
      of nichrome is %d percent", percent_res);
```

Scilab code Exa 10.13 Thermionic emission of a filament

1 // Scilab Code Ex 10.13 Thermionic emission of a filament: Page-352 (2010) 2 e = 1.6D-19; // Electronic charge, C // Mass of the electron , kg 3 m = 9.1D - 31;4 k = 1.38D-23; // Boltzmann constant, J/mol-K 5 h = 6.626D-34; // Plank's constant, Js 6 W = 4.5; // Work function of tungsten filament, eV 7 D = 1D-4; // Diameter of the filament, m 8 r = D/2; // Radius of the filament, m 9 T = 2400; // Temperature of the filament, K 10 l = 0.05; // Length of the filament, m 11 A = 4*%pi*e*m*k^2/h^3; // A constant expressed in ampere per metre square 12// per kelvin square // Surface area of the 13 a = 2*%pi*r*l; filament, meter square 14 J = $A*T^2*exp(-e*W/(k*T));$ // Electronic current density of the filament, // ampere per metre 15square 16 I = a * J; // Electric current due to thermionic emission, ampere 17 disp(I," The electric current due to thermionic emission, in A, is : "); 18 // Result 19 // The electric current due to thermionic emission, in A, is : 20 // 0.0392404

Scilab code Exa 10.14 Hall coefficient of sodium based on free electron model

- 1 // Scilab Code Ex 10.14 Hall coefficient calculation of sodium based on free electron model: Page-353 (2010)
- 2 e = 1.6D-19; // Electronic charge, C 3 a = 4.28D-10; // lattice parameter (side) of the unit cell of sodium crystal, m
- // Number of atoms per unit cell in 4 N = 2;bcc structure of sodium
- // Number of electrons per unit volume $5 n = N/a^{3};$ for the sodium crystal, per metre cube
- 6 RH = -1/(n*e); // Hall coefficient of sodium, metre cube per coulomb
- 7 disp(RH,"The Hall coefficient of sodium, in metre cube per coulomb, is : ");
- 8 // Result
- 9 // The Hall coefficient of sodium , in metre cube per coulomb, is :
- 10 // -2.450D-10

Chapter 11

Band Theory

Scilab code Exa 11.2 Ratio between kinetic energy of an electron in 2D square lattice

1 // Scilab Code Ex11.2 Determining ratio between K.E. of an electron in 2D square lattice: Page - 370(2010)2 h = 6.626e-034; // Planck's constant, Js 3 m = 9.1e-031; // Mass of an electron, kg 4 a = 1; // For simplicity assuming lattice parameter to be unity, m 5 // Case-I when $k_x = k_y = \% pi/a$ 6 k_x = %pi/a, k_y = %pi/a; // Wave numbers in Xand Y- directions, rad per metre 7 E1 = $h^2/(8*\%pi^2*m)*(k_x^2 + k_y^2);$ // Energy of the electron inside a Brilliouin Zone, J 8 // Case-II when $k_x = \% pi/a$ and $k_y = 0$ 9 k_x = \prise{pi} , k_y = 0; // Wave numbers in X- and Y - directions, rad per metre 10 E2 = h^2/(8*%pi^2*m)*(k_x^2 + k_y^2); // Energy of the electron inside a Brilliouin Zone, J 11 E_ratio = E1/E2; // Ratio between K.E. of an electron in 2D square lattice 12 printf("\nThe ratio between K.E. of an electron in 2

```
D square lattice = %1d", E_ratio);
13 // Result
14 // The ratio between K.E. of an electron in 2D
square lattice = 2
```

Chapter 13

Semiconducting Properties of Materials

Scilab code Exa 13.3 Intrinsic concentration of charge carriers in semiconductors

```
1 // Scilab Code Ex13.3 Intrinsic concentration of
      charge carriers in semiconductors: Page-432
      (2010)
2 k = 1.38e-023; // Boltzmann constant, J/mol/K
3 h = 6.626e-034; // Planck's constant, Js
4 eV = 1.6e-019; // Joule equivalent of 1 eV
5 T = 300; // Room temperature, kelvin
6 \text{ m_0} = 9.1 \text{e-031}; // Rest mass of an electron, kg
7 m_e = 0.12*m_0; // Effective mass of electron, kg
8 \text{ m_h} = 0.28 \text{ m_0}; // Effective mass of electron, kg
9 E_g = 0.67; // Energy gap of Ge, eV
10 n_i = 2*(2*%pi*k*T/h^2)^(3/2)*(m_e*m_h)^(3/4)*exp(-
     E_g*eV/(2*k*T)); // Intrinsic carrier
      concentration of Ge, per metre cube
11 printf("\nThe intrinsic carrier concentration of Ge
     = %3.1e per metre cube", n_i);
12 // Result
13 // The intrinsic carrier concentration of Ge = 4.7 e
```

Scilab code Exa 13.4 Comparison of intrinsic carrier densities of two semiconductors

