Scilab Textbook Companion for Fluidization Engineering by K. Daizo And O. Levenspiel¹

Created by Subash G B.Tech Chemical Engineering SASTRA University College Teacher Dr. P.R.Naren Cross-Checked by

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fluidization Engineering
Author: K. Daizo And O. Levenspiel
Publisher: Butterworth-Heinemann, Massachusetts
Edition: 2
Year: 1991
ISBN: 81-312-0035-3

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
3	Fluidization and Mapping of Regimes	6
4	The Dense Bed	14
5	Bubbles in Dense Beds	22
6	Bubbling Fluidized Beds	26
7	Entrainment and Elutriation from Fluidized Beds	38
8	High velocity Fluidization	48
9	Solid Movement Mixing Segregation and Staging	54
10	Gas Dispersion and Gas Interchange in Bubbling Beds	61
11	Particle to Gas Mass and Heat Transfer	69
12	Conversion of Gas in Catalytic Reactions	80
13	Heat Transfer between Fluidized Beds and Surfaces	92
14	The RTD and Size Distribution of Solids in Fluidized Beds	100
15	Circulation Systems	110
16	Design for Physical Operations	120

17 Design of Catalytic Reactors	132
18 The Design of Noncatalytic Gas Solid Reactors	145

List of Scilab Codes

· · · · · · · · ·	7 9 10 14 17 19 22
· · · · · · ·	9 10 14 17 19 22
· · · · · · · · · · · · · · · · · · ·	10 14 17 19 22
· · · · · ·	14 17 19 22
· · · · ·	17 19 22
 	19 22
 	22
	23
	26
	27
	30
	32
	36
bard	38
bard	39
of	
	40
	42
	43
	46
	48
	54
	56
	58
	61
	62

Exa 10.3	Compare Interchange Rates for Adsorbed and Nonad-	66
$\mathbf{F}_{\mathbf{m}}$ 11.1	Solded Gases	00
Exa 11.1	Bed Model	69
Exa 11.2	The Effect of m on Bubble Emulsion Interchange	71
Exa 11.3	Fitting Reported Heat Transfer Data with the Bubbling	
	Bed Model	74
Exa 11.4	Heating a Particle in a Fluidized Bed	76
Exa 12.1	Fine Particle Geldart A Bubbling Bed Reactor	80
Exa 12.2	Commercial Sized Phthalic Anhydride Reactor	82
Exa 12.3	Bubbling Bed Reactor for Intermediate Sized Reactor	85
Exa 12.4	Reaction in the Slow Bubble Regime	87
Exa 12.5	Conversion in the Freeboard of a Reactor	89
Exa 13.1	h on a Horizontal Tube Bank	92
Exa 13.2	Effect of Gas Properties on h	94
Exa 13.3	Effect of Particle Size on h	96
Exa 13.4	Freeboard Heat Exchange	97
Exa 14.1	Flow with Elutriation	100
Exa 14.2	Flow with Elutriation and Change in Density of Solids	102
Exa 14.3	Single Size Feed of Shrinking Particles	105
Exa 14.4	Wide Size Distribution of Shrinking Particle	106
Exa 14.5	Elutriation and Attrition of Catalyst	107
Exa 15.1	Circulation Rate when Deactivation Controls	110
Exa 15.2	Circulation Rate when Heat Duty Controls	111
Exa 15.3	Aeration of Fine Particle Downcomer	113
Exa 15.4	Circulation in Side by Side Beds	115
Exa 15.5	Steam Seal of a Coarse Particle Downcomer	117
Exa 16.1	Single Stage Limestone Calciner	120
Exa 16.2	Multistage Limestone Calciner	122
Exa 16.3	Multistage Adsorber	125
Exa 16.4	Dryer Kinetics and Scale up	126
Exa 16.5	Solvent Recovery from Polymer Particles	128
Exa 17.1	Reactor Development Program	132
Exa 17.2	Design of a Commercial Acrylonitrile Reactor	137
Exa 17.3	Reactor Regenerator with Circulating Catalyst Catalytic	
	Cracking	139
Exa 18.1	Kinetics of Zinc Blende Roasting	145
Exa 18.2	Kinetics of Carbon Burning	146

Exa 18.3	Roasting Kinetics from Flowing Solids Data	148
Exa 18.4	Scale up of a Reactor with Flowing Solids	150
Exa 18.5	Design of a Roaster for Finely Ground Ore	153
Exa 18.6	Design of a Roaster for Coarse Ore	158

List of Figures

10.1	Estimate Interchange Coefficients in Bubbling Beds	64
11.1	Fitting Reported Mass Transfer Data with the Bubbling Bed Model	72
11.2	Fitting Reported Heat Transfer Data with the Bubbling Bed Model	77
14.1	Flow with Elutriation and Change in Density of Solids	105

Chapter 3

Fluidization and Mapping of Regimes

Scilab code Exa 3.1 Size Measure of Nonuniform Solids

```
1\ //\,Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter -3, Example 1, Page 68
4 // Title: Size Measure of Nonuniform Solids
5 //
6 clear
7 clc
8
9 //INPUT
10 weight = [0;60;150;270;330;360];// Weight in grams
      for the oversized particles
11 psize = [50;75;100;125;150;175]; //PSD in micrometers
12
13 //CALCULATION
14 len = length(psize); // To obtain the size of input
```

```
array
15 // Computation of sauter mean diameter for the given
      PSD
16 i = 1;
17 while i<len
18
           dpi(i)=(psize(i,:)+ psize(i+1,:))/2;
           weightf(i)=(weight(i+1)-weight(i))/weight(6)
19
             ;
           dp(i)=weightf(i)/dpi(i);
20
21
           i = i + 1;
22 end
23 dpbar=1/sum(dp);//Calculation of average particle
     daimeter Eq.(15)
24
25 //OUTPUT
26 mprintf('\n The Sauter mean diameter of the material
      with the given particle size distribution = \%f
     micrometer ', dpbar);
27
                     END OF PROGRAM
28 / =
```

Scilab code Exa 3.2 Estimation of Minimum Fluidizing Velocity

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-3, Example 2, Page 76
4 //Title: Estimation of Minimum fluidizing velocity
5 //
```

```
6 clear
7 clc
8
9 //INPUT
10 ephsilon=0.55; //Void fraction of bed
11 rhog=0.0012; //Density of gas in g/cc
12 myu=.00018; // Viscosity of gas in g/cm s
13 dpbar=0.016;//Mean diameter of solids in centimeter
14 phis=0.67; // Sphericity of solids
15 rhos=2.6;//Density of solids in g/cc
16 g=980; // Acceleration due to gravity in square cm/s^2
17
18 //CALCULATION
19 //Computation of umf using the simplified equation
     for small particles
20 umf=((dpbar^2)*(rhos-rhog)*g*(ephsilon^3)*(phis^2))
     /(150*myu*(1-ephsilon));//Simplified equation to
      calculate minimum fluidizing velocity for small
      particles Eq.(21)
21 Re=(dpbar*umf*rhog)/myu;//To calculate Reynolds
     number for particle
22
23 //Computation of umf if neither void fraction of bed
      nor sphericity is known
24 c1=28.7; c2=0.0494; //Value of constants from Table
     4, page 70
25 umf1=(myu/(dpbar*rhog))*(((c1^2)+((c2*(dpbar^3)*rhog
     *(rhos-rhog)*g)/(myu^2)))^0.5-c1);//Equation to
      calculate minimum fluidizing velocity for coarse
      particles Eq.(25)
26 err=((umf-umf1)/umf)*100;//Calculation of error from
      experimental value
27
28 //OUTPUT
29 if Re<20 then
       mprintf('\nThe particle Reynolds no = \%f', Re)
30
31
       printf('\nThe simplified equation used for
          calculating minimum fluidizing velocity is
```

```
valid.');
32 end
33 mprintf('\nThe minimum fluidizing velocity by
    simplified equation for small particles = %fcm/s',
    umf);
34 mprintf('\nThe minimum fluidizing velocity by
    equation for coarse partiles = %fcm/s', umf1);
35 mprintf('\nThis value is %f percent below the
    experimentally reported value.',err);
36
37 //______END OF PROGRAM
```

Scilab code Exa 3.3 Estimation of Terminal Velocity of Falling Particles

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter -3, Example 3, Page 82
4 // Title: Estimation of terminal velocity of falling
     particles
5
  6 clear
7 clc
8
9 //INPUT
10 rhog=1.2e-3;//Density of air in g/cc
11 myu=1.8e-4//Viscosity of air in g/cm s
12 dpbar=0.016//Mean diameter of solids in centimeter
13 phis=0.67;//Sphericity of solids
```

```
14 rhos=2.6; //Density of solids in g/cc
15 g=980//Acceleration due to gravity in square cm/s<sup>2</sup>
16
17 //CALCULATION
18 dpstar=dpbar*((rhog*(rhos-rhog)*g)/myu^2)^(1/3);//
      Calculation of dimensionless particle size Eq
      (31)
19 utstar=((18/(dpstar<sup>2</sup>))+(2.335-(1.744*phis))/(dpstar
     ^0.5))^-1;//Calculation of dimensionless gas
      velocity Eq.(33)
20 ut=utstar*((myu*(rhos-rhog)*g)/rhog^2)^(1/3);//
      Calculation of terminal velocity of falling
      particles Eq.(32)
21
22
23 / OUTPUT
24 mprintf('\nThe dimensionless particle size = \%f',
     dpstar);
25 mprintf('\nThe dimensionless gas velocity = \%f',
     utstar);
26 mprintf('\nThe terminal velocity of falling
      particles = \%fcm/s', ut);
27
                           END OF PROGRAM
28 //=
```

Scilab code Exa 3.4 Prediction of Flow Regimes

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-3, Example 4, Page 91
```

```
13
```

```
4 //Title: Prediction of flow regime
5 //
6 clear
7 clc
8
9 //INPUT
10 rhos=1.5; //Density of Solid in g/cc
11 uo1=40; uo2=80; // Superficial gas velocity in cm/s
12 dp1=0.006; dp2=0.045; // Particle size in centimeter
13 rhog1=1.5E-3; rhog2=1E-3; //Density of gas in g/cc
14 myu1=2E-4; myu2=2.5E-4; //Viscosity of air in g/cm s
15 g=980; // Acceleration due to gravity in square cm/s^2
16
17 //CALCULATION
18 //for smaller particles
19 dpstar1=dp1*((rhog1*(rhos-rhog1)*g)/myu1^2)^(1/3);//
      Calculation of dimensionless particle diamter Eq.
      (31)
20 uostar1=uo1*((rhog1^2)/((myu1)*(rhos-rhog1)*g))
      (1/3);
21 uostar2=uo2*((rhog1^2)/((myu1)*(rhos-rhog1)*g))
     ^(1/3);//Calculation of dimensionless superficial
      gas velocity Eq.(32)
22
23 //for larger particles
24 dpstar2=dp2*((rhog2*(rhos-rhog2)*g)/myu2^2)^(1/3);//
      Calculation of dimensionless particle diamter Eq
      (31)
25 uostar3=uo1*((rhog2^2)/((myu2)*(rhos-rhog2)*g))
     (1/3);
26 uostar4=uo2*((rhog2^2)/((myu2)*(rhos-rhog2)*g))
     ^(1/3);//Calculation of dimensionless superficial
      gas velocity Eq.(32)
27
28
29 //OUTPUT
```

- 30 printf('\nFor particle of size %f centimeter',dp1);
- 31 mprintf('\nThe dimensionless particle diameter = %f'
 ,dpstar1);
- 32 mprintf('\nThe dimensionless superficial gas
 velocity = %fcm/s(for superficial gas velocity of
 %fcm/s)',uostar1,uo1);
- 33 mprintf('\nThe dimensionless superficial gas
 velocity = %fcm/s(for superficial gas velocity of
 %fcm/s)',uostar2,uo2);
- 35 mprintf('\nFor Superficial gas velocity =%f \nMode of Fluidization:Onset of turbulent fluidization in an ordinary bubbling bed',uo1);
- 36 mprintf('\nFrom Fig.16(page 89)comparing u = % f vs dp = % f', uostar2, dpstar1);
- 37 mprintf('\nFor Superficial gas velocity =%f \nMode of Fluidization:Fast fluidization(requires a circulating solid system)',uo2);
- 38 printf('\n\nFor particle of size %f centimeter',dp2)
- 39 mprintf('\nThe dimensionless particle diameter = %f'
 ,dpstar2);
- 40 mprintf('\nThe dimensionless superficial gas
 velocity = %fcm/s(for superficial gas velocity of
 %fcm/s)',uostar3,uo1);
- 41 mprintf('\nThe dimensionless superficial gas
 velocity = %fcm/s(for superficial gas velocity of
 %fcm/s)',uostar4,uo2);
- 42 mprintf('\n\nFrom Fig.16(page 89)comparing u*=%f vs dp*=%f',uostar3,dpstar2);
- 43 mprintf('\nFor Superficial gas velocity =%f \nMode of Fluidization: Bublling Fluidization',uo1);
- 44 mprintf('\nFrom Fig.16(page 89)comparing u* =%f vs dp* =%f',uostar4,dpstar2);
- 45 mprintf('\nFor Superficial gas velocity =%f \nMode of Fluidization:Bubbling Fluidization',uo2);
- 46
- 47 // END OF PROGRAM

Chapter 4

The Dense Bed

Scilab code Exa 4.1 Design of a Perforated Plate Distributor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-4, Example 1, Page 106
4 //Title: Design of a Perforated Plate Distributor
5 //
```

```
6 clear
7 clc
8
9 //INPUT
10 dt=4;//Vessel diameter in m
11 Lmf=2;//Length of the bed in m
12 ephsilonmf=0.48;//Void fraction of bed
13 rhos=1500;//Density of solid in kg/m^3
14 rhog=3.6;//Density of gas in kg/m^3
15 myu=2E-5;//Viscosity of gas in kg/m s
16 po=3;//Pressure of inlet gas in bar
17 uo=0.4;//Superficial velocity of gas in m/s
```

```
18 uorm=40; //Maximum allowable jet velocity from holes
      in m/s
19 g=9.80; // Acceleration due to gravity in m/s^2
20 gc=1;
21 pi=3.1428;
22
23 //CALCULATION
24 //Computation of minimum allowable pressure drop
      through the distributor
25 deltapb={(1-ephsilonmf)*(rhos-rhog)*g*Lmf}/gc;//
      Calculation of pressure drop in bed using Eqn
      (3.17)
26 deltapd=0.3*deltapb; // Calculation of pressure drop
      in distributor using Eqn.(3)
27
28 //Computation of orifice coefficient
29 Ret=(dt*uo*rhog)/myu;
30 if
         Ret >= 3000 then Cd = 0.60;
             Ret >= 2000 then Cd = 0.61;
31 elseif
32 elseif
             Ret >= 1000 then Cd = 0.64;
33 elseif
             Ret >= 500 then Cd = 0.68;
34 elseif
             Ret >= 300 then Cd = 0.70;
35 elseif
             Ret >= 100 then Cd = 0.68;
36 end
37
38 //Computation of gas velocity through orifice
39 uor=Cd*((2*deltapd)/rhog)^0.5;//Calculation of gas
      velocity through orifice by using Eqn.(12)
40 f=(uo/uor)*100;//Calculation of fraction of open
      area in the perforated plate
41
42
43 //Computation of number of orifices per unit area of
       distributor
44 dor=[0.001;0.002;0.004];//Different orifice
      diameters in m
45 n=length(dor);
46 i=1;
```

```
47 while i<=n
       Nor(i)=(uo*4)/(pi*uor*(dor(i))^2);//Calculation
48
          of number of orifices by using Eqn.(13)
49
       i = i + 1;
50 \text{ end}
51
52 //OUTPUT
53 mprintf('\nThe pressure drop in bed:%fPa',deltapb);
54 mprintf('\nThe minimum allowable pressure drop in
      distributor:%fPa',deltapd);
  if uor<uorm then mprintf('\nThe gas veleocity of %fm
55
      /s is satisfactory',uor);
56
       else mprintf('\nThe gas veleocity of %fm/s is
          not satisfactory ',uor);
57 end
58 if f<10 then mprintf('\nThe fraction of open area of
       %f percent is allowable',f);
       else mprintf('\nThe fraction of open area of %f
59
          percent is not allowable',f);
60 end
61 printf('\nDiameter of orifice(m)');
62 printf('\tNumber of orifices per unit area(per sq.m)
      '):
63 j=1;
64 while j<=n
65
       mprintf('\n%f',dor(j));
66
       mprintf(' \setminus t \setminus t\%f', Nor(j));
67
       j = j + 1;
68 end
69 printf('\nThis number can be rounded off.');
70 printf('\nSince orifices that are too small are
      liable to clog and those that are too large cause
       uneven distribution of gas, we choose orifice of
       diameter %fm',dor(2));
71
                                         END OF PROGRAM
72 / =
```

Scilab code Exa 4.2 Design of a Tuyere Distributor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 4, Example 2, Page 108
4 //Title: Design of a Tuyere Distributor
5 //
6 clear
7 clc
8
9 //INPUT
10 lor=0.1; //Minimum allowable tuyere spacing in m
11 uorm=30;//Maximum allowable jet velocity from the
      tuyere in m/s
12 uo=0.4;//Superficial velocity of gas in m/s
13 uor=30.2; //Gas velocity through orifice, from Exa 1,
     in m/s
14 Cd=0.6; // Dicharge coefficient from Exa 1
15 rhog=3.6//Density of gas in kg/m^3
16 pi=3.1428;
17
18 //CALCULATION
19 Nor=1/(lor^2);//Calculation of number of orifices
     per unit area by assuming minimum spacing for
     tuyeres
20 dor={(4/pi)*(uo/uor)*(1/Nor)}^0.5;//Calculation of
     diameter of inlet orifiec by using Eqn.(13)
21
22 //Computation of diameter of hole for different
```

```
number of holes per tuyere
23 q=(lor^2)*uo;//Volumetric flow rate in m<sup>3</sup>/s
24 Nh=[8;6;4];//Different number of holes per tuyere
25 n=length(Nh);
26 i=1;
27 while i<=n
       dh(i)=((((q/Nh(i))*(4/pi))/uorm)^0.5);//
28
          Calculation of diameter of holes
       i = i + 1;
29
30 end
31 deltaph=(rhog/2)*((uor/Cd)^2);
32
33 //OUTPUT
34 printf('\nNumber of holes(number of holes/tuyeres)')
35 printf('\tDiameter of hole(m)');
36 j=1;
37 while j<=n
       mprintf(' \setminus n\%f', Nh(j));
38
       mprintf(' \setminus t \setminus t \setminus t \setminus t\%f', dh(j));
39
       j = j + 1;
40
41 end
42 printf('\nThe design chosen is as follows');
43 printf('\n\tTuyeres are as shown in Fig.2(b), page 97
      ');
44 mprintf('\n\tNumber of holes = \%f(Since rectangular
      pitch is chosen for tuyeres)', Nh(2));
45 mprintf('\n\tDiameter of hole = \%fm',dh(2));
46 mprintf('\n\tDiameter of incoming high-pressure-drop
       orifice = %fm ID', dor);
47 printf('\nChecking the pressure drop in tuyeres');
48 mprintf('\nSince pressure drop of %fPa gives
      sufficiently high distributor pressure drop as
      seen in Exa.1, use of inlet orifice can be
      dispensed.',deltaph);
49
                                          END OF PROGRAM
50 / =
```

Scilab code Exa 4.3 Power Requirement for a Fluidized Coal Combustor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-4, Example 3, Page 110
```

```
4 // Title: Power Requirement for a Fluidized Coal
Combustor (FBC)
```

```
5 //
```

```
6 clear
7 clc
8
9 //INPUT
10 deltapd=[3;10] // Distributor pressure drop in kPa
11 deltapd2=10;//Distributor pressure drop in kPa
12 po=101; // Entering air pressure in kPa
13 To=20; //Entering air temperature in degree C
14 y=1.4; // Fugacity of air
15 deltapb=10; // Pressure drop in bed in kPa
16 p3=103; // Pressure at the bed exit in kPa
17 F=8;//Feed rate of coal in tons/hr
18 H=25; //Gross heatig value of coal in MJ/kg
19 Fa=10; // Air required at standard condition in nm<sup>3</sup>/
      kg
20 etac=0.75; // Efficiency of compressor
  etap=36;//Efficiency of plant in %
21
22
  //CALCULATION
23
24 //Calculation of volumetric flow rate of air
```

```
25 vo=((F*1000)*Fa*((To+273)/273))/3600;
26
27
  //Case(a) Distributor Pressure drop = 3kPa and Case(
     b) Distributor Pressure drop = 10kPa
28 n=length(deltapd);
29 i=1:
30 while i<=n
       p2(i)=p3+deltapb;//Calculation of pressure at
31
          the entrance of the bed
       p1(i)=p2(i)+deltapd(i);//Calculation of pressure
32
           before entering the bed
       ws(i) = (y/(y-1)) * po * vo * ((p1(i)/po)^{((y-1)/y)} - 1)
33
          *(1/etac);//Calculation of power required for
           the compressor by Eqn.(18) & Eqn.(20)
34
       i = i + 1;
35 end
36
  //Case(c) 50% of the required bypassed to burn the
37
      volatile gases. Distributor Pressure drop = 3kPa
  //No change in pressure drop from case(a)
38
39 v1=vo/2; //New volumetric flow rate of air
40 ws1=ws(1)/2;//Power required for blower for primary
      air
41 ws2=(y/(y-1))*po*v1*((p3/po)^((y-1)/y)-1)*(1/etac);
      //Power required for blower for bypassed air
42 wst=ws1+ws2;//Total power required for the two
      blowers
43 p=((ws(1)-wst)/ws(1))*100; //Saving in power when
      compared to case(a)
44
45 //OUTPUT
46 printf(' \ nCase(a)');
47 mprintf('\n\tVolumetric flow rate of air = \%f m<sup>3</sup>/hr
      ', vo);
48 mprintf('\n\tPower required for compressor = \%f kW',
      ws(1));
49 printf(' \ nCase(b)');
50 mprintf('\n\tVolumetric flow rate of air = \%f m<sup>3</sup>/hr
```