```
1 // Scilab Code Ex13.4 Comparison of intrinsic
      carrier densities of two semiconductors at room
      temperature Page-433 (2010)
2 eV = 1.6e-019; // Joule equivalent of 1 eV
3 m = 9.1e-031; // Rest mass of an electron, kg
4 m_e = m; // Effective mass of electron, kg
               // Effective mass of electron, kg
5 m_h = m;
6 Eg_A = 0.36; // Energy gap of A, eV
7 Eg_B = 0.72; // Energy gap of B, eV
8 k = 1.38e-023; // Boltzmann constant, J/mol/K
9 h = 6.626e-034; // Planck's constant, Js
                       // Planck's constant, Js
10 k_T = 0.052/2; // Thermal energy, eV
11 // As n_{i} ratio = ni_{A}/ni_{B} = exp(-Eg_{A}/(2*k_{T}))/exp
      (-Eg_{-}A/(2*k_{-}T))
12 n_i_ratio = \exp(-Eg_A/(2*k_T))/\exp(-Eg_B/(2*k_T));
         // Intrinsic carrier density ratio of A and B
13 printf("\nThe ratio of intrinsic carrier density =
      %4d ", n_i_ratio);
14 // Result
15 // The ratio of intrinsic carrier density = 1015
```

Scilab code Exa 13.5 Shift in fermi level with change in concentration of impurities

```
1 // Scilab Code Ex13.5 Shift in position of fermi
level with change in concentration of impurities:
        Page-436 (2010)
2 k_T = 0.03; // Thermal energy, eV
```

- 3 dE_Fv = 0.4; // Energy difference between fermi level and topmost valence level, eV
- 4 // The hole concentration in P-type material is
- 5 // p = N_A = N_v * exp(-EF-Ev) / (k_T) = N_v * exp(-dE_Fv) / (k_T)
- 6 // The new value of hole concentration in P-type material is
- 7 // p_prime = $3*N_A = N_v*exp(-EF_prime-Ev)/(k_T) = N_v*exp(-dE_F_primev)/(k_T)$
- 8 // Solving for dE_F_primev by removing exponetial term
- 9 dE_F_primev = dE_Fv k_T*log(3); // Energy difference between new fermi level and topmost valence level, eV
- 11 // Result
- 12 // The energy difference between new fermi level and topmost valence level = 0.367 eV

Scilab code Exa 13.6 Electrical resistivity of Ge

```
1 // Scilab Code Ex13.6 Electrical resistivity of Ge:
	Page-439 (2010)
2 e = 1.602e-019; // Charge on an elctron, C
3 n_i = 2.37e+019; // Intrinsic carrier density of
	Ge at room temperature, per metre cube
4 mu_e = 0.38; // Mobility of electrons, metre
	square per volt per second
5 mu_h = 0.18; // Mobility of holes, metre square
	per volt per second
6 T = 300; // Room temperature, kelvin
7 sigma_i = n_i*e*(mu_e + mu_h); // Intrinsic
	electrical conductivity, per ohm per metre
```

```
8 rho_i = 1/sigma_i; // Intrinsic electrical
    resistivity, ohm-metre
0 printf(")pThe intrinsic electrical resistivity =
```

```
9 printf("\nThe intrinsic electrical resistivity = %4
    .2f ohm-metre", rho_i);
```

- 10 // Result
- 11 // The intrinsic electrical resistivity = 0.47 ohmmetre

Scilab code Exa 13.7 Electrical conductivity of intrinsic and extrinsic Si