',vo);

- 51 mprintf('\n\tPower required for compressor = %f kW',
 ws(2));
- 52 printf($' \ nCase(c)'$);
- 53 mprintf('\n\tVolumetric flow rate of air = %f m^3/hr ',v1);
- 55 mprintf('\n\tPower required for blower for bypassed air = %f kW',ws2);

```
58
```

59 //=

END OF PROGRAM

Chapter 5

Bubbles in Dense Beds

Scilab code Exa 5.1 Characteristics of a Singe Bubble

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-5, Example 1, Page 126
4 //Title: Charactersitics of a Single Bubble
5 //
```

```
6 clear
7 clc
8
9 //INPUT
10 dt=60;//ID of tube in cm
11 dp=300;//Size of particles of bed in micrometers
12 umf=3;//Velocity at minimum fluidization condition
in cm/s
13 ephsilonmf=0.5;//Void fraction of bed at minimum
fluidization condition
14 db=5;//Diameter of bubble in cm
15 g=980;//Acceleration due to gravity in cm/s^2
```

```
16
17 //CALCULATION
18 //Computation of rise velocity of bubble
19 if (db/dt) <0.125 then ubr=(0.711*((g*db)^0.5));//
     Rise velocity by Eqn.(3)
20 elseif (db/dt) <0.6 then ubr=(0.711*((g*db)^0.5))
     *1.2*exp(-1.49*(db/dt));//Rise velocity by Eqn
     . (4)
21 end
22
23 //Computation of cloud thickness
24 Rb=db/2;//Radius of bubble
25 uf=umf/ephsilonmf;//Velocity of emulsion gas
26 Rc=Rb*((ubr+(2*uf))/(ubr-uf))^(1/3);//Radius of
     cloud by Eqn.(6)
27
28 //OUTPUT
29 mprintf('\nThe rise velocity of the bubble=%fcm/s',
     ubr);
30 mprintf('\nThe cloud thickness=%fcm', Rc-Rb);
31 mprintf('\nFrom Fig.8(page 124)comparing fw vs dp,
     for dp = \% f micrometer, wake fraction = 0.24', dp)
     ;
32
                          END OF PROGRAM
33 / =
```

Scilab code Exa 5.2 Initial Bubble Size at a Distributor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
```

 $\mathbf{2}$

```
3 // Chapter -5, Example 2, Page 132
4 // Title: Initial Bubble Size at a Distributor
5 //
6 clear
7 clc
8
9 //INPUT
10 uo=15; // Superificial gas velocity in cm/s
11 umf=1; ////Velocity at minimum fluidization condition
      in cm/s
12 lor=2; // Pitch of perforated plate in cm
13 g=980; // Acceleration due to gravity in cm/s^2
14 //CALCULATION
15 //Case(a) For porous plate
16 dbo1=(2.78/g)*(uo-umf)^2; //Initial bubble size using
      Eqn. (19)
17
18 //Case(b) For Perforated plate
19 Nor=(2/sqrt(3))*(1/lor)^2;//Number of orifices in cm
     ^{-2}
20 dbo2=(1.30/(g^0.2))*((uo-umf)/Nor)^0.4; //Initial
     bubble size using Eqn.(15) assuming inital bubble
      size is smaller than hole spacing
21
22 //OUTPUT
23 printf('\nCase(a) For porous plate');
24 printf('\n\tInitial bubble size=%fcm',dbo1);
25 printf('\nCase(b) For Perforated plate');
26 printf('\n\tInitial bubble size=%fcm',dbo2);
27 printf('\ tSince %f<%f, the equation used is
     correct.',dbo2,lor);
28
29 //=
                              END OF PROGRAM
```

Chapter 6

Bubbling Fluidized Beds

Scilab code Exa 6.1 Bubble Size and Rise Velocity in Geldart A Beds

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-6, Example 1, Page 150
4 //Title: Bubble Size and Rise Velocity in Geldart A
Beds
5 //
```

```
16 dor=2; // Diameter of orifice in mm
17 lor=20;//Pitch of perforated plate in mm
18 g=9.80; //g=980; //Acceleration due to gravity in m/s
      ^{2}
19
20 //CALCULATION
21 //Method 1. Procedure using Eqn.(10) & Eqn.(11)
22 db=(0.035+0.040)/2;//Bubble size at z=0.5m from Fig
      .7(a) & Fig.7(b)
23 ub1=1.55*((uo-umf)+14.1*(db+0.005))*(dt^0.32)
     +0.711*(g*db)^0.5; //Bubble velocity using Eqn
     (10) & Eqn. (11)
24
25 //Method 2. Werther's procedure
26 si=0.8; //From Fig.6 for Geldart A solids
27 ub2=si*(uo-umf)+(3.2*(dt^(1/3)))*(0.711*(g*db)^0.5);
     //Bubble velocity using Eqn.(9)
28
29 //OUTPUT
30 printf('\nMethod 1. Procedure using Eqn.(10) & Eqn
      .(11)');
31 mprintf('\n\tDiameter of the bubble=%fm',db);
32 mprintf('\n\tRise velocity of the bubble=%fm/s',ub1)
      ;
33 printf('\nMethod 2. Werthers procedure');
34 mprintf('\n\tDiameter of the bubble=%fm',db);
35 mprintf('\n\tRise velocity of the bubble=%fm/s',ub2)
     ;
36
                                      END OF PROGRAM
37 / =
```

Scilab code Exa 6.2 Bubble Size and Rise Velocity in Geldart B Beds

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 6, Example 2, Page 151
4 // Title: Bubble Size and Rise Velocity in Geldart B
     Beds
5 //
6 clear
7 clc
8
9 //INPUT
10 z=0.5; //Height of bed in m
11 dt=0.5; //ID of tube in m
12 rhos=2.6; //Density of catalyst in g/cm<sup>3</sup>
13 dpbar=100;//Averge catalyst diameter in micrometer
14 umf=0.01;//Velocity at minimum fluidization
      condition in m/s
15 uo=0.45; // Superficial velocity in m/s
16 dor=2;//Diameter of orifice in mm
17 lor=30;//Pitch of perforated plate in mm
18 g=9.80; // Acceleration due to gravity in m/s^2
19 pi=3.142857;
20
21 //CALCULATION
22 //Part(a).Bubble Size
23 Nor=(2/sqrt(3))*(1/lor^2);
24 dbo=5.5;
25
26 //Method 1.Werther's procedure for finding bubble
      size
27 	z1 = [0;5;10;20;30;50;70];
28 n = length(z1);
29 i=1;
30 while i<=n
       db(i)=0.853*((1+0.272*(uo-umf)*100)^(1/3))
31
```

```
*(1+0.0684*z1(i))^1.21;
32
       i=i+1;
33 end
34 db1=0.163; //Since bubble size starts at dbo=5.5cm at
       z=0, we shift the curve accordingly to z=0.5m
35
36 //Method 2. Mori and Wen's procedure for finding
      bubble size
37 dbm=0.65*((pi/4)*((dt*100)^2)*(uo-umf)*100)^0.4;
38 db2=dbm-(dbm-dbo)*exp(-0.3^(z/dt));
39
40 //Part(b).Bubble Velocity
41 //Method 1. Procedure using Eqn. (12)
42 ub1=1.6*((uo-umf)+1.13*db1^0.5)*(dt^1.35)+(0.711*(g*
      db1)^0.5);
43
44 //Method 2.Werther's Procedure
45 si=0.65;
46 ub2=si*(uo-umf)+2*(dt^0.5)*(0.711*(g*db1)^0.5);
47
48 / / \text{Using Eqn.}(7) \& \text{Eqn.}(8)
49 ubr1=0.711*(g*db1)^0.5;
50 ubr2=0.711*(g*db2/100)^0.5
51 ub3=uo-umf+ubr1;
52 \text{ ub4}=uo-umf+ubr2;}
53
54 //OUTPUT
55 printf('\nBubble Size');
56 mprintf('\nInitial bubble size from Fig.5.14 for \%fm
      /s = \%fcm',uo-umf,dbo);
57 printf('\n\n\tMethod 1.Werthers procedure for
      finding bubble size');
58 printf('(n)t\tHeight of bed(cm)');
59 printf(' t t t subble size(cm)');
60 \text{ m} = \text{length}(z1);
61 j=1;
62 while j<=m
       mprintf(' \setminus n \setminus t \setminus t\%f', z1(j));
63
```

```
mprintf(' \setminus t \setminus t \setminus t\%f', db(j));
64
65
       j = j + 1;
66
  end
  printf('\n\n\tMethod 2. Mori and Wens procedure for
67
      finding bubble size');
68 mprintf('\n\t\tMaximum expected bubble size=%fcm',
      dbm);
69 mprintf('\n\t\tBubble size=%fcm',db2);
70 printf('\nBubble Velocity');
71 printf('\n\tMethod 1. Procedure using Eqn.(12)');
72 mprintf('\n\t\ubble velocity=\%fm/s',ub1);
73 printf('\n\n\tMethod 2. Werthers procedure');
74 mprintf('\hlower{tbubble} velocity=%fm/s',ub2);
75 printf('\nComparing the above results with the
      expressions of the simple two-phase theory');
76 printf('\n\tWerthers bubble size');
77 mprintf('\tBubble rise velocity=%fm/s\tBubble
      v = locity = \% fm/s', ubr1, ub3);
78 printf('\n\tMori & Wens bubble size');
79 mprintf('\tBubble rise velocity=%fm/s\tBubble
      v e locity = \% fm/s', ubr2, ub4);
80
                             END OF PROGRAM
81 //=
```

Scilab code Exa 6.3 Scale down of a Commercial Chlorinator

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
    MA, pp 491
2
```

```
//Chapter - 6, Example 3, Page 153
3
```

```
4 // Title: Scale-down of a Commercial Chlorinator
```

5 //

```
6 clear
7 clc
8
9 //INPUT
10 dpbar=53; // Average particle size in micrometer
11 s=[1;2]; // Size of Bermuda rock in cm
12 rhosbar=3200; // Average solid density of the coke-
      zircon mixture in kg/m<sup>3</sup>
13 ephsilonm=0.5; //Void fraction for fixed bed
14 ephsilonf=0.75;//Void fraction for bubbling bed
15 rhogbar=0.64; // Average density of gas in kg/m<sup>3</sup>
16 uo=14; // Superficial gas velocity in cm/s
17 myu=5E-5; // Viscosity of gas in kg/m s
18 T=1000; // Temperature in degree C
19 P=1; // Pressure in atm
20 dt=91.5; //ID of bed in cm
21 sh=150; //Slumped height in cm
22
23 //CALCULATION
24 rhog2=1.2; // Density of ambient air
25 myu2=1.8E-5; // Viscosity of ambient air
26 rhos2=rhog2*(rhosbar/rhogbar);//For the requirement
      of constant density ratio
27 m=((rhogbar*myu2)/(rhog2*myu))^(2/3);//Scale factor
     by usin Eqn.(16)
  u2=(m^0.5)*uo;//Superficial gas velocity by using
28
     Eqn. (17)
29 //OUTPUT
30 printf('\nFor the model use');
31 mprintf('\n\tBed of ID %fcm\n\tSlumped bed height of
       %fcm\n\tPacked bed distributor consisting of %f-
     %fmm rock ', m*dt, m*sh, m*s(1), m*s(2));
32 mprintf('\nFluidizing gas: ambient air at %fatm',P);
33 mprintf('\nSolids: \tzirconia, Average particle size
     =%fmicrometers ',m*dpbar);
```

```
34 mprintf('\nEntering gas:\tSuperficial velocity=%fcm/
     s',u2);
35
                          END OF PROGRAM
36 //=
  Scilab code Exa 6.4 Reactor Scale up for Geldart A Catalyst
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 6, Example 4, Page 159
4 // Title: Reactor Scale-up for Geldart A Catalyst
5 //
6 clear
7 clc
8
9 //INPUT
10 dtb=20;//ID of bench-scale reactor
11 dtp=1;//ID of pilot reactor
12 dpbar=52; // Average particle size in micrometer
13 ephsilonm=0.45;//Void fraction for fixed bed
14 ephsilonmf=0.50;//Void fraction at minimum
      fluidization condition
15 ephsilonmb=0.60; //Void fraction
16 uo=30; // Superficial gas velocity in cm/s
17 Lmb=2; //Length of fixed bed in m
18 umf=0.33; // Velocity at minimum fluidization
     condition in cm/s
19 umb=1;//Velocity at in cm/s
```
```
20 db=3; // Equilibrium bubble size in cm
21 g=9.80; // Acceleration due to gravity in m/s^2
22 pi=3.142857;
23
24 //CALCULATION
25 ubr=0.711*(g*db/100)^0.5; //Rise velocity of bubble
     using Eqn.(7)
26
27 //Bubble velocity for the bench unit
28 ubb1=1.55*(((uo-umf)/100)+14.1*((db/100)+0.005))*((
     dtb/100)^0.32)+ubr;//Bubble velocity using Eqn
     .(11)
29 si=1;
30 ubb2=si*((uo-umf)/100)+(3.2*((dtb/100)^(1/3)))*ubr;
     //Bubble velocity using Eqn.(9)
31 ubb=(ubb1+ubb2)/2;//Average bubble velocity
32
33 //Bubble velocity for the pilot unit
34 ubp1=1.55*(((uo-umf)/100)+14.1*((db/100)+0.005))*(
     dtp^0.32)+ubr;//Bubble velocity using Eqn.(11)
35 si=1;
36 ubp2=si*((uo-umf)/100)+(3.2*(dtp^(1/3)))*ubr;//
     Bubble velocity using Eqn.(9)
37 ubp=(ubp1+ubp2)/2;//Average bubble velocity
38
39 //Rise velocity of upflowing emulsion
40 ueb=ubb-ubr; //For the bench unit
41 uep=ubp-ubr;//For the pilot unit
42
43 //Scale-Up Alternative 1.
44 dteb=20; // Effective bubble diameter
45 dib=[5;10;15;20];//Different outside diameters
46 n=length(dib);
47 i=1;
48 while i<=n
       li(i)=sqrt(((pi*dib(i)*dteb)/4)+((pi/4)*(dib(i))
49
          ^2)); // Pitch using Eqn.(13)
50
       i = i + 1;
```

```
51 end
52
53 //Scale-Up Alternative 2.
54 Lmp=Lmb*(ubp/ubb); // Static bed height of commercial
      unit
55 dtep=100; // Effective bubble diameter
56 dip=[10;15;20;25]; // Different outside diameters
57 m=length(dip);
58 i=1:
59 while i<=m
       lip(i) = sqrt(((pi*dip(i)*dtep)/4)+(pi/4)*dip(i));
60
          //Pitch using Eqn.(13)
61
       i = i + 1;
62 end
63
64 //Height of Bubbling beds
65 //For bench unit
66 deltab=((uo/100)-(umb/100))/(ubb-(umb/100));//
      Fraction of bed in bubbles using Eqn. (28)
67 ephsilonfb=deltab+(1-deltab)*ephsilonmb;//Void
      fraction of bubbling bed using Eqn.(20)
68 Lfb=Lmb*(1-ephsilonm)/(1-ephsilonfb);//Hieght of
     bubbling bed usnig Eqn.(19)
69 //For pilot unit
70 deltap=((uo/100)-(umb/100))/(ubp-(umb/100));//
      Fraction of bed in bubbles using Eqn. (28)
71 ephsilonfp=deltap+(1-deltap)*ephsilonmb;//Void
      fraction of bubbling bed using Eqn.(20)
72 Lfp=Lmp*(1-ephsilonm)/(1-ephsilonfp);//Hieght of
     bubbling bed usnig Eqn.(19)
73
74 //OUTPUT
75 mprintf('\nRise velocity of bubble=%fm/s',ubr);
76 printf('\nFor the bench unit');
77 mprintf('\ With Eqn.(11), Rise velocity=%fm/s',
     ubb1):
78 mprintf('\n\tWith Werthers procedure, Rise velocity=
     \% fm/s', ubb2);
```

```
79 mprintf('\n\tAverage rise velocity=%fm/s',ubb);
 80 mprintf('\n\tRise velocity of upflowing emulsion=%fm
       /s',ueb);
81 printf('\nFor the pilot unit');
 82 mprintf('\n\tWith Eqn.(11), Rise velocity=\%fm/s',
       ubp1);
83 mprintf('\n\tWith Werthers procedure, Rise velocity=
       \% fm/s',ubp2);
 84 mprintf('\n\tAverage rise velocity=%fm/s',ubp);
 85 mprintf('\n\tRise velocity of upflowing emulsion=%fm
       /s',uep);
 86 printf('\nScale-Up Alternative 1.');
 87 printf('\n\tOuter diameter of tube(cm)');
88 printf(' \ tPitch(cm)');
89 n=length(dib);
90 j = 1;
91 while j<=n
        mprintf(' \setminus n \setminus t \setminus t\%f', dib(j));
92
         mprintf(' \setminus t \setminus t\%f', li(j));
93
94
         j = j + 1;
95 end
96 printf('\n\tSuitable arrangement');
97 mprintf(')nttOuter Diameter=\% fcmtPitch:Diameter
       ratio=%f',dib(2),(li(2)/dib(2)));
98 printf('\nScale-Up Alternative 2.');
99 mprintf('\ tStatic bed height for commercial unit=
       %fm',Lmp);
100 printf('\n\tOuter diameter of tube(cm)');
101 printf(' \ tPitch(cm)');
102 n=length(dip);
103 j=1;
104 while j<=n
        mprintf(' \setminus n \setminus t \setminus t\%f', dip(j));
105
106
         mprintf(' \setminus t \setminus t\%f', lip(j));
107
         j = j + 1;
108 end
109 printf('\n\tSuitable arrangement');
110 mprintf('\ \ t \ t Outer Diameter=% fcm \ t Pitch : Diameter
```


Scilab code Exa 6.5 Reactor Scale up for Geldart B Catalyst

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-6, Example 5, Page 161
4 //Title: Reactor Scale-up for Geldart B Catalyst
5 //
6 clear
7 clc
8
9 //INPUT
10 dtb=20;//ID of bench-scale reactor
11 dtp=1;//ID of pilot reactor
12 dpbar=200;//Average particle size in micrometer
```

```
13 ephsilonmf=0.50; //Void fraction at minimum
      fluidization condition
14 ephsilonmb=0.50; // Void fraction
15 uo=30;//Superficial gas velocity in cm/s
16 Lmb=2;//Length of fixed bed in m
17 umf=3;//Velocity at minimum fluidization condition
     in cm/s
18 umb=3;//Velocity at in cm/s
19 g=9.80; // Acceleration due to gravity in m/s^2
20 pi=3.142857;
21
22 //CALCULATION
23 //In the small bench unit
24 c=1:
25 ubb=c*((uo-umf)/100)+0.35*(g*(dtb/100))^0.5;//
     Velocity using Eqn.(5.22)
26 zsb=60*(dtb)^0.175; //Height using Eqn.(5.24)
27
28 //In the large pilot unit
29 ubp=c*((uo-umf)/100)+0.35*(g*dtp)^0.5;//Velocity
     using Eqn.(5.22)
30 zsp=60*(dtp*100)^0.175; //Height using Eqn.(5.24)
31
32 / OUTPUT
33 printf('\nCondition at which bubbles transform into
     slugs ');
34 mprintf('\nFor tha small bench unit\n\t\tVelocity=
     %fm/s\n\t\tHeight above distributor plate=%fm',
     ubb,zsb/100);
35 mprintf('\nFor tha large pilot unit\ht t Velocity =
     %fm/s\n\t\tHeight above distributor plate=%fm',
     ubp,zsp/100);
36
                        END OF PROGRAM
37 //==
```

Entrainment and Elutriation from Fluidized Beds

Scilab code Exa7.1 Entrainment from fine particle beds with high free-board

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter -7, Example 1, Page 179
4 //Title: Entrainment from Fine Particle Beds with
     High Freeboard
5 //
6 clear
7 clc
8
9 //INPUT
10 rhog=5.51; // Density of gas in kg/m^3
11 rhos=1200;//Density of solid in kg/m<sup>3</sup>
12 dpbar=130;//Average size of particles in micrometer
13 uo=0.61;//Superficial gas velocity in m/s
```

```
14 g=9.80;//Acceleration due to gravity in m/s^2
15
16 //CALCULATION
17 //Assuming that freeboard in higher than TDH,
     computation of entrainment rate by Zenz & Weil's
     method
18 x=(uo^2)/(g*(dpbar*10^{-6})*rhos^2);//Calculation of
     value of x-axis for Fig.(6), page 175
19 y=1.2; // Value of y-axis from Fig.(6)
20 Gsstar=y*rhog*uo;//Computation of rate of
     entrainment
21
22 //OUTPUT
23 mprintf('\nRate of entrainment=\%fkg/m<sup>2</sup>s',Gsstar);
24
                          END OF PROGRAM
25 / =
```

Scilab code Exa 7.2 Entrainment from large particle beds with high freeboard

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-7, Example 2, Page 180
4 //Title: Entrainment from Large Particle Beds with
High Freeboard
5 //
```

6 clear 7 clc

```
8
9 //INPUT
10 x=0.2; // Fraction of fines in the bed
11 Gsstar=4.033320//Rate of entrainment in kg/m^2s(from
Exa.1)
12
13 //CALCULATION
14 Gsstar1=x*Gsstar; //Rate of entrainment by Eqn.(3)
15
16 //OUTPUT
17 mprintf('\nRate of entrainment=%fkg/m^2s',Gsstar1);
18
19 //______END OF PROGRAM
```