```
1 // Scilab Code Ex13.7 Electrical conductivity of
     intrinsic and extrinsic Si: Page-439 (2010)
2 NA = 6.023e+23; // Avogadro's number
3 A_Si = 28.09e-03; // Kilogram atomic mass of Si,
     kg
4 e = 1.602e-019; // Charge on an elctron, C
5 n_impurity = 1/1e+08; // Donor impurity atoms per
     Si atom
6 n_i = 1.5e+016; // Intrinsic carrier density of
     Si at room temperature, per metre cube
7 mu_e = 0.13; // Mobility of electrons, metre
     square per volt per second
8 mu_h = 0.05; // Mobility of holes, metre square
     per volt per second
9 T = 300;
            // Room temperature, kelvin
10 sigma_i = n_i*e*(mu_e + mu_h); // Intrinsic
     electrical conductivity, per ohm per metre
11 Si_density = 2.23e+03; // Density of silicon, kg
     per metre cube
12 N_Si = NA * Si_density/A_Si; // Number of Si
     atoms, per metre cube
13 N_D = N_Si*n_impurity; // Density of donor
     impurity, per metre cube;
14 sigma_ext = ceil(N_D)*e*mu_e; // Extrinsic
     electrical conductivity of Si, per ohm per metre
```

Scilab code Exa 13.8 Resistance of intrinsic Ge Rod

```
1 // Scilab Code Ex13.8 Resistance of intrinsic Ge Rod
     : Page - 440 (2010)
2 e = 1.602e-019; // Charge on an elctron, C
3 T = 300;
                 // Room temperature, kelvin
               // Length of the Ge rod, m
4 \ 1 = 1e - 02;
                // Width of the Ge rod, m
5 b = 1e - 03;
                // Thickness of the Ge rod, m
6 t = 1e - 03;
7 n_i = 2.5e+019; // Intrinsic carrier density of
     Ge, per metre cube
8 mu_e = 0.39; // Mobility of electrons, metre
     square per volt per second
9 mu_h = 0.19; // Mobility of holes, metre square
     per volt per second
10 sigma_i = n_i*e*(mu_e + mu_h); // Intrinsic
     electrical conductivity, per ohm per metre
11 A = b*t;
            // Surface area of the Ge rod, metre
     square
12 rho = 1/sigma_i; // Electrical resistivity of Ge
     Rod, ohm-metre
                // Resistance of Ge Rod, ohm
13 R = rho*1/A;
14 printf("\nThe resistance of Ge Rod = \%3.1e ohm", R);
15 // Result
16 // The resistance of Ge Rod = 4.3 e+003 ohm
```

Scilab code Exa 13.9 Hall effect in Si semiconductor

```
1 // Scilab Code Ex13.9 Hall effect in Si
     semiconductor: Page-442 (2010)
2 e = 1.602e - 019;
                    // Charge on an elctron, C
3 T = 300;
                  // Room temperature, kelvin
4 R_H = -7.35e-05; // Hall co-efficient of Si
     specimen, metre cube per coulomb
5 sigma = 200; // Electrical conductivity of Si,
     per ohm per metre
                  // Electron density in the Si
6 n = -1/(e * R_H);
     specimen
7 mu_e = sigma/(n*e); // Electron mobility in the
     Si specimen, metre cube per volt per second
  printf("\nThe density of electron = \%3.1e metre cube
8
     ", n);
  printf("\nThe mobility of electron = \%4.2e metre
9
     cube per volt per second", mu_e);
10 // Result
11 // The density of electron = 8.5e+022 metre cube
12 // The mobility of electron = 1.47e - 002 metre cube
     per volt per second
```

Scilab code Exa 13.10 Forward current of a pn diode using diode equation

1	// Scilab Code Ex13.10 Forward current of a p-n
	diode in terms of reverse saturation current
	using diode equation: $Page-450$ (2010)
2	e = 1.6e-019; // Charge on an electron, coulomb
3	k = 1.38e-023; // Boltzmann constant, J/mol/K
4	V = 0.35; // Potential difference applied across
	a Ge diode, volt

5 T = 300; // Room temperature, kelvin 6 Io = 1; // Reverse saturation current, microampere, for simplicity assume I0 = 1 7 Iv = Io*(exp(e*V/(k*T))-1); // "Diode Equation" for net forward current, milliamperes 8 printf("\nThe net forward current = %4.2e Io", Iv); 9 // Result 10 // The net forward current = 7.49e+005 Io

Scilab code Exa 13.11 Voltage from net forward current using Diode Equation

1 // Scilab Code Ex13.11 Finding voltage from net forward current using Diode Equation: Page-450 (2010)2 e = 1.6e-019; // Charge on an electron, coulomb 3 k = 1.38e-023; // Boltzmann constant, J/mol/K4 T = 300;// Room temperature, kelvin // Reverse saturation current, micro-5 Io = 1;ampere, for simplicity assume I0 = 16 Iv = 0.9*Io; // "Diode Equation" for net forward current, milliamperes 7 // As Iv = Io * (exp(e*V/(k*T)) - 1), solving for V 8 V = log(Iv/Io+1)*k*T/e; // Potential difference applied across p-n junction, volt 9 printf("\nThe potential difference applied across pn junction = $\%6.4 \, \text{f}$ volt", V); 10 // Result 11 // The potential difference applied across p-n junction = 0.0166 volt

Chapter 14

Dielectric Properties of Materials

Scilab code Exa 14.1 Polarization of water molecule