Scilab code Exa 7.3 Entrainment from beds with a wide size distribution of solids

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-7, Example 3, Page 181
4 //Title: Entrainment from Beds with a Wide Size
Distribution of Solids
5 //
6 clear
7 clc
8
9 //INPUT
```

```
10 rhog=5.51; //Density of gas in kg/m^3
```

```
11 rhos=1200; // Density of solid in kg/m<sup>3</sup>
12 uo=0.61; // Superficial gas velocity in m/s
13 g=9.80;//Acceleration due to gravity in m/s^2
14 dp=[10;30;50;70;90;110;130];//Diameter of particle
      in micrometer
15 p = [0; 0.0110; 0.0179; 0.0130; 0.0058; 0.0020; 0];
16 pi=3.142857;
17 dt=6;
18
19 //CALCULATION
20 n=length(dp);
21 i=1;
22 while i<=n
       x(i)=(uo^2)/(g*(dp(i)*10^-6)*rhos^2);//
23
          Computation of value of x-axis for Fig.(6),
          page 175)
24
       i = i + 1;
25 end
26 y = [40; 12; 6; 3.2; 2.; 1.3; 1]; // Value of y-axis
      corresponding to each value of x-axis
27 y1 = y .* p;
28 i=1;
29 k=0;
30 while i<n
31
       y1(i)=(y(i)*p(i));
32
       k=k+((0.5)*(dp(i+1)-dp(i))*(y1(i+1)+y1(i)));//
          Integration using Trapezoidal rule
33
       i = i + 1;
34 end
35 rhosbar=k*rhog; //Computation of solid loading
36 te=(pi/4)*(dt^2)*rhosbar*uo;//Computation of total
      entrainment
37
38 //OUTPUT
39 mprintf('\nSolid loading =\%fkg/m<sup>3</sup>', rhosbar);
40 mprintf('\nTotal Entrainment = \% fkg/s',te);
41
42 / =
                                            =END OF PROGRAM
```

Scilab code Exa 7.4 kstar from steady state experiments

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-7, Example 4, Page 181
4 //Title: k* from Steady State Experiments
5 //
```

```
6 clear
7 clc
8
9 //INPUT
10 dp=[40;60;80;100;120];//Diameter of particle in
      micrometer
11 uo=0.381;//Superficial gas velocity in m/s
12
13 //CALCULATION
14 Gs=0.9; //Rate of entrainment in kg/m<sup>2</sup> s from Fig.3(
      a)
15 pb=(1/100) * [0.45; 1.00; 1.25; 1.00; 0.60]; //Size
      distribution for bed particles from Fig.3(b)
16 pe=(1/100) * [1.20; 2.00; 1.25; 0.45; 0.10]; // Size
      distribution for entrained particles from Fig.3(b
17 n=length(dp);
18 i=1;
19 while i<=n
20
       ki(i)=(Gs*pe(i))/pb(i);//Calculation of ki*
```

```
using Eqn.(13)
21
         i=i+1;
22 end
23
24 //OUTPUT
25 printf('\ndpi(micrometer)');
26 printf (' \pm 100 \text{ pb} (dpi) (micrometer -1)');
27 printf(' \times 100 \text{ pe}(\text{dpi})(\text{micrometer}^{-1})');
28 printf('\ tki * (kg/m^2 s)');
29 j=1;
30 while j<=n
        mprintf(' \setminus n\%f', dp(j));
31
32
        mprintf('\t%f',100*pb(j));
        mprintf(' \setminus t \setminus t\%f', 100*pe(j));
33
        mprintf(' \setminus t \setminus t\%f', ki(j));
34
         j=j+1;
35
36 end
37
                                       END OF PROGRAM
38 //=
```

Scilab code Exa 7.5 Comparing predictions for kstar

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-7, Example 5, Page 181
4 //Title: Comparing Predictions for k*
5 //
```

6 clear

```
7 clc
8
9 //INPUT
10 rhog=1.217; // Density of gas in kg/m^3
11 myu=1.8E-5; // Viscosity of gas in kg/m s
12 umf=0.11; // Velocity at minimum fluidization
      condition in m/s
13 rhos=2000;//Density of solid in kg/m^3
14 uo=1.0; // Superficial gas velocity in m/s
15 g=9.80; // Acceleration due to gravity in m/s^2
16 dp=[30;40;50;60;80;100;120];//Diameter of particle
      in micrometer
17 uti = [0.066; 0.115; 0.175; 0.240; 0.385; 0.555; 1.0]; //
      Terminal velocity of particles in m/s
18
19 //CALCULATION
20 n=length(dp);
21 i=1;
22 while i<=n
       //Using Yagi & Aochi's correlation
23
24
       Ret(i) = (rhog*(uti(i))*dp(i)*10^-6)/myu;
       kistar1(i)=((myu*((uo-uti(i))^2))/(g*(dp(i)
25
          *10^-6)^2))*(0.0015*(Ret(i)^0.5)+(0.01*(Ret(i)))
          )^1.2)));
       //Using Wen & Hasinger's correlation
26
27
       kistar2(i)=(((1.52E-5)*((uo-uti(i))^2)*rhog)/(g*
          dp(i)*10^-6)^0.5)*(Ret(i)^0.725)*((rhos-rhog)
          /rhog)^1.15;
       //Using Merrick & Highley's correlation
28
       kistar3(i)=uo*rhog*(0.0001+130*exp(-10.4*((uti(i
29
          )/uo)^0.5)*((umf/(uo-umf))^0.25)));
       //Using Geldart's correlation
30
31
       kistar4(i)=23.7*uo*rhog*exp(-5.4*(uti(i)/uo));
       //Using Zenz & Weil's procedure
32
       x1(i)=(uo<sup>2</sup>)/(g*(dp(i)*10<sup>-6</sup>)*rhos<sup>2</sup>);//
33
          Computation of value of x-axis for Fig.(6),
          page 175)
       y1=[12.2;8.6;6.4;4.9;2.75;1.8;1.2];//Value of y-
34
```

```
47
```

```
axis corresponding to each value of x-axis
        kistar5(i)=y1(i)*rhog*uo;
35
        //Using Gugnoni & Zenz's procedure
36
        x2(i)=(uo-uti(i))/((g*dp(i)*10^-6)^0.5);//
37
           Computation of value of x-axis for Fig.(6),
           page 175)
        y = [5.8; 5.4; 3.2; 2.8; 1.3; 0.6; 0]; //Value of y-axis
38
           corresponding to each value of x-axis
        kistar6(i)=y(i)*rhog*uo;
39
        i = i + 1;
40
41 end
42
43 i=1;
44 printf('dp(micrometer)');
45 printf('\tYagi & Aochi');
46 printf('\tWen & Hashinger');
47 printf('\t\tMerrick & Highley');
48 printf('\tGeldart et al.');
49 printf('\t\tZenz & Well');
50 printf('\t\tGugnoni & Zenz');
51 while i<=n
        \texttt{mprintf}(`\backslash n\%f`, \texttt{dp(i)});
52
        mprintf('\t%f',kistar1(i));
53
        mprintf(' \setminus t\%f', kistar2(i));
54
        mprintf(' \setminus t \setminus t\%f', kistar3(i));
55
        mprintf(' \setminus t \setminus t\%f', kistar4(i));
56
        mprintf(' \setminus t \setminus t\%f', kistar5(i));
57
        mprintf(' \setminus t \setminus t\%f', kistar6(i));
58
        i = i + 1:
59
60 end
61
62 //Note: There is huge deviation of the calculated
      answer and the answer given in the textbook for
      the correlation of Merrick & Highley.
                                                    There is a
        contradiction in the correlation used in the
      problem and the one given in page 179.
63 //We tried to retrieve the original paper i.e. D.
```

Merrick and J. Highley, AICHE J., 6, 220(1960).

```
But the effort was not fruitful.
64
                              END OF PROGRAM
65
  //=
   Scilab code Exa 7.6 Entrainment from a short vessel
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
\mathbf{2}
3 // Chapter - 7, Example 6, Page 190
4 // Title: Entrainment from a Short Vessel Ht<TDH
5 //
6 clear
7 clc
8
9 //INPUT
10 dpbar=60; // Average size of particles in micrometer
11 rhog=1.3;//Density of gas in kg/m<sup>3</sup>
12 rhos=1500; // Density of solid in kg/m<sup>3</sup>
13 umf=0.003;//Velocity at minimum fluidization
      condition in m/s
14 uo=0.503; // Superficial gas velocity in m/s
15 g=9.80;//Acceleration due to gravity in m/s^2
16 Hf=2;//Height at which the cyclone inlet is to be
      located in m
17
18 //CALCULATION
19 y=(uo^2)/(g*(dpbar*10^-3)*rhos^2);//Calculation of
      value of y-axis for Fig.(6), page 175
```

```
20 x=1;//Value of x-axis from Fig.(6), page 175
21 Gsstar=x*rhog*uo;//Computation of rate of
     entrainment
22 Gsuo=5.0; // Ejection rate pf particles in kg/m^2 s
     from Fig.(11), page 188
23 a=0.72/uo;//From Fig.(12), page 189
24 Gs=Gsstar+(Gsuo-Gsstar)*exp(-a*Hf);
25 p=((Gs-Gsstar)/Gsstar)*100;
26
27 //OUTPUT
28 mprintf('\nRate of entrainment from short bed=%fkg/m
     ^2s',Gs);
29 mprintf('\nThis entrainment is %f percent higher
     than it would be if the gas exit were at the TDH'
     ,p);
30
                       END OF PROGRAM
31 //=====
```

High velocity Fluidization

Scilab code Exa 8.1 Performance of a Fast Fluidized Vessel

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-8, Example 1, Page 206
4 //Title: Performance of a Fast Fluidized Vessel
5 //
```

```
in kg/m^2 s for Mode III
15 GsIV = [70; 100; 120]; //Solid circulation rate in kg/m<sup>2</sup>
       s for Mode IV
16 dt=0.4;//Column diamter in m
17 Ht=10; //Height of column in m
18 rhos=1000; // Density of solid in kg/m<sup>3</sup>
19 dpbar=55; // Particle diameter in micrometer
20 ephsilonmf=0.5;//Void fraction at minimum
      fluidization condition
21
22 //CALCULATION
23 //Mode I
24 ephsilonstar=0.01; // Saturation carrying capacity of
      gas
25 ephsilonsd=[0.2; 0.16; 0.14]; //Solid holdup in lower
      dense region from Fig.8(b) for various uo
26 n=length(uo);
27 i=1;
28 Hfguess=2;//Guess value of height
29 while i<=n
       a(i)=3/uo(i);//Decay constant
30
       function[fn]=solver_func(Hf)//Function defined
31
          for solving the system
           fn=Lmf*(1-ephsilonmf)-((ephsilonsd(i)-(
32
              ephsilonstar+(ephsilonsd(i)-ephsilonstar)
              *exp(-a(i)*Hf)))/a(i))-Ht*ephsilonsd(i)+
              Hf*(ephsilonsd(i)-ephsilonstar);
33
       endfunction
34
       [Hf(i)]=fsolve(Hfguess, solver_func, 1E-6); // Using
           inbuilt function for for solving Eqn.(10)
           for Hf
       Hd(i)=Ht-Hf(i);//Height of lower densce region
35
36
       ephsilonse(i)=ephsilonstar+(ephsilonsd(i)-
          ephsilonstar)*exp(-a(i)*Hf(i));//Solid holdup
           at exit
       GsI(i)=rhos*uo(i)*ephsilonse(i);//Solid
37
          circulation rate from Eqn.(4)
38
       i=i+1;
```

```
52
```

```
39 end
40
41 //Mode II
42 i=1;
43 Hfguess2=2;//Guess value of height
44 while i<=n
       ephsilonseII(i)=GsII/(rhos*uo(i));//Solid holdup
45
           at exit
       function[fn]=solver_func1(Hf)//Function defined
46
          for solving the system
           fn=ephsilonseII(i)-ephsilonstar-(ephsilonsd(
47
              i)-ephsilonstar)*exp(-a(i)*Hf);//From Eqn
              (7)
       endfunction
48
       [HfII(i)]=fsolve(Hfguess2, solver_func1, 1E-6); //
49
          Using inbuilt function for solving Eqn
          .(10) for Hf
       HdII(i)=Ht-HfII(i); // Height of lower dense
50
          region
       //Length of bed minimum fluidization condtion
51
52
       LmfII(i)=(1-ephsilonmf)^-1*[((ephsilonsd(i)-
          ephsilonseII(i))/a(i))+Ht*ephsilonsd(i)-HfII(
          i)*(ephsilonsd(i)-ephsilonstar)];
53
       i = i + 1;
54 end
55
56 //Mode III
57 aIII=3/uoIII;//Decay constant
58 ephsilonsdIII=0.16;//Solid holdup at lower dense
     region
59 i=1;
60 m=length(GsIII);
61 Hfguess3=2;//Guess value of height
62 while i<=m
       ephsilonseIII(i)=GsIII(i)/(rhos*uoIII);//Solid
63
          holdup at exit
       function[fn]=solver_func2(Hf)//Function defined
64
          for solving the system
```

```
fn=ephsilonseIII(i)-ephsilonstar-(
65
              ephsilonsdIII-ephsilonstar)*exp(-aIII*Hf)
              ;//From Eqn.(7)
66
       endfunction
67
       [HfIII(i)]=fsolve(Hfguess3, solver_func2, 1E-6); //
          Using inbuilt function fsolve for solving Eqn
          .(10) for Hf
       HdIII(i)=Ht-HfIII(i); // Height of lower dense
68
          region
       //Length of bed at minimum fluidization
69
          condition
70
       LmfIII(i)=(1-ephsilonmf)^-1*[((ephsilonsdIII-
          ephsilonseIII(i))/aIII)+Ht*ephsilonsdIII-
          HfIII(i)*(ephsilonsdIII-ephsilonstar)];
71
       i = i + 1;
72 end
73
74 //Mode IV
75 i=1;
76 Hfguess4=2; //Guess value of height
77 while i<=n
       aIV(i)=3/uo(i);//Decay constant
78
       ephsilonseIV(i)=GsIV(i)/(rhos*uo(i));//Solid
79
          holdup at exit
       function[fn]=solver_func3(Hf)//Function defined
80
          for solving the system
           fn=ephsilonseIV(i)-ephsilonstar-(ephsilonsd(
81
              i)-ephsilonstar)*exp(-aIV(i)*Hf);//From
              Eqn. (7)
       endfunction
82
83
       [HfIV(i)]=fsolve(Hfguess4, solver_func3, 1E-6); //
          Using inbuilt function follow for solving Eqn
          (10) for Hf
       HdIV(i)=Ht-HfIV(i); //Height of lower dense
84
          region
       //Length of bed at minimum fluidization
85
          condition
       LmfIV(i)=(1-ephsilonmf)^-1*[((ephsilonsd(i)-
86
```

```
ephsilonseIV(i))/aIV(i))+Ht*ephsilonsd(i)-
           HfIV(i)*(ephsilonsd(i)-ephsilonstar)];
87
        i = i + 1;
88 end
89
90 //OUTPUT
91 printf('\nMode I');
92 printf (' \ (m/s) \ t \ tephsilonse(-) \ tHf(m) \ t \ tHd(m)
       \langle t \rangle tGs(kg/m^2 s)');
93 i=1;
94 while i<=n
        mprintf('\n\t\%f\t\%f\t\%f\t\%f\t\%f,uo(i),
95
           ephsilonse(i),Hf(i),Hd(i),GsI(i));
96
        i = i + 1;
97 end
98 printf('\nMode II');
99 printf (' \ (m/s) \ t \ ephsilonse(-) \ tHf(m) \ t \ tHd(m)
       \langle t \rangle tLmf(m) \rangle;
100 i=1;
101 while i<=n
102
        mprintf('\n\t\%f\t\%f\t\%f\t\%f\t\%f,uo(i),
           ephsilonseII(i),HfII(i),HdII(i),LmfII(i));
103
        i = i + 1;
104 end
105 printf('\nMode III');
106 printf(' \ tGs(kg/m s) \ teph silon se(-) \ tHf(m) \ t \ tHd(
      m) \ t \ tLmf(m) ');
107 i=1;
108 while i<=m
        109
           ephsilonseIII(i),HfIII(i),HdIII(i),LmfIII(i))
110
        i = i + 1;
111 end
112 printf('\nMode IV');
113 printf('\n\tuo(m/s)\t\tGs(kg/m^2 s)\tephsilonse(-)\
       tHf(m) \setminus t \setminus tLmf(m)');
114 i=1;
```

Solid Movement Mixing Segregation and Staging

Scilab code Exa 9.1 Vertical Movement of Solids

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter -9, Example 1, Page 218
4 // Title: Vertical Movement of Solids
5 //
6
7 clear
8 clc
9
10 //INPUT
11 umf=0.015;//Velocity at minimum fluidization
     condition in m/s
12 ephsilonmf=0.5; //Void fraction at minimum
      fluidization condition
13 uo=0.1;//Superficial gas velocity in m/s
```

```
14 delta=0.2; //Bed fraction in bubbles
15 db=0.06;//Equilibrium bubble size in m
16 dt=[0.1;0.3;0.6;1.5];//Various vessel sizes in m
17 ub=[0.4;0.75;0.85;1.1];//Bubble velocity in m/s
18 Dsv=[0.03;0.11;0.14;0.23];//Reported values of
      vertical dispersion coefficient
19
20 //CALCULATION
21 n=length(ub);
22 i=1;
23 fw1=2;//Wake fraction from Hamilton et al.
24 fw2=0.32; //Wake fraction from Fig. (5.8)
25 fw=(fw1+fw2)*0.5;//Average value of wake fraction
26 while i<=n
       Dsv1(i)=12*((uo*100)^0.5)*((dt(i)*100)^0.9);//
27
          Vertical distribution coefficient from Eqn
          . (3)
       Dsv2(i)=(fw^2*ephsilonmf*delta*db*ub(i)^2)/(3*
28
          umf); // Vertical distribution coefficient from
           Eqn. (12)
29
       i=i+1;
30 end
31
32 / OUTPUT
33 printf(' \ t \ t \ cal dispersion coefficient (m^2/s)
      ');
34 printf(' \setminus nVessel Size(m)');
35 printf('\tFrom Experiment');
36 printf('\tFrom Eqn.(3)');
37 printf('\tFrom Eqn.(12)');
38 i=1;
39 while i<=n
40
       mprintf(' \setminus n\%f', dt(i));
       mprintf(' \setminus t\%f', Dsv(i));
41
       mprintf(' \setminus t\%f', Dsv1(i)/10^4);
42
       mprintf('\t%f',Dsv2(i));
43
       i = i + 1;
44
45 end
```

```
46
47 //_____END OF PROGRAM
```

```
Scilab code Exa 9.2 Horizontal Drift Of Solids
```

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-9, Example 2, Page 222
4 //Title: Horizontal Drift Of Solids
5 //
```

```
6
7 clear
```

```
8 clc
```

```
9
```

```
10 //INPUT
```

```
11 Lmf=0.83;//Length of bed at minimum fluidization condition in m
```

```
12 dp=450; // Average particle size in micrometer
```

```
13 ephsilonmf=0.42;//Void fraction at minimum fluidization condition
```

```
14 umf=0.17;//Velocity at minimum fluidization
condition in m/s
```

```
15 uo=[0.37;0.47;0.57;0.67];//Superficial gas velocity
in m/s
```

```
16 Dsh=[0.0012;0.0018;0.0021;0.0025]; // Horizontal Drift
Coefficient from Experiment in m<sup>2</sup>/s
```

```
17 db=[0.10;0.14];//Equilibrium bubble size in m
```

```
18 g=9.81;//Acceleration due to gravity in m/s^2
```

```
19
20
21 //CALCULATION
22 n=length(uo);
23 m=length(db);
24 j=1;
25 i=1;
26 k=1;
27 alpha=0.77; //Since we are not dealing with Geldart A
       or AB solids
28 uf=umf/ephsilonmf;
29 for j = 1:m
30
           for i = 1:n
                ubr(k) = 0.711*(db(j)*g)^0.5; //Rise
31
                   velocity of a single bubble in m/s
                ub(k)=uo(i)-umf+ubr(k); // Rise velocity
32
                   of bubbles in a bubbling bed
33
                delta(k)=(uo(i)-umf)/(ub(k)+umf);//Bed
                   fraction in bubbles
                if ubr(i)>uf then Dshc(k)=(3/16)*(delta(
34
                   k)/(1-delta(k)))*((alpha^2*db(j)*ubr(
                   k) * [(((ubr(k)+2*uf)/(ubr(k)-uf)))
                   ^(1/3))-1]));//Horizontal
                   Distribution coeff. from Eqn.(14)
                else Dsh(k) = (3/16) * (delta/(1-delta)) * (
35
                   alpha^2*umf*db/ephsilonmf);//
                   Horizontal Distribution coeff. from
                   Eqn. (15)
36
                end
                Dshc(k) = (3/16) * (delta(k)/(1-delta(k)))
37
                   *((alpha^2*db(j)*ubr(k)*[(((ubr(k)+2*
                   uf)/(ubr(k)-uf))^(1/3))-1]));//
                   Horizontal Distribution coeff. from
                   Eqn. (14)
                i = i + 1;
38
39
                k = k + 1;
40
           end
41
       i=1;
```

```
42
        j=j+1;
43 end
44
45 //OUTPUT
46 i=1;
47 j=1;
48 k=1;
49 while k<=m*n
        mprintf('\nSnce we do not have ub=%fm/s>>uf=%fm/
50
           s we use Eqn.(14).',ub(k),uf)
        printf('\nGas Velocity(m/s)');
51
52
        printf('\tHorizontal Drift Coefficient
            Calculated (m^2/s)');
        printf('\tHorizontal Drift Coefficient from
53
            Experiment (m^2/s) ');
        while j<=m
54
             mprintf(' \ db=\%fm', db(j));
55
             while i<=n
56
                  mprintf(' \setminus n\%f', uo(i));
57
                  \texttt{mprintf(`, t \ t\%f', Dshc(k));}
58
                  mprintf(' \setminus t \setminus t \setminus t \setminus t\%f', Dsh(i));
59
60
                  i = i + 1;
61
                  k = k + 1;
62
             end
63
        i=1;
64
        j=j+1;
65
        end
66
   end
67
                                             END OF PROGRAM
68
   //=
```