```
1 // Scilab Code Ex14.1 Polarization of water molecule
     : Page - 456 (2010)
2 NA = 6.023e+23; // Avogadro's number
3 p = 6e-030; // Dipole moment of water molecule, C
     –m
4 r = 1e-03; // Radius of water molecule, m
5 M = 18e-03;
                    // Molecular weight of water, kg
6 d = 1e+03; // Density of water, kg per metre cube
            // Volume of water, metre cube
7 V = M/d;
8 // Now M/d metre cube volume will contain NA = 6.023
     e+023 water molecules, so that 4*\% pi/3*(r^3)
     metre cube volume will contain
                               // Number of water
9 N = NA*d*4*%pi*r^3/(M*3);
     molecules per metre cube
10 P = N * p;
             // Polarization of water molecules,
     coulomb per metre square
11 printf("\nThe polarization of water molecules = \%3.1
     e coulomb per metre square", P);
12 // Result
```

13 // The polarization of water molecules = 8.4e-010coulomb per metre square

Scilab code Exa 14.2 Dielectric constant from electric polarizability of the atom

- 1 // Scilab Code Ex14.2 Calculating dielectric constant from electric polarizability of the atom : Page-464 (2010)
- 2 alpha_Kr = 2.18e-040; // Electric polarizability of the Kr-atom, farad-metre square
- 3 NA = 6.023e+023; // Avogadro's number
- 4 epsilon_0 = 8.85e-012; // Electrical permittivity
 of free space, coulomb square per newton per
 metre square
- 5 N = NA/(22.4e-03); // Number of Kr atoms per metre cube
- 6 epsilon_r = N*alpha_Kr/epsilon_0 + 1; // Relative electrical permittivity of Kr specimen
- 7 printf("\nThe diectric constant of Kr specimen = %7
 .5 f", epsilon_r);
- 8 // Result
- 9 // The diectric constant of Kr specimen = 1.00066

Scilab code Exa 14.3 Electric polarizability of a molecule from its susceptibility

```
1 // Scilab Code Ex14.3 Calculating electric
    polarizability of a molecule from its
    susceptibility: Page-464 (2010)
2 NA = 6.023e+023; // Avogadro's number
```

- 3 epsilon_0 = 8.85e-012; // Electrical permittivity of free space, coulomb square per newton per metre
- 4 chi = 0.985e-03; // Electrical susceptibility of carbon-dioxide molecule
- 5 rho = 1.977;// Density of carbon-dioxide, kg per metre cube
- 6 M = 44e-03; // Molecular weight of CO2, kg
- 7 N = NA*rho/M; // Number of molecules per unit volume, per metre cube
- 8 alpha = epsilon_0*chi/N; // Total electric polarizability of carbon-dioxide, farad-metre square
- 9 printf("\nThe total electric polarizability of carbon-dioxide = %4.2e farad-metre square", alpha);
- 10 // Result
- 11 // The total electric polarizability of carbondioxide = 3.22 e - 040 farad-metre square

Scilab code Exa 14.4 Electric polarizability of oxygen atom

1 // Scilab Code Ex14.4 Calculating electric polarizability of Oxygen atom: Page-465 (2010) 2 e = 1.602e-019; // Charge on an electron, coulomb 3 p = 0.5e-022; // Dipole moment of oxygen atom, Cm 4 d = 4e-017; // Distnace of the centre of negative charge cloud from the nucleus, m 5 epsilon_0 = 8.85e-012; // Electrical permittivity of free space, coulomb square per newton per metre 6 // In equilibrium, Coulomb interaction = Lorentz force 7 // i.e. $8 * e * E = (8 * e) * (8 * e) / (4 * \% pi * e p silon_0 * d^2)$

```
8 // Solving for E
9 E = 8*e/(4*%pi*epsilon_0*d^2); // The strength of
local electric field, volt per metre
10 // As p = alpha*E, solving for alpha
11 disp(E);
12 alpha = p/E; // Atomic polarizability of oxygen,
farad-metre square
13 printf("\nThe atomic polarizability of oxygen = %3.1
e farad-metre square", alpha);
14 // Result
15 // The atomic polarizability of oxygen = 6.9e-048
farad-metre square
```

Scilab code Exa 14.5 Dipolar polarization of HCl molecule

1 // Scilab Code Ex14.5 Dipolar polarization of HCl molecule: Page-470 (2010) 2 k = 1.38e-023; // Boltzmann constant, J/mol/K // Temperature of the HCl vapour, kelvin 3 T = 300;4 N = 1e+027; // Number of HCL molecuels per unit volume, per metre cube 5 E = 1e+06;// Electric field strength to which the HCL vapour is subjected, volt/m 6 p = 3.46e - 0.30;// The dipole moment of HCl molecule, C-m 7 alpha_d = p^2/(3*k*T); // Dipolar polarizability of HCl molecule, farad-metre square 8 // As $P = N*p = N*alpha_d*E$ 9 $P = N*alpha_d*E;$ // Orientational or Dipolar polarization of HCl molecule, coulomb per metre square $10 \ E_M = p * E;$ // Magnetic energy stored in the dipole-field system, joule 11 $E_Th = k*T;$ // Thermal energy of the HCl molecule , joule

```
12 a = E_M/E_Th; // Ratio of magnetic energy to the
thermal energy
13 printf("\nThe orientational polarization of
molecules in HCl vapour = %4.2e coulomb per metre
square", P);
14 printf("\nThe ratio of magnetic energy to the
thermal energy = %f << 1", a);
15 // Result
16 // The orientational polarization of molecules in
HCl vapour = 9.64e-007 coulomb per metre square
17 // The ratio of magnetic energy to the thermal
energy = 0.000836 << 1</pre>
```

Scilab code Exa 14.6 Effect of molecular deformation on polarizability

```
1 // Scilab Code Ex14.6 Effect of molecular
     deformation on polarizability: Page-471 (2010)
2 alpha_309 = 2.42e-039;
                             // Polarizability of
     ammonia molecule at 309 K, farad-metre square
3 alpha_448 = 1.74e-039; // Polarizability of
     ammonia molecule at 448 K, farad-metre square
                   // Boltzmann constant, J/mol/K
4 k = 1.38e - 023;
               // First temperature of the experiment,
5 T1 = 309;
      kelvin
6 T2 = 448;
                // Second temperature of the experiment
      , kelvin
  // As alpha = alpha_i + alpha_d = alpha_i + p^2/(3*k)
7
     *T) = alpha_i + bta/T
8 // where bta = p^2/(3*k)
9 // Thus alpha_309 = alpha_i + bta/309 and alpha_448
     = alpha_i + bta/448
10 // Solving for bta
11 // bta(1/309 - 1/448) = alpha_309 - alpha_448
12 bta = poly(0, "bta");
13 bta = roots(bta*(1/309 - 1/448) - alpha_309 +
```

alpha_448); // bta = $p^2/(3*k)$, farad-kelvin metre square

- 14 // Solving for alpha_i
- 15 alpha_i = alpha_309 bta/309; // Polarizability
 due to permanent dipole moment, farad-metre
 square
- 16 // Polarizability due to deformation of molecules = bta/T, $bta = p^2/(3*k)$

- 20 printf("\nThe orientational polarization of ammonia at 309 K = %4.2e farad-metre square", alpha_d_309);
- 21 printf("\nThe orientational polarization of ammonia at 448 K = %4.2e farad-metre square", alpha_d_448);
- 22 // Result
- 23 // The polarizability due to permanent dipole moment = 2.3e-040 farad-metre square
- 24 // The orientational polarization of ammonia at 309 K = 2.19e-039 farad-metre square
- 25 // The orientational polarization of ammonia at 448 K = 1.51e-039 farad-metre square

Chapter 15

Optical Properties of Materials

Scilab code Exa 15.1 Photon count from Planck quantum law