Scilab code Exa 9.3 Design of Baffle Plates

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter -9, Example 3, Page 232
4 //Title: Design of Baffle Plates
5 //
6
7 clear
8 clc
9
10 //INPUT
11 Gsup=1.5; // Solid interchange rate in kg/m<sup>2</sup>plate s
12 dor=19.1; // Orifice diameter in mm
13 dp=210; // Particle size in micrometer
14 uo=0.4;//Superficial gas velocity in m/s
15 fopen=[0.12;0.17;0.26];//Open area fraction
16 pi=3.14;
17
18 //CALCULATION
19 n=length(fopen);
20 i=1;
21 while i<=n
22
       uor(i)=uo/fopen(i);//Gas velocity through the
          orifice
       ls1(i)=Gsup/fopen(i);//Flux of solids through
23
          the holes
24
       i = i + 1;
25 end
  ls2=[12;20;25];//Flux of solids through holes from
26
      Fig.13(c) for different uor values
  fopen1=0.12; //Open area fraction which gives
27
      reasonable fit
  lor=sqrt(((pi/4)*dor^2)/fopen1);//Orifice spacing
28
29
30 //OUTPUT
```

```
31 printf('\nfopen');
32 printf(' \setminus t \setminus tuor(m/s)');
33 printf('\tls from Eqn.(18)');
34 printf('\tls from Fig.13(c)');
35 i=1;
36 while i<=n
        mprintf(' \setminus n\%f', fopen(i));
37
        mprintf(' \setminus t\%f', uor(i));
38
        mprintf(' \setminus t\%f', ls1(i));
39
        mprintf(' \setminus t \setminus t\%f', ls2(i));
40
        i=i+1;
41
42 end
43 mprintf('\n\nFor square pitch, the orifice spacing
      should be %fmm',lor);
44
                               END OF PROGRAM
45 //=
```

Gas Dispersion and Gas Interchange in Bubbling Beds

Scilab code Exa 10.1 Estimate Interchange Coefficients in Bubbling Beds

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 10, Example 1, Page 253
4 //Title: Estimate Interchange Coefficients in
     Bubbling Beds
5 //
6
7 clear
8 clc
9
10 //INPUT
11 umf=[0.01;0.045];//Velocity at minimum fluidization
      condition in m/s
12 ephsilonmf=[0.5;0.5];//Void fraction at minimum
      fluidization condition
```

```
13 D=[2E-5;7E-5];//Diffusion coefficient of gas in m^2/
14 g=9.81; // Acceleration due to gravity in m/s^2
15
16 //CALCULATION
17 db=[5;10;15;20];
18 n=length(umf);
19 m=length(db)'
20 \text{ for } i = 1:n
       for j = 1:m
21
22
                Kbc(i,j)=4.5*(umf(i)/db(j))+5.85*((D(i)))
                   ^0.5*g^0.25)/db(j)^(5/4));//Gas
                   interchange coefficient between
                   bubble and cloud from Eqn. (27)
                Kce(i,j)=6.77*((D(i)*ephsilonmf(i))
23
                   *0.711*(g*db(j))^0.5)/db(j)^3)^0.5;//
                   Gas interchange coefficient between
                   emulsion and cloud from Eqn.(34)
                Kbe(i,j) = (Kbc(i,j) * Kce(i,j)) / (Kbc(i,j) +
24
                   Kce(i,j));//Gas interchange
                   coefficient between bubble and
                   emulsion from Eqn.(14)
25
       end;
26 \text{ end}
27
28 //OUTPUT
29 i=1;
30 j = 1;
31 k=1;
32 while k<=m*n
       printf('\n\t\tKbc for fine particles and He');
33
       printf('\tKbc for coarse particles and ozone');
34
       printf('\tKbe for fine particles and He');
35
       printf('\tKbe for coarse particles and ozone');
36
       while j<=m
37
            mprintf(' \wedge ndb = \% fm', db(j) * 10^{-2});
38
            while i<=n
39
                mprintf(' \setminus t\%f', Kbc(k));
40
```

```
mprintf(' \setminus t \setminus t \% f', Kbe(k));
41
42
                i=i+1;
                k = k + 1;
43
                printf(' \setminus t \setminus t');
44
45
           end
       i = 1;
46
47
       j=j+1;
48
       end
49
  end
50 Kbe=Kbe';
51 Kbc=Kbc';
52 plot2d("ll",db,[Kbc Kbe]);
53 xtitle('Plot of Kbc,Kbe vs db','db',['Kbc','Kbe']);
54 printf('\nComparing the points with the plot of Kbc,
      Kbe vs db in Fig.(12), we can conlcude the
      following:');
55 printf('\nKbc for fine particles and helium: line 2
      in Fig.(12)');
56 printf('\nKbc for coarser particles and ozone: line
      3 in Fig.(12)');
  printf('\nKbe for fine particles and helium: line 4
57
      in Fig.(12)');
  printf('\nKbe for coarser particles and ozone: line
58
      5 in Fig.(12)');
59
                      END OF PROGRAM
60 //=
```

Scilab code Exa 10.2 Compare the Relative Importance of Kbc and Kce

1 //Kunii D., Levenspiel O., 1991. Fluidization

Figure 10.1: Estimate Interchange Coefficients in Bubbling Beds

```
Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 10, Example 2, Page 254
4 // Title: Compare the Relative Importance of Kbc and
      Kce
5
  6
7 clear
8 clc
9
10 //INPUT
11 D=0.69; // Diffusion coefficient of gas in cm^2/s
12 umf=1.0; // Velocity at minimum fluidization condition
       in cm/s
13 ephsilonmf=0.5; //Void fraction at minimum
      fluidization condition
14 db=[5;15];//Equilibrium bubble size in cm
15 g=980; // Acceleration due to gravity in cm/s^2
16
17 //CALCULATION
18 n=length(db);
19 i=1:
20 while i<=n
21
       Kbc(i) = 4.5*(umf/db(i)) + 5.85*((D^0.5*g^0.25)/db(i))
          )^(5/4));//Gas interchange coefficient
          between bubble and cloud from Eqn.(27)
       Kce(i)=6.77*((D*ephsilonmf*0.711*(g*db(i))^0.5)/
22
          db(i)^3)^0.5;//Gas interchange coefficient
          between emulsion and cloud from Eqn.(34)
23
       Kbe(i) = (Kbc(i) * Kce(i)) / (Kbc(i) + Kce(i)); / / Gas
          interchange coefficient between bubble and
          emulsion from Eqn.(14)
       e(i)=(Kce(i)-Kbe(i))/Kbe(i);//Error when minor
24
          resistance is ignored
25
       i = i + 1;
```

```
26 end
27
28 //OUTPUT
29 printf(' \ (cm)');
30 printf('\t\tCalculated Kbc');
31 printf('\tCalculated Kce');
32 printf(' \ t \ t \ be from Eqn.(14)');
33 printf('\tErron when minor resistance is ignored (in
        percentage) ');
34 i=1;
35 while i<=n
        mprintf(' \setminus n\%f', db(i));
36
37
        mprintf(' \setminus t\%f', Kbc(i));
        mprintf(' \setminus t\%f', Kce(i));
38
        mprintf(' \setminus t \setminus t\%f', Kbe(i));
39
        mprintf('t \ t\%f', e(i) *100);
40
        i = i + 1;
41
42 end
43
                                  END OF PROGRAM
44 //=
```

Scilab code Exa 10.3 Compare Interchange Rates for Adsorbed and Non-adsorbed Gases

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-10, Example 3, Page 255
4 //Title: Compare Interchange Rates for Adsorbed and
Nonadsorbed Gases
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 Kbe=[0.028;0.05];//Reported range for gas
      interchange coefficient between bubble and
      emulsion
12 uo=0.30; // Superficial gas velocity in m/s
13 db=0.13; // Equilibrium bubble size in m
14 m = 7;
15 ephsilonmf=0.5; //Void fraction at minimum
      fluidization condition
  umf=0.0018; // Velocity at minimum fluidization
16
      condition in m/s
  D=[9E-6;22E-6];//Diffusion coefficient of gas in m
17
      ^2/s
18 g=9.81; // Acceleration due to gravity in m/s^2
19
20 //CALCULATION
21 n=length(Kbe);
22 i=1;
23 while i<=n
       Kbem(i)=(6/db)*Kbe(i);//Gas interchange
24
          coefficient between bubble and emulsion from
          Eqn. (19)
25
       Kbc(i) = 4.5*(umf/db) + 5.85*((D(i)^{0.5*g^{0.25}})/db
          ^(5/4));//Gas interchange coefficient between
           bubble and cloud from Eqn. (27)
       Kce(i)=6.77*((D(i)*ephsilonmf*0.711*(g*db)^0.5)/
26
          db^3)^0.5;//Gas interchange coefficient
          between emulsion and cloud from Eqn.(34)
       Kbe(i) = (Kbc(i) * Kce(i)) / (Kbc(i) + Kce(i)); / / Gas
27
          interchange coefficient between bubble and
          emulsion from Eqn.(14)
       c(i) = (Kbem(i)/Kbe(i));
28
```

```
70
```

```
29
         i=i+1;
30 \text{ end}
31
32 //OUTPUT
33 printf('\nKbe from Eqn.(19)');
34 printf('\tKbc from Eqn.(27)');
35 printf('\tKce from Eqn.(34)');
36 printf('\tKbe from Eqn.(14)');
37 printf('\tComparison of Kbe from Eqn.(19) and that
       from Eqn.(14)');
38 i=1;
39 while i<=n
40
         mprintf(' \setminus n\%f', Kbem(i));
         \texttt{mprintf}(`\ t\ t\%f`, \texttt{Kbc(i)});
41
        mprintf(' \setminus t \setminus t\%f', Kce(i));
42
         \texttt{mprintf('} \setminus t \setminus t\%f', \texttt{Kbe(i));}
43
        mprintf(' \setminus t \setminus t\%f', c(i));
44
         i=i+1;
45
46 end
47
                            END OF PROGRAM
48 //==
```
Particle to Gas Mass and Heat Transfer

Scilab code Exa 11.1 Fitting Reported Mass Transfer Data with the Bubbling Bed Model

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 11, Example 1, Page 265
4 // Title: Fitting Reported Mass Transfer Data with
     the Bubbling Bed Model
5 //
6
7 clear
8 clc
9
10 //INPUT
11 db=0.37;//Equilibrium bubble size in cm
12 dp=0.028; // Particle size in cm
13 rhos=1.06;//Density of solids in g/cc
```

```
fluidization condition
15 phis=0.4; // Sphericity of solids
16 gammab=0.005; // Ratio of volume of dispersed solids
      to that of bubble phase
17 rhog=1.18E-3; // Density of air in g/cc
18 myu=1.8E-4; // Viscosity of gas in g/cm s
19 D=0.065; // Diffusion coefficient of gas in cm^2/s
20 Sc=2.35; //Schmidt number
21 etad=1;//Adsorption efficiency factor
22 y = 1;
23 umf=1.21; // Velocity at minimum fluidization
      condition in cm/s
24 ut=69;//Terminal velocity in cm/s
25 g=980;//Acceleration due to gravity in square cm/s^2
26 uo=[10;20;30;40;50];//Superficial gas velocity in cm
     /s
27
28 //CALCULATION
29 n=length(uo);
30 i=1;
31 Rept=(dp*ut*rhog)/myu;
32 Shstar=2+(0.6*(Rept^0.5)*(Sc^(1/3)));//Sherwood no.
      from Eqn.(1)
33 Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));//
     Gas interchange coefficient between bubble and
      cloud from Eqn.(10.27)
34 ubr=0.711*(g*db)^0.5; //Rise velocity of the bubble
35 while i<=n
       x(i)=(uo(i)-umf)/(ubr*(1-ephsilonmf));//The term
36
           delta/(1-epshilonf) after simplification
       Shbed(i)=x(i)*[(gammab*Shstar*etad)+((phis*dp^2*
37
          y)/(6*D))*Kbc];//Sherwood no. from Eqn.(11)
       Rep(i)=(dp*uo(i)*rhog)/myu;//Reynolds of the
38
          particle
39
       i = i + 1;
40 end
41
```

14 ephsilonmf=0.5; //Void fraction at minimum

```
42 //OUTPUT
43 printf('\nThe desired result is the relationship
     between Shbed and Rep The points gives a
      straight line of the form y=mx+c');
44 printf(' \ nRep');
45 printf('t tShbed');
46 i=1;
47 while i<=n
       printf(' \ n\%f', Rep(i));
48
       printf(' \setminus t\%f', Shbed(i));
49
       i = i + 1;
50
51 end
52 plot(Rep, Shbed);
53 xlabel("\operatorname{Rep}");
54 ylabel("Shbed");
55
56 // END OF PROGRAM
```

Scilab code Exa 11.2 The Effect of m on Bubble Emulsion Interchange

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-11, Example 2, Page 267
4 //Title: The Effect of m on Bubble-Emulsion
Interchange
5 //
```


Figure 11.1: Fitting Reported Mass Transfer Data with the Bubbling Bed Model

```
6
7 clear
8 clc
9
10 //INPUT
11 umf=0.12; // Velocity at minimum fluidization
     condition in cm/s
12 uo=40; // Superficial gas velocity in cm/s
13 ub=120; // Velocity of the bubble in cm/s
14 D=0.7; // Diffusion coefficient of gas in cm^2/s
15 abkbe1=1;//Bubble-emuslion interchange coefficient
     for non absorbing particles (m=0)
16
  abkbe2=18; //Bubble-emuslion interchange coefficient
      for highly absorbing particles (m=infinity)
17 g=980; // Acceleration due to gravity in square cm/s^2
18
19 //CALCULATION
20 //For non absorbing particles m=0, etad=0
21 Kbc=(ub/uo)*(abkbe1);
22 dbguess=2; //Guess value of db
23 function[fn]=solver_func(db)//Function defined for
     solving the system
       fn=abkbe1-(uo/ub)*(4.5*(umf/db)+5.85*(D^0.5*g))
24
          (10.25)/(db(5/4)); //Eqn.(10.27)
25 endfunction
26 [d]=fsolve(dbguess,solver_func,1E-6);//Using inbuilt
       function follow for solving Eqn.(10.27) for db
27 //For highly absorbing particles m=infinity, etad=1
28 M=abkbe2-(uo/ub)*Kbc;
29 //For intermediate condition
30 alpha=100;
31 m=10;
32 etad=1/(1+(alpha/m));//Fitted adsorption efficiency
     factor from Eqn.(23)
33 abkbe3=M*etad+(uo/ub)*Kbc;
34
35 //OUTPUT
36 mprintf('\nFor non absorbing particles:\n\tDiameter
```

```
of bubble=%fcm\n\tBubble-cloud interchange
    coefficient=%fs^-1',d,Kbc);
37 mprintf('\nFor highly absorbing partilces:\n\tM=%f',
    M);
38 mprintf('\nFor intermediate condition:\n\tFitted
    adsorption efficiency factor:%f\n\tBubble-
    emuslion interchange coefficient:%fs^-1',etad,
    abkbe3);
39
40 //______END OF PROGRAM
```

Scilab code Exa 11.3 Fitting Reported Heat Transfer Data with the Bubbling Bed Model

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
\mathbf{2}
3 // Chapter - 11, Example 3, Page 273
4 // Title: Fitting Reported Heat Transfer Data with
     the Bubbling Bed Model
5
  6
7 clear
8
 clc
9
10 //INPUT
11 rhos=1.3; // Density of solids in g/cc
12 phis=0.806; // Sphericity of solids
13 gammab=0.001;//Ratio of volume of dispersed solids
```

to that of bubble phase

- 14 rhog=1.18E-3;//Density of air in g/cc
- 15 Pr=0.69; // Prandtl number
- 16 myu=1.8E-4;//Viscosity of gas in g/cm s
- 17 Cpg=1.00;//Specific heat capacity of gas in J/g K
- 18 ephsilonmf=0.45;//Void fraction at minimum fluidization condition
- 19 kg=2.61E-4;//Thermal concuctivity of gas in W/cm k
- 20 dp=0.036; // Particle size in cm
- 21 umf=6.5;//Velocity at minimum fluidization condition in cm/s
- 22 ut=150; // Terminal velocity in cm/s
- 23 db=0.4;//Equilibrium bubble size in cm
- 24 etah=1;//Efficiency of heat transfer
- 25 uo=[10;20;30;40;50];//Superficial gas velocity in cm /s
- 26 g=980;//Acceleration due to gravity in square cm/s^2 27
- 28 //CALCULATION

- 31 ubr=0.711*(g*db)^0.5;//Rise velocity of the bubble
 from Eqn.(6.7)
- 32 n=length(uo);
- 33 i=1;

```
34 while i<=n
```

```
35 x(i)=(uo(i)-umf)/(ubr*(1-ephsilonmf));//The term
delta/(1-epshilonf) after simplification
```

```
36 Nubed(i)=x(i)*[gammab*Nustar*etah+(phis*dp^2/(6*
kg))*Hbc];//Nusselt no. from Eqn.(36)
```

```
38 i=i+1;
```

```
39 <mark>end</mark>
```

```
40
```

```
41 //OUTPUT
42 printf('\nThe desired result is the relationship
      between Nubed and Rep which is in the form of a
      straight line y=mx+c');
43 printf('\nRep');
44 printf(' \ t \ t);
45 i=1;
46 while i<=n
       printf(' \ n\%f', Rep(i));
47
       printf(' \setminus t\%f', Nubed(i));
48
       i=i+1;
49
50 end
51 plot(Rep, Nubed);
52 xlabel("\operatorname{Rep}");
53 ylabel("Nubed");
54
                     _____
                                       END OF PROGRAM
55 //==
```

Scilab code Exa 11.4 Heating a Particle in a Fluidized Bed

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-11, Example 4, Page 274
4 //Title: Heating a Particle in a Fluidized Bed
5 //
```

6

Figure 11.2: Fitting Reported Heat Transfer Data with the Bubbling Bed Model

```
7 clear
8 clc
9
10 //INPUT
11 rhog=1.2; // Density of air in kg/m<sup>3</sup>
12 myu=1.8E-5; // Viscosity of gas in kg/m s
13 kg=2.6E-2; //Thermal concuctivity of gas in W/m k
14 dp=1E-4; // Particle size in m
15 rhos=8920; //Density of solids in kg/m<sup>3</sup>
16 Cps=390; // Specific heat capacity of the solid in J/
      kg K
17 ephsilonf=0.5; //Void fraction of the fluidized bed
18 umf=0.1; // Velocity at minimum fluidization condition
       in m/s
19 uo=0.1;//Superficial gas velocity in m/s
20 pi=3.14
21
22 //CALCULATION
23 to=0;//Initial temperature of the bed
24 T=100; // Temperature of the bed
25 \text{ t=0.99*T;} // \text{Particle temperature i.e. when it}
      approaches 1% of the bed temperature
26 mp=(pi/6)*dp^3*rhos;//Mass of the particle
27 A=pi*dp^2;//Surface area of the particle
28 Rep=(dp*uo*rhog)/myu;//Reynold's no. of the particle
29 Nubed=0.0178; // Nusselt no. from Fig. (6)
30 hbed1=(Nubed*kg)/dp;//Heat transfer coefficient of
      the bed
31 t1=(mp*Cps/(hbed1*A))*log((T-to)/(T-t));//Time
      needed for the particle approach 1 percentage of
      the bed temperature in case(a)
32 hbed2=140*hbed1; // Since from Fig. (6) Nup is 140
      times Nubed
33 t2=(mp*Cps/(hbed2*A))*log((T-to)/(T-t));//Time
      needed for the particle approach 1 percentage of
      the bed temperature in case(b)
34
35 //OUTPUT
```

```
81
```

36	<pre>printf('\nCase(a):Using the whole bed coefficient</pre>
	from Fig.(6)');
37	mprintf('\n\tTime needed for the particle approach 1
	percentage of the bed temperature is %fs',t1);
38	<pre>printf('\nCase(b):Uisng the single-particle</pre>
	coefficient of Eqn. (25) , also shown in Fig. (6) ');
39	mprintf('\n\tTime needed for the particle approach 1
	percentage of the bed temperature is %fs',t2);
40	
41	//END OF PROGRAM

Conversion of Gas in Catalytic Reactions

Scilab code Exa 12.1 Fine Particle Geldart A Bubbling Bed Reactor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 12, Example 1, Page 293
4 //Title: Fine Particle (Geldart A) Bubbling Bed
     Reactor
5 //
6
7 clear
8 clc
9
10 //INPUT
11 Kr=10;//rate constant in m^3 gas/m^3 cat s
12 D=2E-5;//Diffusion coefficient of gas in m^2/s
13 dpbar=68;//Average partilce size in micrometers
14 ephsilonm=0.5;//Void fraction of fixed bed
```

- 15 gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase
- 16 ephsilonmf=0.55;//Void fraction at minimum fluidization condition
- 17 umf=0.006;//Velocity at minimum fluidization condition in m/s
- 18 db=0.04;//Equilibrium bubble size in m
- 19 Lm=0.7; //Length of the bed in m
- 20 uo=0.1;//Superficial gas velocity in m/s
- 21 dbed=0.26;//Diameter of the bed in m
- 22 g=9.81;//Acceleration due to gravity in square m/s^2 23
- 24 //CALCULATION
- 25 ubr=0.711*(g*db)^0.5; //Rise velocity of bubble from Eqn.(6.7)
- 27 Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));//
 Gas interchange coefficient between bubble and
 cloud from Eqn.(10.27)
- 29 delta=uo/ub;//Fraction of bed in bubbles from Eqn .(6.29)
- 30 fw=0.6;//Wake volume to bubble volume from Fig.(5.8)
- 31 gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw
);//Volume of solids in cloud to that of the
 bubble from Eqn.(6.36)
- 32 gammae=((1-ephsilonmf)*((1-delta)/delta))-gammabgammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)

- 35 Krtou=Kr*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5)

```
36 Kf=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)
     +(1/(gammae*Kr)))));//Raction rate for fluidized
      bed from Eqn.(14)
  XA=1-\exp(-1*Kf*Lf/ub); //Conversion from Eqn.(16)
37
38
  //OUTPUT
39
40 mprintf('\nThe dimnesionless reaction rate group: %f
     ',Krtou);
41 mprintf('\nThe reaction rate for fluidized bed: %fs
     ^{-1}', Kf);
42 mprintf('\nConversion: %f',XA);
43
                        END OF PROGRAM
44 / =
```

Scilab code Exa 12.2 Commercial Sized Phthalic Anhydride Reactor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-12, Example 2, Page 298
4 //Title: Commercial-Sized Phthalic Anhydride Reactor
5 //
6 
7 clear
8 clc
9 
10 //INPUT
11 umf=0.005;//Velocity at minimum fluidization
condition in m/s
```

- 12 ephsilonm=0.52;//Void fraction of fixed bed
- 13 ephsilonmf=0.57;//Void fraction at minimum fluidization condition
- 14 DA=8.1E-6;//Diffusion coefficient of gas in m^2/s
- 15 DR=8.4E-6;//Diffusion coefficient of gas in m^2/s
- 16 Lm=5;//Length of the bed in m
- 17 dte=1;//Diameter of tube in m
- 18 Kr1=1.5;//rate constant in m^3 gas/ m^3 cat s
- 19 Kr3=0.01;//rate constant in m^3 gas/ m^3 cat s
- 20 gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase
- 21 uo=0.45;//Superficial gas velocity in m/s
- 22 db=0.05;//Equilibrium bubble size in m from Fig .(6.8)
- 23 ub=1.5;//Velocity of bubbles in bubbling bed in m/s from Fig.(6.11(a))
- 24 g=9.81;//Acceleration due to gravity in square m/s^2 25
- 26 //CALCULATION
- 27 ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
- 28 KbcA=4.5*(umf/db)+5.85*((DA^0.5*g^0.25)/db^(5/4));//
 Gas interchange coefficient between bubble and
 cloud from Eqn.(10.27)
- 30 KbcR=4.5*(umf/db)+5.85*((DR^0.5*g^0.25)/db^(5/4));//
 Gas interchange coefficient between bubble and
 cloud from Eqn.(10.27)
- 32 delta=uo/ub;//Fraction of bed in bubbles from Eqn .(6.29)
- 33 fw=0.6; //Wake volume to bubble volume from Fig.(5.8)
- 34 gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw
);//Volume of solids in cloud to that of the

bubble from Eqn. (6.36)

- 35 gammae=((1-ephsilonmf)*((1-delta)/delta))-gammabgammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)

- 38 Krtou=Kr1*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5)
- 39 Kr12=Kr1;//Since the reactions are a special case of Denbigh scheme
- 40 Kr34=Kr3;
- 41 Kf1=(gammab*Kr12+1/((1/KbcA)+(1/(gammac*Kr12+1/((1/
 KceA)+(1/(gammae*Kr12))))))*(delta/(1-ephsilonf)
);//Rate of reaction 1 for fluidized bed from Eqn
 .(14)
- 42 Kf3=(gammab*Kr34+1/((1/KbcR)+(1/(gammac*Kr34+1/((1/ KceR)+(1/(gammae*Kr34))))))*(delta/(1-ephsilonf));//Rate of reaction 2 for fluidized bed from Eqn .(14)
- 43 Kf12=Kf1;
- 44 Kf34=Kf3;
- 45 KfA=[[KbcR*KceA/gammac^2+(Kr12+KceA/gammac+KceA/ gammae)*(Kr34+KceR/gammac+KceR/gammae)]*delta* KbcA*Kr12*Kr34/(1-ephsilonf)]/[[(Kr12+KbcA/gammac))*(Kr12+KceA/gammae)+Kr12*KceA/gammac]*[(Kr34+ KbcR/gammac)*(Kr34+KceR/gammae)+Kr34*KceR/gammac]];//Rate of raection with respect to A from Eqn .(35)
- 46 KfAR=Kr1/Kr12*Kf12-KfA;//Rate of reaction from Eqn .(34)
- 47 tou=Lf*(1-ephsilonf)/uo;//Residence time from Eqn .(5)
- 48 XA=1-exp(-Kf1*tou); //Conversion of A from Eqn.(26)
- 49 XR=1-((KfAR/(Kf12-Kf34))*[exp(-Kf34*tou)-exp(-Kf12* tou)]);//Conversion of R from Eqn.(27)
- 50 SR=(1-XR)/XA;//Selectivity of R

```
51
52 //OUTPUT
53
54 mprintf('\nRate of reaction 1 for fluidized bed:%f',
     Kf1);
55 mprintf('\nRate of reaction 2 for fluidized bed:%f',
     Kf3);
  mprintf('\nRate of reaction 1 with respect to A:%f',
56
     KfA);
  mprintf('\nThe Conversion of Napthalene:%f
57
     percentage',XA*100);
58 mprintf('\nThe selectivity of Phthalic anhydride:%f
     percentage', SR*100);
59
                        END OF PROGRAM
60 //===
```

Scilab code Exa 12.3 Bubbling Bed Reactor for Intermediate Sized Reactor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-12, Example 3, Page 302
4 //Title: Bubbling Bed Reactor for Intermediate Sized
Reactor
5 //
```

6 7 clear 8 clc

```
9
10 //INPUT
11 Kr=3;//rate constant in m<sup>3</sup> gas/m<sup>3</sup> cat s
12 db=0.12; //Equilibrium bubble size in m
13 D=9E-5;//Diffusion coefficient of gas in m^2/s
14 dpbar=68; // Average partilce size in micrometers
15 ephsilonm=0.42; //Void fraction of fixed bed
16 uo=0.4; // Superficial gas velocity in m/s
17 Lm=0.8; //Length of the bed in m
18 ephsilonmf=0.45; //Void fraction at minimum
      fluidization condition
19 umf=0.21;//Velocity at minimum fluidization
     condition in m/s
20 gammab=0;//Ratio of volume of dispersed solids to
     that of bubble phase
21 g=9.81; // Acceleration due to gravity in square m/s^2
22
23 //CALCULATION
24 ubr=0.711*(g*db)^0.5; //Rise velocity of bubble from
     Eqn. (6.7)
25 ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds
       in Eqn.(6.8)
  ubstar=ub+3*umf; // Rise velocity of the bubble gas
26
     from Eqn.(45)
27 delta=(uo-umf)/(ub+umf);//Fraction of bed in bubbles
       from Eqn.(6.46)
28
  Kbe=4.5*(umf/db);//Interchange coefficient between
     bubble and emulsion from Eqn.(47)
  Lf=Lm*(1-ephsilonm)/((1-delta)*(1-ephsilonmf));//
29
     Length of fixed bed
30 phi=[(Kr/Kbe)^2*{(1-ephsilonmf)-gammab*(umf/ubstar)
     }^2+((delta/(1-delta))+umf/ubstar)^2+2*(Kr/Kbe)
     *{(1-ephsilonmf)-gammab*(umf/ubstar)}*((delta/(1-
     delta))-umf/ubstar)]^0.5;//From Eqn.(52)
31 q1=0.5*Kr/umf*{(1-ephsilonmf)+gammab*(umf/ubstar)
     }+0.5*Kbe/umf*{((delta/(1-delta))+umf/ubstar)-phi
```

```
89
```

32 q2=0.5*Kr/umf*{(1-ephsilonmf)+gammab*(umf/ubstar)

}; //From Eqn. (50)

}+0.5*Kbe/umf*{((delta/(1-delta))+umf/ubstar)+phi }; //From Eqn. (50) 33 si1=0.5-0.5*((1-delta)/delta)*[umf/ubstar-Kr/Kbe *{(1-ephsilonmf)-gammab*(umf/ubstar)}-phi];//From Eqn. (51) 34 si2=0.5-0.5*((1-delta)/delta)*[umf/ubstar-Kr/Kbe *{(1-ephsilonmf)-gammab*(umf/ubstar)}+phi];//From Eqn. (51) 35 XA=1-(delta/(1-delta))*(1/(uo*phi))*[(1-si2)*{si1* $delta*ubstar+(1-delta)*umf}*exp(-q1*Lf)+(si1-1)*{$ si2*delta*ubstar+(1-delta)*umf}*exp(-q2*Lf)];// Conversion from Eqn. (49) 36 Krtou=Kr*Lm*(1-ephsilonm)/uo;//Dimensionless reaction rate group from Eqn.(5)3738 //OUTPUT 39 mprintf('\nCOmparing the values of 1-XA = %f and Krtou = % f with Fig.(6), we can conlcude that this operating condition is shown as point A in Fig.(3)', 1-XA, Krtou); 40 printf('\nLine 2 gives the locus of conversions for different values of the reaction rate group for this fluidized contacting'); 41 END OF PROGRAM 42 //==

Scilab code Exa 12.4 Reaction in the Slow Bubble Regime

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
```

 $\mathbf{2}$

```
3 // Chapter - 12, Example 4, Page 305
4 // Title: Reaction in the Slow Bubble Regime
5 //
6
7 clear
8 clc
9
10 //INPUT
11 uo=0.25;//Superficial gas velocity in m/s
12 db=0.025; // Equilibrium bubble size in m
13 Kr=1.5;//rate constant in m<sup>3</sup> gas/m<sup>3</sup> cat s
14 umf=0.21;//Velocity at minimum fluidization
      condition in m/s
15 Lm=0.8; //Length of the bed in m
16 ephsilonm=0.42; //Void fraction of fixed bed
17 g=9.81; // Acceleration due to gravity in square m/s^2
18
19 //CALCULATION
20 ubr=0.711*(g*db)^0.5; //Rise velocity of bubble from
     Eqn. (6.7)
21 ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds
       in Eqn. (6.8)
  delta=(uo-umf)/(ub+2*umf);//Fraction of bed in
22
      bubbles from Eqn.(55) since ub/umf<<1
23 XA=1-exp(-Kr*Lm*((1-ephsilonm)/uo)*(umf/uo)*(1-delta
     )); // Conversion from Eqn. (57)
  Krtou=Kr*Lm*(1-ephsilonm)/uo;//Dimensionless
24
      reaction rate group from Eqn.(5)
25
26
27
  //OUTPUT
28 mprintf('\nComparing the values of 1-XA = \%f and
      Krtou = \%f with Fig.(6), we can conclude that
      this operating condition is shown as point B in
      Fig.(3)',1-XA,Krtou);
29 printf('\nLine 3 gives the locus of conversions for
```

```
different values of the reaction rate group for
      this fluidized contacting');
30
                         END OF PROGRAM
31 / =
  Scilab code Exa 12.5 Conversion in the Freeboard of a Reactor
1 //Kunii D., Levenspiel O., 1991. Fluidization
     Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 12, Example 5, Page 307
4 // Title: Conversion in the Freeboard of a Reactor
5 //
6
7 clear
8 clc
9
10 //INPUT
11 uo=0.3; // Superficial gas velocity in m/s
12 Lf=1.1; //Length of fixed bed in m
13 Hf=1.2;//Length of freeboard in m
14 db=0.04; // Equilibrium bubble size in m
15 umf=0.006;//Velocity at minimum fluidization
     condition in m/s
16 ephsilonmf=0.55;//Void fraction at minimum
      fluidization condition
17 gammab=0.005; // Ratio of volume of dispersed solids
     to that of bubble phase
18 Kr=10;//rate constant in m^3 gas/m^3 cat s
```

- 19 D=2E-5; // Diffusion coefficient of gas in m^2/s
- 20 g=9.81;//Acceleration due to gravity in square m/s^2 21 $\,$
- 22 //CALCULATION
- 23 ubr=0.711*(g*db)^0.5;//Rise velocity of bubble from Eqn.(6.7)
- 24 ub=uo-umf+ubr;//Velocity of bubbles in bubbling beds in Eqn.(6.8)
- 25 Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));// Gas interchange coefficient between bubble and cloud from Eqn.(10.27)
- 26 Kce=6.77*((D*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5; //Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)
- 27 delta=uo/ub;//Fraction of bed in bubbles from Eqn .(6.29)
- 28 ephsilonf=1-(1-delta)*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20)
- 29 fw=0.6; //Wake volume to bubble volume from Fig. (5.8)
- 30 gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw
);//Volume of solids in cloud to that of the
 bubble from Eqn.(6.36)
- 31 gammae=((1-ephsilonmf)*((1-delta)/delta))-gammabgammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)
- 32 Kf=(gammab*Kr)+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce) +(1/(gammae*Kr)))));//Raction rate for fluidized bed from Eqn.(14)
- 34 etabed=(Kf*delta)/(Kr*(1-ephsilonf));//Reactor efficiency from Eqn.(22)
- 35 $a=0.6/uo//Since uoa = 0.6 s^{-1}$ from Fig.(5)
- 36 adash=6.62; //From Fig.(5)
- 37 XA1=1-1/(exp(((1-ephsilonf)*Kr/(uo*a))*[(1-exp(-a*Hf
))-((1-etabed)/(1+(adash/a)))*(1-exp(-(a+adash)*
 Hf))]));//Conversion from Eqn.(64)
- 38 XA2=1-(1-XA1)*(1-XA);//Conversion at the exit from

```
Eqn. (64)
```

```
39
40 //OUTPUT
41 printf('\nThe conversion:');
42 mprintf('\n\tAt the top pf the dense bed: %f
        percentage',XA*100);
43 mprintf('\n\tAt the reactor exit: %f percentage',XA2
        *100);
44
45 //Disclaimer: The value of kf deviate from the one
        given in textbook, where as it is close to the
        value obtained by manual calculation.
46 //______END OF PROGRAM
```

Heat Transfer between Fluidized Beds and Surfaces

Scilab code Exa 13.1 h on a Horizontal Tube Bank

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 13, Example 1, Page 331
4 // Title: h on a Horizontal Tube Bank
5 //
6
7 clear
8 clc
9
10 //INPUT
11 dp=57; // Particle size in micrometer
12 rhos=940;//Density of solids in kg/m<sup>3</sup>
13 Cps=828; // Specific heat capacity of the solid in J/
      kg K
14 ks=0.20;//Thermal conductivity of solids in W/m k
```

```
15 kg=0.035; //Thermal concuctivity of gas in W/m k
16 umf=0.006;//Velocity at minimum fluidization
                condition in m/s
17 ephsilonmf=0.476; //Void fraction at minimum
                fluidization condition
18 do1=0.0254;//Outside diameter of tube in m
19 L=1;
20 uo=[0.05;0.1;0.2;0.35];//Superficial gas velocity in
                 m/s
21 nw=[2;3.1;3.4;3.5];//Bubble frequency in s^-1
22 g=9.81; // Acceleration due to gravity in square m/s^2
23
24
25 //CALCULATION
26 dte=4*do1*L/2*L;//Hydraulic diameter from Eqn.(6.13)
27 db=(1+1.5)*0.5*dte;//Rise velocity of the bubble
28 ubr=0.711*(g*db)^0.5; //Rise velocity of bubble from
               Eqn. (6.7)
29 phib=0.19; //From Fig.(15) for ks/kg=5.7
30 ke=ephsilonmf*kg+(1-ephsilonmf)*ks*[1/((phib*(ks/kg)
               )+(2/3))]; // Effective thermal conductivity of bed
                  from Eqn.(3)
31 n=length(uo);
32 i=1;
33 while i<=n
34
                   ub(i)=uo(i)-umf+ubr;//Velocity of bubbles in
                           bubbling beds in Eqn. (6.8)
                   delta(i)=uo(i)/ub(i);//Fraction of bed in
35
                           bubbles from Eqn.(6.29)
                  h(i)=1.13*[ke*rhos*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*(1-ephsilonmf)*Cps*nw(i)*
36
                           delta(i))]^0.5; //Heat transfer coefficinet
                           from Eqn.(18)
37
                   i = i + 1;
38 end
39
40 //OUTPUT
41 printf('\nSuperficial gas velocity(m/s)');
42 printf('\tHeat transfer coefficient (W/m^2 k)');
```

```
43 i=1;
44 while i<=n
45 mprintf('\n%f',uo(i));
46 mprintf('\t\t\t%f',h(i));
47 i=i+1;
48 end
49
50 //_____END OF PROGRAM
```

Scilab code Exa 13.2 Effect of Gas Properties on h

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-13, Example 2, Page 332
4 //Title: Effect of Gas Properties on h
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 dp=80;//Particle size in micrometer
12 rhos=2550;//Density of solids in kg/m^3
13 Cps=756;//Specific heat capacity of the solid in J/
kg K
14 ks=1.21;//Thermal conductivity of solids in W/m k
15 kg=[0.005;0.02;0.2];//Thermal concuctivity of gas in
```

W/m k

```
16 ephsilonmf=0.476; //Void fraction at minimum
                   fluidization condition
17
18 //CALCULATION
19 delta=0.5*(0.1+0.3); //For a gently fluidized bed
20 nw=3; //Bubble frequency in s^{-1} from Fig.(5.12) at
                   about 30cm above the distributor
21 n=length(kg);
22 i=1;
23 while i<=n
                       x(i)=ks/kg(i);//To find different values of ks/
24
                                kg
25
                       i = i + 1;
26 end
27 phib=[0.08;0.10;0.20];//From Fig.(15) for different
                   values of ks/kg
28 i=1;
29 while i<=n
                       ke(i)=ephsilonmf*kg(i)+(1-ephsilonmf)*ks*[1/((
30
                                phib(i)*(ks/kg(i)))+(2/3))];//Effective
                                 thermal conductivity of bed from Eqn.(3)
                       h1(i)=1.13*[ke(i)*rhos*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*nw*(1-ephsilonmf)*Cps*
31
                                delta)]^0.5;//Heat transfer coefficinet from
                                Eqn. (18)
32
                       i = i + 1;
33 end
34
35 //OUTPUT
36 printf('\nThermal conductivity of Gas(W/m K))');
37 printf('tMax. heat transfer coefficient(W/m^2 k)');
38 i=1;
39 while i<=n
                       \texttt{mprintf}(`\backslash n\%f`,\texttt{kg(i)});
40
                       mprintf(' \setminus t \setminus t \setminus t\%f', h1(i));
41
42
                       i = i + 1;
43 end
44
                                                                                                                                       =END OF PROGRAM
45 //=
```

Scilab code Exa 13.3 Effect of Particle Size on h

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-13, Example 3, Page 332
4 //Title: Effect of Particle Size on h
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 rhos=2700;//Density of solids in kg/m<sup>3</sup>
12 Cps=755; // Specific heat capacity of the solid in J/
     kg K
13 ks=1.2;//Thermal conductivity of solids in W/m k
14 kg=0.028; //Thermal concuctivity of gas in W/m k
15 ephsilonmf=0.476; //Void fraction at minimum
      fluidization condition
16 dp1=10E-3; // Particle size for which h=hmax in m
17 hmax=250;//Max. heat transfer coefficient in W/m^2 K
18 nw=5;//Bubble frequency in s^{-1}
19 delta=0.1; // Fraction of bed in bubbles
20 deltaw=0.1;//Fraction of bed in bubbles in wall
      region
21 dp=2E-3;//Diameter of particle in m
22
```

```
23 //CALCULATION
```

```
24 x=ks/kg;
```

```
25 \text{ phib}=0.11;
```

```
26 \text{ phiw}=0.17;
```

```
27 ke=ephsilonmf*kg+(1-ephsilonmf)*ks*[1/((phib*(ks/kg)
)+(2/3))];//Effective thermal conductivity of bed
from Eqn.(3)
```

- 28 hpacket=1.13*[ke*rhos*(1-ephsilonmf)*Cps*nw/(1deltaw)]^0.5;//Heat transfer coefficient for the packet of emulsion from Eqn.(11)
- 29 ephsilonw=ephsilonmf;//Void fraction in the wall region
- 30 kew=ephsilonw*kg+(1-ephsilonw)*ks*[(phiw*(ks/kg)
 +(1/3))^-1];//Effective thermal conductivity in
 the wall region with stagnant gas from Eqn.(4)
- 31 y=(2*kew/dp1)+(hmax*hpacket)/(((1-deltaw)*hpacket)hmax);//Calculating the term alphaw*Cpg*rhog*uo from Eqn.(16) by rearranging it
- 32 h=(1-deltaw)/((2*kew/dp+y*(dp/dp1)^0.5)^-1+hpacket ^-1);//Heat transfer coefficient from Eqn.(11) by using the value of y

```
33
```

```
34 //OUTPUT
```

- 35 mprintf('\nThe heat transfer coefficient for paricle size of %fm = %fW/m^2 K',dp,h);
- 36 37 //=____END OF PROGRAM