```
1 // Scilab Code Ex15.1 Determining Photon number by
     using Planck quantum law: Page-486 (2010)
2 h = 6.626e-034; // Planck's constant, Js
3 f = 1760e+03;
                 // Frequency of the radio
    transmitter, Hz
4 P = 10e+03; // Power of radio transmitter, W
5 E = h * f;
             // Energy carried by one photon from
    Planck's law, J
6 N = P/E;
              // Number of photons emitted per second,
     number per second
7 printf("\nThe number of photons emitted per second =
     %4.2e", N);
8 // Result
9 // The number of photons emitted per second = 8.58e
    +030
```

Scilab code Exa 15.2 Inicient energy of photon in photoelectric effect

```
1 // Scilab Code Ex15.2 Finding suitable energy for
      Photoelectric Effect from Na metal: Page-486
      (2010)
2 e = 1.602e-019; // Charge on an electron, C
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3.0e+08; // Speed of light in vacuum, m/s
             // Work function of Na metal, J
5 W = 2.3 * e;
6 lambda = 2800e-010; // Wavelength of incident
      light, m
7 f = c/lambda; // Frequency of the incident light,
      Hz
8 E = h*f; // Energy carried by one photon from
     Planck's law, J
9 printf("\nThe energy carried by each photon of
      radiation = \%4.2 \text{ f eV}", E/e);
10 if E > W then
       printf("\nThe photoelectric effect is possible ...
11
          ");
12 else
       printf("\nThe photoelectric effect is impossible
13
          ..");
14 end
15 // Result
16 // The energy carried by each photon of radiation =
      4.43 eV
17 // The photoelectric effect is possible..
```

Scilab code Exa 15.3 photon count for green wavelength of Hg

```
1 // Scilab Code Ex15.3 Finding number of photons for
green wavelength of Hg: Page-487 (2010)
2 h = 6.626e-034; // Planck's constant, Js
3 c = 3.0e+08; // Speed of light in vacuum, m/s
4 lambda = 496.1e-09; // Wavelength of green light
of mercury, m
```

5 E_total = 1; // Work done by photons from green light, J 6 f = c/lambda; // Frequency of the green light, Hz 7 E = h*f; // Energy carried by one photon from Planck's law, J 8 N = E_total/E; // Number of photons of green light of Hg 9 printf("\nThe number of photons of green light of Hg = %3.1e", N); 10 // Result 11 // The number of photons of green light of Hg = 2.5e +018

Scilab code Exa 15.4 Photoelectric effect in a photocell

1 // Scilab Code Ex15.4 Photoelectric effect in a photocell: Page-487 (2010) 2 e = 1.602e-019; // Charge on an electron, C 3 h = 6.626e-034; // Planck's constant, Js 4 c = 3.0e+08; // Speed of light in vacuum, m/s 5 lambda = 1849e-010; // Wavelength of incident light, m // Stopping potential for emitted $6 \quad V_0 = 2.72;$ electrons , V 7 f = c/lambda; // Frequency of incident radiation , Hz 8 E = h*f; // Energy carried by one photon from Planck's law, J $9 \text{ T_max} = e * V_0;$ // Maximum kinetic energy of electrons, J 10 // We have, $T_{max} = E - h * f_0 = h * f - W$ 11 $f_0 = poly(0, "f_0");$ // Declare f_0 as variable 12 $f_0 = roots(T_max - E + h*f_0);$ // Threshold frequency for Cu metal, Hz 13 W = h*f_0/e; // Work function of Cu metal, eV

```
14 printf("\nThe threhold frequency for Cu metal = %4.2
e Hz", f_0);
15 printf("\nThe work function of Cu metal = %g eV",
    round(W));
```

- 16 printf("\nThe maximum kinetic energy of photoelectrons = %4.2 f eV", T_max/e);
- 17 // Result
- 18 // The threhold frequency for Cu metal = 9.65e+014 Hz
- 19 // The work function of Cu metal = 4 eV
- 20 // The maximum kinetic energy of photoelectrons = 2.72 eV

Scilab code Exa 15.5 Energy required to stimulate the emission of Na doublets