Scilab code Exa 13.4 Freeboard Heat Exchange

1 //Kunii D., Levenspiel O., 1991. Fluidization Engineering(II Edition). Butterworth-Heinemann,

```
MA, pp 491
2
3 //Chapter-13, Example 4, Page 334
4 //Title: Freeboard Heat Exchange
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 Hf=4; //Height of freeboard in m
12 uo=2.4;//Superficial gas velocity in m/s
13 ho=350;//Heat transfer coefficient at the bottom of
      freeboard region in W/m<sup>2</sup> K
14 hg=20; //Heat transfer coefficient in equivalent gas
      stream, but free of solids in W/m<sup>2</sup> K
15
16 //CALCULATION
17 zf=[0;0.5;1;1.5;2;2.5;3;3.5;Hf];//Height above the
      top of the dense bubbling fluidized bed
18 hr=0; //Assuming heat transfer due to radiation is
      negligible
19 a=1.5/uo;//Since decay coefficient from Fig.(7.12),
      a * uo = 1.5 s^{-1}
20 n=length(zf);
21 i=1;
22 while i<=n
23
       h(i)=(hr+hg)+(ho-hr-hg)*exp(-a*zf(i)/2);//Heat
          transfer coefficient from Eqn.(24) for zf=Hf
24
       i = i + 1;
25 end
26 hbar=(hr+hg)+2*(ho-hr-hg)*(1-exp(-a*Hf/2))/(a*Hf);//
      Mean heat transfer coefficient for the 4-m high
      freeboard from Eqn.(26)
27
28 //OUTPUT
```

```
29 printf('\nThe required relationship is h(W/m^2 K) vs
     . zf(m) as in Fig.(9a)');
30 printf('\nHeight above the dense bubbling fluidized
     bed (m) ) ');
31 printf('\tHeat transfer coefficient (W/m^2 k)');
32 i=1;
33 while i<=n
      mprintf(' \setminus n\%f', zf(i));
34
      35
      i=i+1;
36
37 end
38 mprintf('\n\nThe mean heat transfer coefficient for
     the 4-m high freeboard =%fW/m^2 K', hbar);
39
             END OF PROGRAM
```

The RTD and Size Distribution of Solids in Fluidized Beds

Scilab code Exa 14.1 Flow with Elutriation

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 14, Example 1, Page 343
4 // Title: Flow with Elutriation
5 //
6
7 clear
8 clc
9
10 //INPUT
11 Fo=2.7; //Feed rate in kg/min
12 Fof=0.9; //Feed rate of fines in feed in kg/min
13 Foc=1.8; //Feed rate of coarse in feed in kg/min
14 W=17; //Bed weight in kg
15 kf=0.8; // Elutriation of fines in \min^{-1}
```

```
16 kc=0.0125; // Elutriation of coarse in min<sup>-1</sup>
17
18 //CALCULATION
19 F1guess=1;//Guess value of F1
20 function[fn]=solver_func(F1)//Function defined for
      solving the system
21
       fn=F1-(Fof/(1+(W/F1)*kf))-(Foc/(1+(W/F1)*kc));//
          Eqn. (17)
22 endfunction
23 [F1]=fsolve(F1guess,solver_func,1E-6);//Inbuilt
      function fsolve to solve for F1
24 F1f=Fof/(1+(W/F1)*kf);//Flow rate of fines in
      entrained streams from Eqn.(16)
25
  F1c=Foc/(1+(W/F1)*kc);//Flow rate of coarse in
      entrained streams from Eqn. (16)
  F2f=Fof-F1f; //Flow rate of fines in overflow streams
26
      from Eqn. (9)
  F2c=Foc-F1c;//Flow rate of coarse in overflow
27
      streams from Eqn.(9)
  tbarf=1/((F1/W)+kf);//Mean residence time of fines
28
      from Eqn.(12)
  tbarc=1/((F1/W)+kc);//Mean residence time of coarse
29
     from Eqn.(12)
30
31 //OUTPUT
32 mprintf('\nFlow rate in entrained stream:\n\tFines:
      %fkg/min\n\tCoarse: %fkg/min', F1f, F1c);
33 mprintf('\nFlow rate in overflow stream:\n\tFines:
      % fkg/min \langle tCoarse: \% fkg/min', F2f, F2c \rangle;
34 mprintf('\nMean residence time:\n\tFines:\%fmins\n\
      tCoarse: %fmins', tbarf, tbarc);
35
                       END OF PROGRAM
36 / =
```

Scilab code Exa 14.2 Flow with Elutriation and Change in Density of Solids

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-14, Example 2, Page 344
4 //Title: Flow with Elutriation and Change in Density
of Solids
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 dt=4;//Diameter of reactor in m
12 ephsilonm=0.4;//Void fraction of static bed
13 rhos=2500;//Density of solid in the bed in kg/m^3
14 Lm=1.2; //Height of static bed in m
15 Fo=3000; // Feed rate in kg/hr
16 beta1=1.2; //Increase in density of solids
17 dp
     = [3;4;5;6;7;8;9;10;11;12;3;14;16;18;20;22;24;26;28;30]*10^{-2};
     //Size of particles in mm
18 po
     = [0; 0.3; 0.8; 1.3; 1.9; 2.6; 3.5; 4.4; 5.7; 6.7; 7.5; 7.8; 7.5; 6.3; 5.0; 3.6; 2
     //Size distribution of solids in mm^{-1}
19 k
     //Elutriation constant in s^{-1}
20 pi=3.14;
```

```
21
22 //CALCULATION
23 W=(pi/4*dt<sup>2</sup>)*Lm*(1-ephsilonm)*rhos;//Weight of
      solids in bed
24 n=length(dp);
25 i=1;
26 F1guess=1000; //Guess value for F1
27 F1c=2510:10:2700;
28 while i<=n
       function[fn]=solver_func(F1)//Function defined
29
          for solving the system
           if k(i)==0
                        then
                                 x(i)=0; break
30
31
                        else
                                 x(i) = (po(i) / (W * k(i) / F1))
                            *log(1+(W*k(i)/F1));
32
           end
       fn=F1/(Lm*Fo)-x(i);
33
       endfunction
34
       [F1(i)]=fsolve(F1guess, solver_func, 1E-6); // Using
35
           inbuilt function for for solving Eqn. (20)
           for F1
36
       c(i) = F1c(i) / (Lm * Fo);
       if F1(i)==0 then a(i)=0;
37
                 a(i)=(po(i)/(W*k(i)/F1(i)))*log(1+(W*k(
38
       else
          i)/F1(i)));
39
       end
40
       i=i+1;
41 end
42 plot(F1,a,F1,c);
43 xtitle('F1 vs a,c', 'F1', 'a,c');
44 F1n=2500; //The point were both the curves meet
45 F2=beta1*Fo-F1n;//Flow rate of the second leaving
      stream
46 j=1;
47 m=length(dp);
48 while j<=m
       p1(j)=(1/F1n)*((Fo*po(j))/(1+(W/F1n)*k(j)));//
49
          Size distribution of stream 1 in mm^{-1} from
          Eqn. (16)
```

```
p2(j)=k(j)*W*p1(j)/F2;//Size distribution of
50
          stream 2 in mm^{-1} from Eqn.(7)
       if p1(j)==0 & p2(j)==0 then tbar(j)=0;
51
       else if p1(j)==0 then tbar(j)=(W*p1(j))/(F2*p2
52
          (j));
           else if p2(j)==0 then tbar(j)=(W*p1(j))/(
53
              F1n*p1(j));
                else tbar(j)=(W*p1(j))/(F1n*p1(j)+F2*p2(
54
                   j));//Average time in hr from Eqn
                   (11)
55
                end
56
           end
57
       end
58
       j=j+1;
59 end
60
61 //OUTPUT
62 printf('\nFlow rate of stream 1:%fkg/hr',F1n);
63 printf('\nFlow rate of stream 2:\%fkg/hr',F2);
64 j=1;
65 mprintf('\ntbar(hr)');
66 while j<=m
       mprintf(' \setminus n\%f', tbar(j));
67
       j = j + 1;
68
69 end
70
                                   END OF PROGRAM
71 //=
```

72 //DISCLAIMER: The value obtained for that is deviating highly form the one given in textbook. However, the value obtained by manual calculation is close to the ones obtained from the program .

Figure 14.1: Flow with Elutriation and Change in Density of Solids

Scilab code Exa 14.3 Single Size Feed of Shrinking Particles

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-14, Example 3, Page 351
4 //Title: Single-Size Feed of Shrinking Particles
5 //
6
```

```
7 clear
```

```
8 clc
9
10 //INPUT
11 dp=1;//Particle size in mm
12 Fo=10; //Feed rate in kg/min
13 k=0.1;//Particle shrinkage rate in mm/min
14
  //CALCULATION
15
16 R=k/2;//Particle shrinkage rate in terms of radius
17 W=(Fo*dp/2)/(4*R);//Bed weight from Eqn.(42)
18
19 //OUTPUT
20 printf('\nWeight of bed:%fkg',W);
21
                            END OF PROGRAM
22 //==
```

Scilab code Exa 14.4 Wide Size Distribution of Shrinking Particle

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-14, Example 4, Page 352
4 //Title: Wide Size Distribution of Shrinking
Particle
5 //
6
7 clear
8 clc
9
```

```
10 //INPUT
11 dpi
      = [1.05; 0.95; 0.85; 0.75; 0.65; 0.55; 0.45; 0.35; 0.25; 0.15; 0.05];
      //Mean size in mm
12 Fo
      = [0; 0.5; 3.5; 8.8; 13.5; 17.0; 18.2; 17.0; 13.5; 7.3; 0] * 10^{-2};
      //Feed rate in kg/s
13 k=[0;0;0;0;0;0;0;0;2.0;12.5;62.5]*10<sup>-5</sup>;//
      Elutriation constant in s^{-1}
14 R=-1.58*10<sup>-5</sup>; //Rate of particle shrinkage in mm/s
15 deldpi=0.1; // Size intervals in mm
16
17 //CALCULATION
18 n=length(dpi);
19 m=2;//Starting with the largest value size interval
      that contains solids
20 W(m-1) = 0;
21 while m<=n
        W(m) = (Fo(m) - R * W(m-1) / deldpi) / (k(m) - R / deldpi - 3 * R / deldpi)
22
           dpi(m)); //From Eqn.(33)
23
       m = m + 1;
24 end
25 Wt=sum(W); // Total sum
26
27 //OUTPUT
28 printf('\nTotal mass in the bed:%fkg',Wt);
29
                                END OF PROGRAM
30 //=-----
```

Scilab code Exa 14.5 Elutriation and Attrition of Catalyst

1 //Kunii D., Levenspiel O., 1991. Fluidization

```
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
3 //Chapter-14, Example 5, Page 353
4 //Title: Elutriation and Attrition of Catalyst
5 //
```

```
7 clear
8 clc
9
10 //INPUT
11 dpi = [0.17; 0.15; 0.13; 0.11; 0.09; 0.07; 0.05; 0.03; 0.01];
     //Mean size of particles in mm
12 a=[0;0.95;2.45;5.2;10.1;23.2;35.65;20.0;2.45]*10<sup>-2</sup>;
     //Feed composition Fo(dpi)/Fo
13 y=[0;0;0;0;0;0;0.625;10.225;159.25]*10<sup>-6</sup>;//
      Elutriation and cyclone efficiency k(dpi)(1-eta(
      dpi))
14 F=0.01; //Rate at which solids are withdrawn in kg/s
15 W=40000; //Weight of bed in kg
16 dp1=0.11//Initial size in mm
17 dp2=0.085; // Size after shrinking in mm
18 dpmin=0.01;//Minimum size in mm
19 deldpi=2*10^-2; // Size inerval in mm
20 t=20.8; //Time in days
21 si=1;
22
23 //CALCULATION
24 kdash=log((dp1-dpmin)/(dp2-dpmin))/(t*24*3600);//
      Rate of particle shrinkage from Eqn.(24)
25 n=length(dpi);
26 m = 2;
27 Fo=0.05; // Initial value of Fo
28 F1(m-1)=0;
29 s=0;
30 c=0;
```

```
31 t = 1E - 6;
32 while m<=n
                                  R(m)=-kdash*(dpi(m)-dpmin);//Rate of size change
33
                                   x(m) = (a(m) * Fo - W * R(m-1) * F1(m-1) / deldpi) / (F+(W*y(m-1)) + F1(m-1)) / deldpi) / (F+(W*y(m-1))) / (F+(
34
                                                 ))-(W*R(m)/deldpi)-3*W*R(m)/dpi(m));//Eqn
                                                  (34)
35
                                  F1(m) = x(m) * F;
                                  c=c+x(m);
36
37
                                  m = m + 1;
                                  if abs(c-1) <t then break
38
39
                                   end
40
                                  Fo=Fo+0.0001; // Incrementing Fo
41 end
42
43 //OUTPUT
44 mprintf('\nFeed rate with deldpi=%fmm is %fg/hr',
                            deldpi,Fo);
45 i=1;
46 mprintf('\nBed composition');
47 while i<=n
                                   printf('\n%f',x(i)*100);
48
                                   i=i+1;
49
50 \text{ end}
51
                                                                                                               END OF PROGRAM
```

Chapter 15

Circulation Systems

Scilab code Exa 15.1 Circulation Rate when Deactivation Controls

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-15, Example 1, Page 369
4 //Title: Circulation Rate when Deactivation Controls
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 thalf=1;//Half life of catalyst in s
12 F=960;//Feed rate of oil in tons/day
13 W=50;//Weight of the bed in tons
14 a=0.5;//Activity after time equal to half life
15 abar=0.01;//Average activity of the catalyst
16
17 //CALCULATION
```

```
18 Ka=-log(a)/thalf;//Rate constant is s^-1, assuming I
order kinetics from Eqn.(12)
19 Fs=Ka*W*abar/(1-abar);//Circulation rate of solids
from Eqn.(16)
20 x=(Fs*60*60*24)/F;//Circulation rate per feed of oil
21
22 //OUTPUT
23 mprintf('\nSolid recirculation per feed of oil =
%ftons of solid circulated/ton feed oil',x);
24
25 //______END OF PROGRAM
```

Scilab code Exa 15.2 Circulation Rate when Heat Duty Controls

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-15, Example 2, Page 370
4 //Title: Circulation Rate when Heat Duty Controls
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 deltaHr1=1260;//Enthalpy change during endothermic
    reaction in kJ/kg
12 deltaHr2=-33900;//Enthal[y change during exothermic
    reaction in kJ/kg
```

```
13 H1=703; //Enthalpy of feed oil in kJ/kg
14 T1=260; // Temperature of feed oil in degree celcius
15 H3=1419; //Enthalpy of cracked product in kJ/kg
16 T3=500; // Temperature of cracked product in degree
      celcius
17 Ta=20; // Temperature of entering air in degree
      celcius
18 Cpa=1.09;//Specific heat of entering air in kJ/kg K
19 Cpf=1.05; // Specific heat of flue gases in kJ/kg K
20 Cps=1.01; // Specific heat of solids in kJ/kg K
21 Cpv=3.01; // Specific heat of vaporized feed in kJ/kg
     Κ
22 T4 = [520; 540; 560; 580; 600; 620; 640; 660]; // Temperature
      of flue gas in degree celcius
23 V=22.4;//Volume of 1 mole of Carbon dioxide gas in N
     -m^3
24 M=12; // Molecular weight of carbon in kg
25 rho=1.293;//Density of carbon dioxide gas in kg/N-m
      ^{3}
26 xa=0.21; //Mass fraction of oxygen in air
27 betac=0.07;//Mass fraction of carbon
28
29 //CALCULATION
30 \text{ n=length}(T4);
31 i=1;
32
33 x2min=betac*(V*rho/(M*xa));//Minimum amount of air
      required for complete combustion
34 while i<=n
       x1(i)=(deltaHr1+0.93*H3-H1)/(Cps*(T4(i)-T3));//
35
          Fs/F1 by simplifying the overall energy
          balance
36
       x2(i) = [(0.07*(-deltaHr2)-(deltaHr1+0.93*H3-H1))]
          /(Cpf*(T4(i)-Ta))] - 0.07; //F2/F1 by
          simplifying the energy balance for
          regenerator
       if x2(i)>x2min then excess_air(i)=(x2(i)-x2min)/
37
          x2min; //Excess air used
```

```
else excess_air(i)=0;
38
39
        end
40
        i = i + 1;
41 end
42
43 //OUTPUT
44 printf('\nT4(degree celcius)');
45 printf(' \ Fs/F1');
46 printf('\t t T^2/F1');
47 printf('\t\tExcess air(percentage)');
48 i=1;
49 while i<=n
50
        mprintf(' \setminus n\%f', T4(i));
       mprintf(' \setminus t \setminus t\%f', x1(i));
51
        mprintf(' \setminus t\%f', x2(i));
52
        mprintf('\t^{\%}f', excess_air(i) *100);
53
        i = i + 1;
54
55 \text{ end}
56
57 //Disclaimer: The values of F2/F1 obtained by manual
       calculation has close correspondance to the ones
       obtained as the output, whereas it deviates
      largely from the values given in textbook.
58
59 //=
                                            END OF PROGRAM
```

Scilab code Exa 15.3 Aeration of Fine Particle Downcomer

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
```

 $\mathbf{2}$

```
3 // Chapter - 15, Example 3, Page 379
4 // Title: Aeration of Fine Particle Downcomer
5 //
6
7 clear
8 clc
9
10 //INPUT
11 Fs=100; //Solid flowrate in kg/s
12 ephsilon1=0.55;
13 ephsilon2=0.5;
14 p1=120; // Pressure at upper level in kPa
15 rhos=1000; // Density of solid in kg/m<sup>3</sup>
16 rhog=1;//Density of gas in kg/m<sup>3</sup>
17 gc=1; // Conversion factor
18 g=9.81; // Acceleration due to gravity in m/s^2
19 di=0.34;//Diameter of downcomer in m
20 pi=3.14;
21
22 //CALCULATION
23 x=(ephsilon1/ephsilon2)*((1-ephsilon2)/(1-ephsilon1)
     );//To find pressure at lower level using Eqn
      (30)
24 p2=x*p1; // Pressure at lower level using Eqn.(30)
25 deltap=p2-p1;
26 ephsilonbar=0.5*(ephsilon1+ephsilon2);
27 deltah=(deltap*10^3*gc)/(rhos*(1-ephsilonbar)*g);//
      Static head height from Eqn. (28)
28 At=0.25*pi*di^2;//Area of downcomer
29 Gs=Fs/At;//Flux of solids in downcomer
30 Gg=Gs*(ephsilon1/(1-ephsilon1))*(rhog/rhos)*(x-1);//
      Required gas aeration rate from Eqn.(31)
31 Fg=Gg*At;//Flow rate of gas required
32
33 //OUTPUT
34 mprintf('\nThe required flow rate of gas required
```

```
for location of %fm below downcomer is %fkg/s',
      deltah,Fg);
35
                                 END OF PROGRAM
36 //=
   Scilab code Exa 15.4 Circulation in Side by Side Beds
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
\mathbf{2}
3 // Chapter - 15, Example 4, Page 380
4 // Title: Circulation in Side-by-Side Beds
5 //
6
7 clear
8 clc
9
10 //INPUT
11 Fs=600; //Solid circulation rate in kg/s
12 dpbar=60; //Mean size of solids in micrometer
13 pA=120;//Pressure in vessel A in kPa
14 pB=180;//Pressure in vessel B in kPa
15 LfA=8;//Bed height in vessel A in m
16 LfB=8;//Bed height in vessel B i m
17 //Bulk densities in kg/m<sup>3</sup>
18 rho12=100;
19 rho34=400;
```

```
20 \text{ rho45=550};
```

```
21 \text{ rho67=200};
```

```
22 rho78=200;
```

- 23 rho910=400;
- 24 rho1011=400;
- 25 rho1112=550;
- 26 rho13=100;
- 27 deltapdA=7;//Pressure drop across the distributor in regenerator in kPa
- 28 deltapdB=8;//Pressure drop across the distributor in reactor in kPa
- 29 deltap12=(9+4);//Friction loss and pressure difference required to accelerate the solids in transfer lines in kPa
- 30 deltap78=(15+3);//Friction loss and pressure difference required to accelerate the solids in transfer lines in kPa
- 31 deltap45=20;//Friction loss across the reactor's stripper downcomer in kPa
- 32 deltap1112=4;//Friction loss across the regenerator' s downcomer in kPa
- 33 deltapvA=5;//Pressure drop assigned for the control valve in regenerator in kPa
- 34 deltapvB=15;//Pressure drop assigned for the control valve in reactor in kPa
- 35 deltah12=15; // Height of the riser in m
- 36 deltah86=30;//Height of the riser in m

```
37 deltah1011=7;//Height difference h10-h11 in m
```

```
38 g=9.81; // Acceleration due to gravity in m/s^2
```

```
39 gc=1;//Conversion factor
```

```
40 pi=3.14;
```

```
41
```

```
42 //CALCULATION
```

```
43 Gs=900; //From Fig.(8), to find dt
```

```
44 dt=sqrt((4/pi)*Fs/Gs);//Diameter of the downcomer
```

```
45 //Height of downcomer A from Eqn.(7)
```

```
46 deltahA=(1/(rho1112*g))*[(pB-pA)*gc*(10^3)+(deltap12
+deltapdB+deltap1112+deltapvA)*gc*10^3-rho12*g*(-
deltah12)-rho34*g*(-LfB)-rho1011*g*deltah1011];
```