```
1 // Scilab Code Ex15.5 Energy required to stimulate
    the emission of Na d-lines: Page-497 (2010)
2 e = 1.6e-019; // Charge on an electron, C
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3.0e+08; // Speed of light in vacuum, m/s
 lambda_mean = 5893e-010; // Wavelength of
5
     incident light, m
6 delta_E = h*c/(lambda_mean*e); // The energy of
     the electron which must be transferred to the
     atoms of Na
7 printf("\nThe energy which must be transferred to
     stimulate the emission of Na d-lines = \%5.3 \text{ f eV}",
     delta_E);
8 // Result
9 // The energy which must be transferred to stimulate
     the emission of Na d-lines = 2.108 eV
```

Chapter 16

Magnetic Properties of Materials

Scilab code Exa 16.1 Response of copper to magnetic field

1 // Scilab Code Ex16.1 Response of Cu to magnetic field: Page-503 (2010) 2 H = 1e+06;// Applied magnetic field in copper, A/m 3 chi = -0.8e-05; // Magnetic susceptibility of copper 4 mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, henry/metre // Intesity of magnetization in copper 5 M = chi * H;, A/m 6 B = mu_0*(H + M); // Magnetic flux density in copper , tesla 7 printf("\nThe magnetization of copper = %d A/m", M); 8 printf("\nThe magnetic flux density of copper = %5.3f T", B); 9 // Result 10 // The magnetization of copper = -8 A/m 11 // The magnetic flux density of copper = 1.257 T

Scilab code Exa 16.2 Diamagnetic susceptibility of copper

1 // Scilab Code Ex16.2 Diamagnetic susceptibility of copper: Page -512 (2010) 2 = 1.6e-019; // Charge on an electron, C 3 m = 9.1e-031; // Mass of an electron, kg 4 mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, henry/metre // Number of electrons contributing to the 5 Z = 1;magnetic moment 6 r = 1e-010; // Radius of copper atom, m 7 a = 3.608e-010; // Lattice parameter of copper, m 8 // For FCC lattice of Cu, there are 4 atoms per unit cell 9 n = 4; // Number of atoms per unit cell 10 N = n/a^3; // Number of electrons per unit volume , per metre cube 11 chi_dia = -mu_0*Z*e^2*N*r^2/(6*m); // Diamagnetic susceptibility of copper 12 printf("\nThe diamagnetic susceptibility of copper = %3.1e", chi_dia); 13 // Result 14 // The diamagnetic susceptibility of copper = -5.0e-006

Scilab code Exa 16.3 Magnetic induction from orientational energy equivalent of thermal energy

1 // Scilab Code Ex16.3 Calculating magnetic induction from orientational energy equivalent of thermal energy: Page-514 (2010)

2 k = 1.38e-023; // Boltzmann constant, joule per mole per kelvin $3 \text{ mu}_B = 9.27 \text{e} - 024;$ // Bohr's magneton, joule per tesla 4 mu_m = 5*mu_B; // Magnetic moment of paramagnetic sample, joule per tesla 5 T = 300; // Thermal energy of specimen, joule 6 // At equilibrium, mu_m*B = k*T, solving for B // Magentic induction of 7 B = $k*T/mu_m$; paramagnetic sample, weber per metre square 8 printf("\nThe magentic induction of paramagnetic sample = %5.2 f weber per metre square", B); 9 // Result 10 // The magentic induction of paramagnetic sample = 89.32 weber per metre square

Scilab code Exa 16.4 Behaviour of paramagnetic salt when placed in uniform magnetic field

- 1 // Scilab Code Ex16.4 Behaviour of paramagnetic salt when placed in uniform magnetic field: Page-514 (2010)
- 2 k = 1.38e-023; // Boltzmann constant, joule per mole per kelvin
- 3 T = 300; // Thermal energy of specimen, joule
- 4 mu_B = 9.27e-024; // Bohr's magneton, ampere per metre square
- 5 mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, henry per metre
- 6 N = 1e+28; // Concentration of paramagnetic ions in paramagnetic salt, per metre cube