```
47 //Height of downcomer B from Eqn.(8)
```

```
48 deltahB=(1/(rho45*g))*[-(pB-pA)*gc*10^3+(deltap45+
deltapvB+deltap78+deltapdA)*gc*10^3+rho78*g*
deltah86+rho910*g*LfA];
49
50 //OUTPUT
51 printf('\nHeight of downcomer for:');
52 mprintf('\n\tRegenerator:%fm',deltahA);
53 mprintf('\n\tReactor:%fm',deltahB);
54
55 //______END OF PROGRAM
```

Scilab code Exa 15.5 Steam Seal of a Coarse Particle Downcomer

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-15, Example 5, Page 381
4 //Title: Steam Seal of a Coarse Particle Downcomer
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 dp=10^-3; // Particle diameter in m
12 dt=0.8; // Diameter of reactor in m
13 us=0.15; // Descend velocityo of solids in m/s
14 L=15; // Length of downcomer
15 deltap1=300; // Pressure in lower vessel in kPa
```

```
16 deltap2=240; // Pressure in upper vessel in kPa
17 phis=0.8; // Sphericity of solids
18 ephsilonm=0.45;//Void fraction of bed
19 myu=4E-5; // Viscosity of gas in kg/m s
20 rhogl=2; //Density of gas in lower vessel in kg/m<sup>3</sup>
21 rhogu=1.6; //Density of gas in upper vessel in kg/m<sup>3</sup>
22 rhogbar=0.5*(rhogl+rhogu);//Average density in kg/m
      ^{\circ}3
23 gc=1; // Conversion factor
24
25 //CALCULATION
26 / (a) Without steam seal
27 deltapfr=(deltap1-deltap2)*10^3; // Frictional
      pressure drop between two levels in Pa
28 deluguess=50; //Guess value of deltau
29 function[fn]=solver_func(delu)//Function defined for
       solving the system
       fn=(deltapfr*gc/L) -(150*(1-ephsilonm)^2*myu*delu
30
          /(ephsilonm^2*(phis*dp)^2))-(1.75*(1-
          ephsilonm)*rhogbar*delu^2/(ephsilonm*phis*dp)
          );
31 endfunction
32 [delu]=fsolve(deluguess, solver_func, 1E-6); //Using
      inbuilt function for for solving Eqn.(25) for
      deltau
33 uo=(delu-us)*ephsilonm;//Superficial gas velocity
34 Fg=rhogbar*uo*(pi/4)*dt^2;//Flow rate of gs up the
      tube
35
36 //(c) With steam seal
37 //For section 1 to 3
38 L1 = 10;
39 deluguess1=50; //Guess value of deltau
40 function [fn] = solver_func1(delu1) // Function defined
      for solving the system
       fn=(deltapfr*gc/L1) - (150*(1-ephsilonm)^2*myu*
41
          delu1/(ephsilonm<sup>2</sup>*(phis*dp)<sup>2</sup>))-(1.75*(1-
```

```
ephsilonm)*rhogbar*delu1^2/(ephsilonm*phis*dp
```

));

```
42 endfunction
```

- 43 [delu1]=fsolve(deluguess1,solver_func1,1E-6);//Using inbuilt function fsolve for solving Eqn.(25) for deltau
- 44 uou=(delu1-us)*ephsilonm;//Upward superficial gas velocity
- 45 Fgu=rhogbar*uou*(pi/4)*dt^2;//Upward flow rate of gs up the tube
- 46 //For section 3 to 2
- 47 ugd=0.15;//Downward velocity of gas

```
48 uod=ugd*ephsilonm;//Downward superficial gas
velocity
```

```
49 Fgd=rhogbar*uod*(pi/4)*dt^2;//Downward flow rate of gas up the tube
```

```
50 Fgt=Fgu+Fgd;//Total flow rate of gas
```

```
51
```

```
52 //OUTPUT
```

```
53 printf('\nWithout steam seal');
```

```
54 printf('\n\tFlow rate of gas up the tube:%fkg/s',Fg)
```

```
;
55 printf('\nWith steam seal');
```

```
56 printf('\n\tTotal flow rate of gas:%fkg/s',Fgt);
```

```
57
```

```
58 //====
```

END OF PROGRAM

Chapter 16

Design for Physical Operations

Scilab code Exa 16.1 Single Stage Limestone Calciner

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-16, Example 1, Page 404
4 //Title: Single-Stage Limestone Calciner
5 //
```

/mol

```
16 M4=0.029;//Molecular weight of Air in kg/mol
```

```
17 M5=0.029;//Molecular weight of Combustion gas in kg/ mol
```

- 18 Cp1=1.13;//Specific heat of Calcium carbonate in kJ/ kg K
- 19 Cp2=0.88; // Specific heat of CaO in kJ/kg K
- 20 Cp3=1.13;//Specific heat of Carbon dioxide in kJ/kg K
- 21 Cp4=1.00;//Specific heat of Air in kJ/kg K

```
22 Cp5=1.13;//Specific heat of Calcium carbonate in kJ/kg K
```

```
23 Tf=20;//Temperature of feed in degree celcius
```

```
24 ma=15;//Air required per kg of fuel in kg
```

```
25 Hc=41800;//Net combustion heat of fuel in kJ/kg
```

```
26 Tpi=20;//Initial temperature of solids in degree C
```

```
27 Tgi=1000;//Initial temperature of gas in degree C
```

```
28
29 //CALCULATION
```

```
30 mc=1;//Based on 1 kg of Calcium carbonate
```

```
31 B=(1/(Hc-(ma+mc)*Cp5*(T-Tpi)))*[M3*Cp3*(T-Tf)+M2*Cp2
*(T-Tf)+deltaHr]//Fuel consumption(kg fuel/kg
calcium carbonate)
```

```
32 B1=B*M3/M2;//Fuel consumption(kg fuel/kg Cao)
```

```
33 H=Hc*B1;//Heat required for calcination
```

```
34 eta=deltaHr/(B*Hc);//Thermal efficiency
```

```
35
36 //OUTPUT
```

```
37 mprintf('\nFuel consumption:%f kg fuel/kg Cao',B1);
```

```
38 mprintf('\nHeat requirement for calcination:%f kJ/kg
Cao',H);
```

```
39 mprintf('\nThermal efficiency:%f percentage',eta
    *100);
```

```
40
```

```
41 //=
```

END OF PROGRAM

Scilab code Exa 16.2 Multistage Limestone Calciner

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
\mathbf{2}
3 // Chapter - 16, Example 2, Page 405
4 //Title: Multistage Limestone Calciner
5 //
6
7 clear
8 clc
9
10 //INPUT
11 F=400;//Feed rate of Calcium carbonate in tons/day
12 T=1000; // Operating temperature of calciner in degree
       celcius
13 deltaHr=1795; //Heat of reaction in kJ/kg
14 M1=0.1; // Molecular weight of Calcium carbonate in kg
     /mol
15 M2=0.056; // Molecular weight of CaO in kg/mol
16 M3=0.044; // Molecular weight of Carbon dioxide
                                                     in kg
     /mol
17 M4=0.029; // Molecular weight of Air in kg/mol
18 M5=0.029; // Molecular weight of Combustion gas in kg/
     mol
19 Cp1=1.13; // Specific heat of Calcium carbonate in kJ/
     kg K
20 Cp2=0.88; // Specific heat of CaO in kJ/kg K
21 Cp3=1.13; // Specific heat of Carbon dioxide in kJ/kg
     Κ
22 Cp4=1.00;//Specific heat of Air in kJ/kg K
```

```
23 Cp5=1.17; // Specific heat of Combustion gas in kJ/kg
     Κ
24 Tf=20; //Temperature of feed in degree celcius
25 ma=15;//Air required per kg of fuel in kg
26 uo=0.8; // Superficial gas velocity in m/s
27 Hc=41800; //Net combustion heat of fuel in kJ/kg
28 Tpi=20;//Initial temperature of solids in degree C
29 Tgi=1000;//Initial temperature of gas in degree C
30 rhoa=1.293; // Density of air in kg/m^3
31 pi=3.14;
32
33 //CALCULATION
34 mc=1;//Based on 1 kg of Calcium carbonate
35 Bguess=2; //Guess value of B
36 function[fn]=solver_func(B) //Function defined for
      solving the system
       phi = ((ma+mc) * Cp5 * B + (M3 * Cp3)) / Cp1;
37
       T3=(Tpi+(phi+phi^2+phi^3)*Tgi)/(1+phi+phi^2+phi
38
          ^3);
39
       phiplus=30.6*B
40
       Tr=(T+Tpi*phiplus)/(1+phiplus);
       fn=Hc*B+Cp3*(T3-Tpi)+ma*B*Cp4*(Tr-20)-(ma+mc)*
41
          Cp5*(T-Tpi)-M3*Cp3*(T-Tpi)-M2*Cp2*(T-Tpi)-
          deltaHr;
42
       //fn = (1/20800) * (2470 - T3 - 13.34 * (Tr - 20));
43 endfunction
44 [B]=fsolve(Bguess, solver_func, 1E-6); //Using inbuilt
      function for for solving Eqn.(23) for tou
45 phi=((ma+mc)*Cp5*B+(M3*Cp3))/Cp1;
46 //Temperature of various stages
47 T1=(Tpi+(phi)*Tgi)/(1+phi);
48 T2=(Tpi+(phi+phi^2)*Tgi)/(1+phi+phi^2);
49 T3=(Tpi+(phi+phi^2+phi^3)*Tgi)/(1+phi+phi^2+phi^3);
50 phiplus=30.6*B
51 Tr=(T+Tpi*phiplus)/(1+phiplus);
52 eta=deltaHr/(B*Hc);//Thermal efficiency
53 H=B*Hc/M2;//Heat requirement
```

```
54 //For lower heat recovery section
```

- 55 Ql=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(Tr+273)));// Volumetric flow rate of gas in the lower heat recovery section
- 56 dtl=sqrt(4/pi*Ql/uo);//Diameter of lower bed

```
57 //For calcination section
```

```
58 Qc=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T+273)));//
Volumetric flow rate of gas in the calcination
section
```

- 59 dtc=sqrt(4/pi*Qc/uo);//Diameter of calcination section
- 60 //For I stage

```
61 Q1=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T1+273)));//
Volumetric flow rate of gas in the I stage
```

```
62 dt1=sqrt(4/pi*Q1/uo);//Diameter of I stage
```

```
63 //For II stage
```

```
64 Q2=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T2+273)));//
Volumetric flow rate of gas in the II stage
```

```
65 dt2=sqrt(4/pi*Q2/uo);//Diameter of II stage
```

```
66 //For III stage
```

```
67 Q3=(F*10^3/(24*3600))*B*ma/(rhoa*(273/(T3+273)));//
Volumetric flow rate of gas in the III stage
```

```
68 dt3=sqrt(4/pi*Q3/uo);//Diameter of III stage
```

```
69
```

```
70 //OUTPUT
```

```
71 printf('\nDiameter of lower bed:%fm',dtl);
```

```
72 printf('\nDiameter of calcination section:\%fm',dtc);
```

```
73 printf('\nBed no.\t \ t1 \ t2 \ t \ t3');
```

```
74 printf('\nDiameter(m)\%f\t\%f\t\%f',dt1,dt2,dt3);
```

```
75
```

```
76 //The value of diameter of each section is largely
deviating from the values in the textbook. This
is because the fuel consumption B have not been
included in the energy balance equation. And the
value of molecular weight is wrong by one decimal
point.
```

77 78 //=

```
END OF PROGRAM
```

Scilab code Exa 16.3 Multistage Adsorber

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 16, Example 3, Page 413
4 // Title: Multistage Adsorber
5 //
6
7 clear
8
  clc
9
10 //INPUT
11 T=20; //Temeprature in degree C
12 M=0.018; // Molecular weight of water in kg/mol
13 Q=10; //Flow rate of dry air in m^3/s
14 R=82.06E-6;//Universal gas constant
15 pi=0.0001; // Initial moisture content in atm
16 pj=0.01; // Final moisture content in atm
17
18 //CALCULATION
19 a=Q*(273+T)/273; //Term At*uo
20 b=a*M/(R*(T+273));//Term C*At*uo
21 //The value of slope can be found only by graphical
     mehtod. Hence it has been taken directly from the
      book (Page no.414, Fig.E3)
22 m=10.2;
23 Fo=b/m;//Flow rate of solids
```

```
24 Q3=(b/Fo)*(pj-pi);//Moisture content of leaving
```

```
solids
25
26
  //OUTPUT
27 printf('\nMoisture content of leaving solids:%f kg
     H2O/kg dry solids',Q3);
28
                          _____END OF PROGRAM
29
  //=
   Scilab code Exa 16.4 Dryer Kinetics and Scale up
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
\mathbf{2}
3 // Chapter - 16, Example 4, Page 422
4 // Title: Dryer Kinetics and Scale-up
5 //
\mathbf{6}
7 clear
8 clc
9
10 //INPUT
11 Qfi=0.20; // Initial moisture fraction
12 Qfbar=0.04; // Average final moisture fraction
13 rhos=2000;//Density of solid in kg/m^3
14 Cps=0.84;//Specific heat of solids in kJ/kg K
15 Fo=7.6E-4; //Flow rate of solids in kg/m^3
16 Tsi=20; //Inital temperature of solids in degree C
17 rhog=1;//Density of gas in kg/m<sup>3</sup>
18 Cpg=1; // Specific heat of gas in kJ/kg K
```

```
19 uo=0.3; // Superficial gas velocity in m/s
20 Tgi=200; //Initial temperature of gas in degee C
21 L=2370; //Enthalpy of liquid in kJ/kg
22 Cpl=4.2; //Specific heat of liquid in kJ/kg K
23 dt=0.1;//Diameter of reactor in m
24 Lm=0.1;//Length of fixed bed in m
25 ephsilonm=0.45; //Void fraction of fixed bed
26 pi=3.14;
27 Fo1=1; //Feed rate for commercial-scale reactor in kg
     / s
28
29 //CALCULATION
30 //(a)Bed temperature
31 Teguess=50; //Guess value of Te
32 function [fn] = solver_func(Te) // Function defined for
      solving the system
       fn=(pi/4)*dt^2*uo*rhog*Cpg*(Tgi-Te)-Fo*(Qfi-
33
          Qfbar)*[L+Cpl*(Te-Tsi)]-Fo*Cps*(Te-Tsi);
34 endfunction
35 [Te]=fsolve(Teguess, solver_func, 1E-6); //Using
     inbuilt function for for solving Eqn.(53) for
     Te
36
37 //(b) Drying time for a particle
38 xguess=2;//Guess value of x, ie term tou/tbar
39 function[fn]=solver_func1(x)//Function defined for
      solving the system
       fn=1-(Qfbar/Qfi)-(1-exp(-x))/x;
40
41 endfunction
  [x]=fsolve(xguess, solver_func1, 1E-6); //Using inbuilt
42
       function follow for solving Eqn.(61) for x
43 W=(pi/4)*dt^2*Lm*(1-ephsilonm)*rhos;//Weight of
      soilds in bed
44 tbar=W/Fo;//Mean residence time of solids from Eqn
      (59)
45 tou=tbar*x; //Time for complete drying of a particle
46
47 //(c) Commercial-scale dryer
```

```
130
```

```
48 W1=Fo1*tbar;
49 Atguess=5;//Guess value of area
50 function[fn]=solver_func3(At)//Function defined for
     solving the system
       fn=At*uo*rhog*Cpg*(Tgi-Te)-Fo1*(Qfi-Qfbar)*[L+
51
         Cpl*(Te-Tsi)]-Fo1*Cps*(Te-Tsi);
52 endfunction
53 [At]=fsolve(Atguess, solver_func3,1E-6);//Using
     inbuilt function for for solving Eqn.(53) for
     At
54 dt1=sqrt(4/pi*At);//Diameter of commercial-scale
     dryer
  Q1=At*uo*rhog; //Flow rate necessary for the
55
     operation
56
57 //OUTPUT
58 printf('\nBed temperature:%f degree C',Te);
59 printf('\nTime for complete drying of particle:%fs',
     tou);
  printf('\nFlow rate of gas necessary for Commercial-
60
     scale dryer:%fkg/s',Q1);
61
                         END OF PROGRAM
62 //=
```

Scilab code Exa 16.5 Solvent Recovery from Polymer Particles

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
2
2
```

- 3 // Chapter -16, Example 5, Page 425
- 4 // Title: Solvent Recovery from Polymer Particles

```
6
7 clear
8 clc
9
10 //INPUT
11 rhos=1600; // Density of solid in kg/m<sup>3</sup>
12 Cps=1.25; // Specific heat of solids in kJ/kg K
13 Fo=0.5; //Flow rate of solids in kg/s
14 Tsi=20;//Inital temperature of solids in degree C
15 Qwi=1;//Initial moisture fraction in water
16 Qwf=0.2; // Final moisture fraction in water
17 Qhi=1.1; // Initial moisture fraction in heptane
18 Qhf=0.1;//Final moisture fraction in heptane
19 Tgi=240; //Initial temperature of gas in degee C
20 Te=110; //Bed temperature in degree C
21 ephsilonm=0.45; //Void fraction of fixed bed
22 ephsilonf=0.75; //Void fraction of fluidized bed
23 uo=0.6;//Superficial gas velocity in m/s
24 di=0.08;//Diameter of tubes in m
25 li=0.2; // Pitch for square arrangement
26 hw=400;//Heat transfer coefficient in W/m<sup>2</sup> K
27 Tc=238; //Temperature at which steam condenses in
      degree C
28 //Specific heats in kJ/kg K
29 Cwl=4.18; //Water liquid
30 Cwv=1.92; //Water vapor
31 Chl=2.05; //Heptane liquid
32 Chv=1.67; //Heptane vapor
33 //Latent heat of vaporization in kJ/kg
34 \ Lw = 2260; //Water
35 Lh=326; //Heptane
36 //Density of vapor in kg/m<sup>3</sup> at operating conditions
37 rhow=0.56; //Water
38 rhoh=3.1;//Heptane
39 Lf=1.5; //Length of fixed bed in m
```

5 //

```
132
```

```
40 t=140; //Half-life of heptane in s
41 L=1.5; //Length of tubes in heat exchanger
42 pi=3.14;
43
44 //CALCULATION
45 //(a) Dryer without Internals
46 xw=(Qwi-Qwf)/(Qhi-Qhf);//Water-heptane weight ratio
47 xv=((Qwi-Qwf)/18)/((Qhi-Qhf)/100);//Water-heptane
     volume ratio
48 T=(Qwi-Qwf)/18+(Qhi-Qhf)/100;//Total volume
49 rhogbar=((Qwi-Qwf)/18)/T*rhow+((Qhi-Qhf)/100)/T*rhoh
     ;//Mean density of the vapor mixture
50 Cpgbar=(((Qwi-Qwf)/18)/T)*rhow*Cwv+(((Qhi-Qhf)/100)/
     T)*rhoh*Cwv;//Mean specific heat of vapor mixture
51 //Volumetric flow of recycle gas to the dryer in m
      3/s from Eqn. (53)
52 x=(Cpgbar*(Tgi-Te))^-1*[Fo*(Qwi-Qwf)*[Lw+Cwl*(Te-Tsi
     )]+Fo*(Qhi-Qhf)*[Lh+Chl*(Te-Tsi)]+Fo*(Cps*(Te-Tsi
     ))];
53 r=Fo*[(Qwi-Qwf)/rhow+(Qhi-Qhf)/rhoh};//Rate of
     formation of vapor in bed
54 uo1=uo*(x/(x+r)); // Superficial velocity just above
     the distributor
55 At=x/uo1;//Cross-sectional area of bed
56 dt=sqrt(4/pi*At);//Diameter of bed
57 B=-log(Qwf/Qwi)/t;//Bed height from Eqn.(63)
58 tbar=((Qhi/Qhf)-1)/B;//Mean residence time of solids
59 W=Fo*tbar; //Weight of bed
60 Lm=W/(At*(1-ephsilonm)*rhos);//Static bed height
61 Lf=(Lm*(1-ephsilonm))/(1-ephsilonf);//Height of
     fluidized bed
62
63 //(b) Dryer with internal heaters
64 f=1/8;//Flow rate is 1/8th the flow rate of
     recirculation gas as in part (a)
65 x1=f*x; // Volumetric flow of recycle gas to the dryer
      in m^3/s from Eqn.(53)
```

```
66 uo2=uo*(x1/(x1+r));//Superficial velocity just above
```

the distributor

- 67 Abed=x1/uo2;//Cross-sectional area of bed
- 68 q=[Fo*(Qwi-Qwf)*[Lw+Cwl*(Te-Tsi)]+Fo*(Qhi-Qhf)*[Lh+ Chl*(Te-Tsi)]+Fo*(Cps*(Te-Tsi))]-Abed*uo2*Cpgbar *(Tgi-Te);//Heat to be added from energy balance of Eqn.(53)
- 69 Aw=q*10^3/(hw*(Tc-Te));//Total surface area of heat exchanger tubes
- 70 Lt=Aw/(pi*di);//Total length of tubes
- 71 Nt=Lt/L;//Total number of tubes
- 72 Atubes=Nt*(pi/4*di^2);//Total cross-sectional area of tubes
- 73 Atotal=Abed+Atubes;//Total cross-sectional area of tube filled dryer
- 74 d=sqrt(Atotal*pi/4);//Diameter of vessel

78 printf('\n\t\tBed diameter(m)\tRecycle vapor flow(m^3/s)');

```
79 printf('\nWithout internal heatert\%f, t%f', dt, x);
```

```
80 printf('\nWith heating tubest\%f, d, x1);
```

```
81
```

82 // END OF PROGRAM

Chapter 17

Design of Catalytic Reactors

Scilab code Exa 17.1 Reactor Development Program

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-17, Example 1, Page 434
4 //Title: Reactor Development Program
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 dt=[0.081;0.205;3.6];//Reactor diameter for the
three reactors in m
12 dte=[0.04;0.12;0.70];//Equivalent diameters for the
three reactors in m
13 db=[0.05;0.057;0.07];//Estimated bubble size in the
three reactors in m
```