```
7 \text{ mu_m} = \text{mu_B};
```

```
8 H = 1e+06; // Applied magnetic field, A/m
```

9 chi = mu_0*N*mu_m^2/(3*k*T); // Paramagnetic susceptibility of salt at room temperature

- 10 M = chi*H; // Intensity of magnetization at room temperature, A/m
- 11 printf("\nThe paramagnetic susceptibility of salt at room temperature = %3.1e", chi);
- 12 printf("\nThe intensity of magnetization of salt = %d A/m", round(M));
- 13 // Result
- 14 // The paramagnetic susceptibility of salt at room temperature = 8.7 e 005
- 15 // The intensity of magnetization of salt = 87 A/m

Chapter 17

Superconductivity

Scilab code Exa 17.1 Variation of critical magnetic field with temperature

1 // Scilab Code Ex17.1 Variation of critical magnetic field with temperature Page-537 (2010) 2 T_c = 3.7; // Critical temperature of superconducting transition, kelvin 3 H_cO = 0.0306; // Critical magnetic field to destroy superconductivity, tesla 4 T = 2; // Temperature at which critical magnetic field is to be found out, kelvin 5 H_cT = H_cO*(1-(T/T_c)^2); 6 printf("\nThe critical magnetic field at %d K = %f T ", T, H_cT); 7 // Result 8 // The critical magnetic field at 2 K = 0.021659 T

Scilab code Exa 17.2 Temperature variation of critical magnetic field for tin

1 // Scilab Code Ex17.2 Variation of critical magnetic field with temperature for tin Page-537 (2010)
- 2 T_c = 3.69; // Critical temperature of superconducting transition, kelvin
- 3 B_c0 = 3e+5/(4*%pi); // Critical magnetic field intensity to destroy superconductivity at zero kelvin, tesla
- 4 B_cT = 2e+5/(4*%pi); // Critical magnetic field at temperature T kelvin
- 5 // T = 2; // Temperature at which critical magnetic field is to be found out, kelvin
- 6 // since B_cT = B_c0*(1-(T/T_c)^2); // Critical magnetic field intensity as a function of temperature
- 7 // Solving for T
- 8 T = sqrt(1-B_cT/B_c0)*T_c; // Temperature at which critical magnetic field becomes B_cT, kelvin
- 9 printf("\nThe temperature at which critical magnetic field becomes %4.2 e T = %4.2 f K",B_cT,T); // Display result
- 10 // Result
- 11 // The temperature at which critical magnetic field becomes 1.59 e+04 T = 2.13 K

Scilab code Exa 17.3 Critical current for a lead wire from its critical temperature

- 1 // Scilab Code Ex17.3 Calculating critical current for a lead wire from critical temperature of lead Page -537 (2010)
- 2 T_c = 7.18; // Critical temperature of superconducting transition for Pb, kelvin
- 3 H_cO = 6.5e+4; // Critical magnetic field intensity to destroy superconductivity at zero kelvin, A/m
- 4 T = 4.2; // Temperature at which critical

```
magnetic field becomes H_cT, kelvin
5 d = 1e-03; // Diameter of lead wire, m
6 H_cT = H_cO*(1-(T/T_c)^2);; // Critical magnetic
field intensity at temperature T kelvin, A/m
7 I_cc = %pi*d*H_cT; // Critical current through the
lead wire, A
8 printf("\nThe critical current through the lead wire
= %6.2 f A", I_c);
9
10 // Result
11 // The critical current through the lead wire =
134.33 A
```

Scilab code Exa 17.4 Dependence of London penetration depth on temperature

```
1 // Scilab Code Ex17.4 Dependence of London
     penetration depth on temperature Page-548 (2010)
                 // Avogadro's number
2 N = 6.02e + 023;
3 rho = 13.55e+03; // Density of mercury, kg per
     metre cube
4 M = 200.6e-03; // Molecular mass of mercury, kg
                        // Penetration depth of
5 \ lambda_T = 750e-010;
     mercury at T kelvin, m
6 T_c = 4.12;
                // Critical temperature of
     superconducting transition for Hg, kelvin
            // Temperature at which penetration
7 T = 3.5;
     depth for Hg becomes lambda_T, kelvin
8 lambda_0 = lambda_T*(1-(T/T_c)^4)^{(1/2)};
                                                11
     Penetration depth of mercury at 0 kelvin, m
9 n_0 = N*rho/M; // Normal electron density in
     mercury, per metre cube
                             // Superelectron density
10 n_s = n_0 * (1 - (T/T_c)^4);
      in mercury, per metre cube
11 printf("\nThe penetration depth at 0 \text{ K} = \%4.2 \text{ em}",
```

lambda_0);

- 12 printf("\nThe superconducting electron density = %4
 .2e per metre cube", n_s);
- 13
- 14 // Result
- 15 // The penetration depth at 0 K = 5.19e 008 m
- 16 // The superconducting electron density = 1.95e+028 per metre cube