```
14 Kr1=1.3889;//Kinetic constant for Reaction 1 in s^{-1}
```

```
15 Kr2=0.6111; // Kinetic constant for Reaction 2 in s^{-1}
16 Kr3=0.022; // Kinetic constant for Reaction 3 in s^-1
17 dp=60; // Particle size in micrometer
18 ephsilonm=0.50; //Void fraction of fixed bed
19 ephsilonmf=0.55; //Void fraction at minimum fluidized
       condition
20 umf=0.006; //// Velocity at minimum fluidization
      condition in m/s
21 D=2E-5; // Diffusion coefficient of gas in m^2/s
22 gammab=0.005; // Ratio of volume of dispersed solids
     to that of bubble phase
23 uo=0.2;//Superficial gas velocity in m/s
24 XA=0.9; // Conversion
25 g=9.81; // Acceleration due to gravity in square m/s^2
26
27 //CALCULATION
28 Kr12=Kr1+Kr2;
29 n=length(dt);
30 i=1;
31 while i<=n
32
       //Preliminary Calcualtions
       ubr(i)=0.711*(g*db(i))^0.5; //Rise velocity of
33
          bubble from Eqn.(6.7)
       ub(i)=1.55*{(uo-umf)+14.1*(db(i)+0.005)}*dte(i)
34
          ^0.32+ubr(i);//Bubble velocity for Geldart A
          particles from Equation from Eqn.(6.11)
       delta(i)=uo/ub(i);//Fraction of bed in bubbles
35
          from Eqn. (6.29)
       ephsilonf(i)=1-(1-delta(i))*(1-ephsilonmf);//
36
          Void fraction of fixed bed from Eqn. (6.20)
       fw=0.6; //Wake volume to bubble volume from Fig
37
          (5.8)
38
       gammac(i)=(1-ephsilonmf)*((3/(ubr(i)*ephsilonmf/
          umf-1))+fw);//Volume of solids in cloud to
          that of the bubble from Eqn.(6.36)
       gammae(i)=((1-ephsilonmf)*((1-delta(i))/delta(i)
39
          ))-gammab-gammac(i);//Volume of solids in
          emulsion to that of the bubble from Eqn
```

	(6.35)
40	Kbc(i)=4.5*(umf/db(i))+5.85*((D^0.5*g^0.25)/db(i
)^(5/4));//Gas interchange coefficient
	between bubble and cloud from $Eqn.(10.27)$
41	Kce(i)=6.77*((D*ephsilonmf*0.711*(g*db(i))^0.5)/
	db(i)^3)^0.5;//Gas interchange coefficient
	between emulsion and cloud from Eqn. (10.34)
42	//Effective rate constant from Eqn.(12.32)
43	<pre>Kf12(i)=(gammab*Kr12+1/((1/Kbc(i))+(1/(gammac(i)</pre>
	*Kr12+1/((1/Kce(i))+(1/(gammae(i)*Kr12))))))
	<pre>*(delta(i)/(1-ephsilonf(i)));</pre>
44	//Rate of reaction 2 for fluidized bed from Eqn
	.(12.14)
45	Kf3(i)=(gammab*Kr3+1/((1/Kbc(i))+(1/(gammac(i)*
	Kr3+1/((1/Kce(i))+(1/(gammae(i)*Kr3)))))))*(
	<pre>delta(i)/(1-ephsilonf(i)));</pre>
46	//Rate of raection with respect to A from Eqn
	.(12.35)
47	$KfA(i) = [[Kbc(i) * Kce(i)/gammac(i)^2 + (Kr12 + Kce(i)/$
	<pre>gammac(i)+Kce(i)/gammae(i))*(Kr3+Kce(i)/</pre>
	<pre>gammac(i)+Kce(i)/gammae(i))]*delta(i)*Kbc(i)*</pre>
	Kr12*Kr3/(1-ephsilonf(i))] /[[(Kr12+Kbc(i)
	/gammac(i))*(Kr12+Kce(i)/gammae(i))+Kr12*Kce(
	i)/gammac(i)]*[(Kr3+Kbc(i)/gammac(i))*(Kr3+
	Kce(i)/gammae(i))+Kr3*Kce(i)/gammac(i)]];
48	KfAR(i) = ((Kr1/Kr12) * Kf12(i)) - KfA(i); //Rate of
10	reaction from Eqn. (12.34)
49	KfAR1(i) = ((Kr1/Kr12) * Kf12(i)); // Since KfA is
F 0	small
50	
51	//(b)Relate Selectivity with conversion in three
50	$\frac{1}{1000} = \frac{1}{1000} = 1$
52 59	$x = -\log(1 - xA); // \text{Ine term KII2*tou in Eqn.(12.20)}$
53	tou(1)=x/kII2(1);//Residence time from Eqn
F 4	(12.20)
54	y(1) - (XIARI(1)) (XIS(1) - XII2(1))) * (exp(-x) - exp(-x)) + (i) * (f3(i))) * (CP/CA; from Eq. (12.27))
55	CD(1) + KIO(1) / (CR/CAL IFOID Equ. (12.27))
00	Sn(1) - y(1)/AA, // Selectivity Of n

56	
57	//(c) Relate exit composition to space time
58	tou1=5;//Space time in s
59	XA1(i)=1-exp(-Kf12(i)*tou1);//Conversion from Eqn.(12.26)
60	y1(i)=((KfAR1(i)/(Kf12(i)-Kf3(i)))*[exp(-Kf3(i)*
	tou1)-exp(-Kf12(i)*tou1)]);//CR/CAi R from Eqn.(12.27)
61	
62	<pre>//(d)Calculate height of bed needed to maximize production</pre>
63	y2(i)=(KfAR1(i)/Kf12(i))*(Kf12(i)/Kf3(i))^(Kf3(i
)/(Kf3(i)-Kf12(i)));//CRmax/CAi R from Eqn .(12.37)
64	tou2(i)=log(Kf3(i)/Kf12(i))/(Kf3(i)-Kf12(i));//
	Space time from Eqn.(38)
65	Lf(i)=(uo/(1-ephsilonf(i)))*tou2(i);//Length of
	bed at fully fluidized condition from Eqn
	.(12.5)
66	<pre>Lm(i)=Lf(i)*(1-ephsilonf(i))/(1-ephsilonm);//</pre>
	Length of bed when settled
67	$XA2(i)=1-\exp(-Kf12(i)*tou2(i));//Conversion from$
c 0	Eqn. (12.26)
68 60	1=1+1;
09 70	end
70 71	
72	printf('\nLet Laboratory Pilot plant
12	Semicommercial unit be Beactor 1.2 & 3
	respectively'):
73	$printf(' \setminus n(a) $ Relation between effective rate
	constant (Kf12) to the gas flow rate (uo)'):
74	printf('\n\tReactor No.\tKf12(s^{-1})\tuo(m/s)');
75	i=1;
76	while i<=n
77	<code>mprintf('\n\t$\%1.0$f',i);</code>
78	$\texttt{mprintf}(` \setminus t \setminus t\%f`, \texttt{Kf12(i)};$
79	$mprintf(' \setminus t\%f',uo);$

```
80
          i=i+1;
 81 end
 82 printf(' (b) Relation between selectivity with
        conversion ');
   printf('\ \ Kf12(s^{-1})\ \ Kf12(s^{-1})
 83
       /mol A reacted)');
 84 i=1;
 85 while i<=n
          mprintf(' \setminus n \setminus t\%1.0 f', i);
 86
          mprintf(' \setminus t \setminus t\%f', Kf12(i));
 87
          mprintf('\t%f',SR(i));
 88
          i = i + 1;
 89
 90 end
 91 printf(' \ c) Relation between exit composition and
        space time');
 92 printf('\ (\ ), tReactor No. (tXA (t (CAi');
 93 i=1;
 94 while i<=n
          mprintf(' \setminus n \setminus t\%1.0 f', i);
95
          mprintf(' \setminus t \setminus t\%f', XA1(i));
 96
97
          mprintf('\t%f',y1(i));
98
          i = i + 1;
99 end
100 printf(' (d) Height of bed needed to maximize the
        production of acrylonitrile');
101 printf(' \ tReactor No. \ tLm(m) \ t \ tXA');
102 i=1;
103 while i<=n
          mprintf(' \ t\%1.0 f',i);
104
          mprintf(' \setminus t \setminus t\%f', Lm(i));
105
          mprintf(' \setminus t\%f', XA2(i));
106
107
          i = i + 1;
108 end
109
110 //=
                                          END OF PROGRAM
```

Scilab code Exa 17.2 Design of a Commercial Acrylonitrile Reactor

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
\mathbf{2}
3 // Chapter - 17, Example 2, Page 438
  //Title: Design of a Commercial Acrylonitrile
4
      Reactor
5 //
\mathbf{6}
7 clear
8 clc
9
10 //INPUT
11 deltaHr=5.15E8;//Heat of reaction in J/k mol
12 W=5E4;//Weight of acrylonitirle produced per 334-day
       year in tonnes
13 db=0.07; //Estimated bubble size in m
14 dte=0.7; // Equivalent diameter in m
15 Kf12=0.35; // Effective rate constant in s^{-1} from
      Example 1
16 dp=60; // Particle size in micrometer
17 ephsilonm=0.50; //Void fraction of fixed bed
18 ephsilonmf=0.55; //Void fraction at minimum fluidized
       condition
19 T=460; // Temperature in reactor in degree C
20 Pr=2.5; // Pressure inside reactor in bar
21 //Feed gas composition
22 x1=1; // Propylene
23 x2=1.1; //Ammonia
24 x3=11; // Air
```

```
25 do1=0.08; //OD of heat exchanger tubes in m
26 L=7; //Length of tubes in m
27 ho=300;//Outside heat transfer coefficient in W/m^2
     Κ
  hi=1800; //Inside heat transfer coefficient in W/m<sup>2</sup>
28
     \mathbf{K}
29 Tc=253.4; //Temperature of coolant in degree C
30 pi=3.14;
31
32 //CALCULATION
33 // Preliminary calculation
34 uo=0.46; // Superficial gas velocity from Fig.E1(a)
      for the value of Kf12 & db
35 tou=8; //Space time from Fig.E2(b) for highest
      concentraion of product R
36 Lm=uo*tou/(1-ephsilonm);
37 y=0.58; //CR/CAi from Fig.E1(c) for the value of tou
     & Kf12
38 XA=0.95//From Fig.E1(c) for the value of tou & Kf12
39 SR=y/XA; // Selectivity of R
40
41 //Cross-sectional area of the reactor
42 P=W*10^3/(334*24*3600); // Production rate of
      acrylonitrile
43 F=(P/0.053)/(SR*XA/0.042);//Feed rate of propylene
44 V = ((F*22.4*(T+273)*(x1+x2+x3))/(42*273*Pr));
45 At=V/uo;//Cross-sectional area of reactor needed for
       the fluidized bed
46
47 //Heat exchanger calculation
48 q=F*XA*deltaHr/42;//Rate of heat liberation in the
      reactor
49 U=(ho^-1+hi^-1)^-1;//Overall heat transfer
      coefficient
50 deltaT=T-Tc;//Driving force for heat transfer
51 Aw=q/(U*deltaT);//Heat exchanger area required to
      remove q
52 Nt=Aw/(pi*do1*L);
```

```
53 li1=(At/Nt)^0.5; // Pitch for square pitch arrangement
54 dte1=4*[li1^2-(pi/4)*do1^2]/(pi*do1);
55 if dte1>dte then li=(pi/4*dte*do1+pi/4*do1^2)^0.5; //
     Pitch if we add dummy tubes
56 end
57 f=li^2-pi/4*do1^2; // Fraction of bed cross section
     taken up by tubes
  dt1=sqrt(4/pi*At/(1-f));//Reactor diameter including
58
      all its tubes
59
60 //OUTPUT
61 printf('\nSuperficial gas velocity=%fm/s',uo);
62 printf('\nNo. of %1.0fm tubes required=%1.0f',L,Nt);
63 printf('\nReactor diameter=%fm',dt1);
64
                           END OF PROGRAM
65 //=
```

Scilab code Exa 17.3 Reactor Regenerator with Circulating Catalyst Catalytic Cracking

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-17, Example 3, Page 444
4 //Title: Reactor-Regenerator with Circulating
Catalyst: Catalytic Cracking
5 //
```

6 7 clear

```
8 clc
9
10 //INPUT
11 db=0.08; //Estimated bubble size in m
12 dte=2; // Equivalent diameter in m
13 F1=55.6; //Feed rate of oil in kg/s
14 XA=0.63; // Conversion
15 uo=0.6; // Superficial gas velocity in m/s
16 T1=500; // Temperature of reactor in degree C
17 T2=580; // Temperature of regenerator in degree C
18 Fs=F1*23.3; //Solid circulation rate from Ex.(15.2)
19 rhos=1200;//Density of catalyst in kg/m<sup>3</sup>
20 dpbar=60; // Average particle size in micrometer
21 ephsilonm=0.50; //Void fraction of fixed bed
22 ephsilonmf=0.55; //Void fraction at minimum fluidized
       condition
23 umf=0.006; //// Velocity at minimum fluidization
      condition in m/s
24 dt=8;//Diameter of reactor in m
25 D=2E-5;//Diffusion coefficient of gas in m^2/s
26 Kr=8.6;//Rate constant for reaction at 500 degree C
      in s^{-1}
  Ka1=0.06; //Rate constant for deactivatiion at 500
27
      degree C in s^{-1}
28 Ka2=0.012; //Rate constant for regeneration at 580
      degree C in s^{-1}
29
  gammab=0.005; // Ratio of volume of dispersed solids
      to that of bubble phase
30 g=9.81;//Acceleration due to gravity in square m/s^2
31 pi=3.14;
32
33 //CALCULATION
34 //Parameters for the fluidized reactor
35 ubr=0.711*(g*db)^0.5; //Rise velocity of bubble from
     Eqn. (6.7)
36 ub=1.55*{(uo-umf)+14.1*(db+0.005)}*dte^0.32+ubr;//
      Bubble velocity for Geldart A particles from
      Equation from Eqn.(6.11)
```

```
143
```
- 37 delta=uo/ub;//Fraction of bed in bubbles from Eqn
 .(6.29)
- 39 fw=0.6; //Wake volume to bubble volume from Fig.(5.8)
- 40 gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw
);//Volume of solids in cloud to that of the
 bubble from Eqn.(6.36)
- 41 gammae=((1-ephsilonmf)*((1-delta)/delta))-gammabgammac;//Volume of solids in emulsion to that of the bubble from Eqn.(6.35)
- 42 Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));//
 Gas interchange coefficient between bubble and
 cloud from Eqn.(10.27)

```
44
```

```
45 //Bed height versus catalyst activity in reactor
```

- 46 albar=0.07;//Guess value for average activity in reactor
- 47 x=Kr*albar;//Value of Kral to be used in the following equation
- 48 Kf=(gammab*x+1/((1/Kbc)+(1/(gammac*x+1/((1/Kce)+(1/(gammae*x))))))*(delta/(1-ephsilonf));//Effective rate constant from Eqn.(12.14)

```
49 tou=-log(1-XA)/Kf;//Space time from Eqn.(12.16)
```

```
50 Lm=tou*uo/(1-ephsilonm);//Length of fixed bed for guess value of albar
```

```
51 a1bar1=[0.0233;0.0465;0.0698;0.0930;0.116;0.140];//
Various activity values to find Lm
```

```
52 n=length(a1bar1);
```

```
53 i=1;
```

```
54 while i<=n
```

```
55 x1(i)=Kr*a1bar1(i);
```

```
56 Kf1(i)=(gammab*x1(i)+1/((1/Kbc)+(1/(gammac*x1(i)
+1/((1/Kce)+(1/(gammae*x1(i)))))))*(delta
/(1-ephsilonf));//Effective rate constant
```

```
from Eqn. (12.14)
       tou1(i)=-log(1-XA)/Kf1(i);//Space time from Eqn
57
          (12.16)
       Lm1(i)=tou1(i)*uo/(1-ephsilonm);//Length of
58
          fixed bed for guess value of albar...
          Condition (i)
       i = i + 1;
59
60 end
61
62 //Find the optimum size ratio for various albar
63 \quad Lm = [5; 6; 7; 8; 10; 12];
64 m=length(Lm);
65 i=1;
66 while i<=m
67
       W1(i) = (pi/4) * dt^2 * rhos * (1 - ephsilonm) * Lm(i); //Bed
           weight
       t1bar(i)=W1(i)/Fs;//Mean residence time of
68
          solids in reactor
       t2bar(i)=t1bar(i)*(Ka1/Ka2)^0.5;//Mean residence
69
           time of soilds at optimum from Eqn. (16)
70
       a1bar2(i)=(Ka2*t2bar(i))/(Ka1*t1bar(i)+Ka1*t1bar
          (i) *Ka2*t2bar(i) +Ka2*t2bar(i)); //From Eqn
          (15) ... Condition (ii)
71
       i = i + 1;
72 end
73
74 //Final design values
75 Lm4=7.3;//For satisfying condition (i) & (ii)
76 albar3=0.0744;//By interpolation
77 x2=a1bar3*Kr;
78 W11=(pi/4)*dt^2*rhos*(1-ephsilonm)*Lm4;//Bed weight
      for reactor
79 tlbar1=W11/Fs;//Mean residence time of solids in
      reactor
  a2bar=(1+Ka1*t1bar1)*a1bar3;//Average activity in
80
      regenrator from Eqn.(10)
81 t2bar1=t1bar1*(Ka1/Ka2)^0.5;//Mean residence time of
       solids in regenerator from Eqn.(16)
```

```
82 W2=W11*(t2bar1/t1bar1); //Bed weight for regenerator
83 dt2=dt*(W2/W11)^0.5; //Diameter of regenerator
       assuming same static bed height for reactor and
       regerator
84
85 //OUTPUT
86 printf('\nBed height versus catalyst activity in
       reactor');
87 printf('\n\tAverage activity');
88 printf('\tLength of fixed bed(m)');
89 i=1;
90 while i<=n
         \texttt{mprintf}(`\setminus n \setminus t\%f`, \texttt{a1bar1(i)};
91
         mprintf(' \setminus t \setminus t\%f', Lm1(i));
92
93
         i=i+1;
94 end
95 printf('\nOptimum size ratio for various activity in
        reactor ');
96 printf('\n\t Length of fixed bed(m)');
97 printf('\tAverage activity');
98 i=1;
99 while i<=m
        \texttt{mprintf}(`\backslash n \backslash t\%f`, \texttt{Lm(i))};
100
         mprintf(' \setminus t \setminus t\%f', a1bar2(i));
101
102
         i = i + 1;
103 end
104 printf('\nFinal design values');
105 printf('\n\tDiameter of reactor(m):\%f',dt);
106 printf('\n\tBed weight for reactor(tons):%f',W11
       /10^3);
107 printf('\n\tBed weight for regenerator(tons):%f',W2
       /10^{3};
108 printf('\n\tDiameter of regenerator(m):%f',dt2);
109 printf('\n\tSolid circulation rate(tons/hr):%f',Fs
       *3.6);
110
                                          END OF PROGRAM
111 //=
```

Chapter 18

The Design of Noncatalytic Gas Solid Reactors

Scilab code Exa 18.1 Kinetics of Zinc Blende Roasting

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 18, Example 1, Page 456
4 // Title: Kinetics of Zinc Blende Roasting
5 //
6
7 clear
8 clc
9
10 //INPUT
11 xA=0.08; // Fraction of oxygen in stream
12 dp=[2;0.1]; // Particle diameter in mm
13 rhos=4130;//Density of catalyst in kg/m^3
14 Ds=8E-6;//Diffusion coefficient of solid in m<sup>2</sup>/s
15 kc=0.02; //Reaction rate constant in m/s
```

```
16 P=10^{5}; // Pressure in bar
17 R=8.314; //Universal gas constant
18 T=900; // Temperature in degree C
19 mB=0.09745; // Molecular weight of ZnS in kg/mol
20
21 //CALCULATION
22 b=2/3; // Stoichiometric coefficient of ZnS in the
      reaction equation
23 CA=xA*P/(R*(T+273)); // Concentration of Oxygen
24 rhob=rhos/mB;//Molar density of pure solid
25 n=length(dp);
26 i=1;
27 while i<=n
       kbar(i)=(kc^-1+(dp(i)*10^-3/(12*Ds)))^-1;//
28
          Average reaction rate constant from Eqn.(11)
       tou(i)=rhob*dp(i)*10^-3/(2*b*kbar(i)*CA);//Time
29
          for complete reaction in seconds from Eqn.(9)
30
       i = i + 1;
31 end
32
33 //OUTPUT
34 printf('\nParticle Size(mm)\tAverage rate constant(m
     /s)\tTime for complete reaction(min)');
35 i=1;
36 while i<=n
37
       mprintf(' \ N\%f \ t \ t\%f \ t \ t\%f', dp(i), kbar(i), tou(i
          )/60);
       i = i + 1;
38
39 end
40
                                    END OF PROGRAM
41 //=
```

Scilab code Exa 18.2 Kinetics of Carbon Burning

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 18, Example 2, Page 457
4 // Title: Kinetics of Carbon Burning
5 //
6
7 clear
8 clc
9
10 //INPUT
11 xA=0.08; // Fraction of oxygen in stream
12 dp=1; // Particle diameter in mm
13 rhos=2200;//Density of catalyst in kg/m<sup>3</sup>
14 kc=0.2; //Reaction rate constant in m/s
15 mC=0.012; // Molecular weight of carbon in kg/mol
16 P=10^{5}; // Pressure in bar\
17 R=8.314; //Universal gas constant
18 T=900; // Temperature in degree C
19
20 //CALCULATION
21 b=1;//Stoichiometric coefficient of C in the
      reaction equation
22 CA=xA*P/(R*(T+273));//Concentration of Oxygen
23 rhob=rhos/mC;//Molar density of pure solid reactant
24 tou=rhob*10^-3/(2*b*kc*CA);//Time required for
      complete reaction in seconds
25
26 //OUTPUT
27 mprintf('\nThe time required for complete combustion
      :%fmins',tou/60);
28
29 //==
                                          =END OF PROGRAM
```

Scilab code Exa 18.3 Roasting Kinetics from Flowing Solids Data

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-18, Example 3, Page 462
4 //Title: Roasting Kinetics from Flowing Solids Data
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 dp=110; // Particle size in micrometer
12 T=900; // Temperature of roaster in degree C
13 tbar1=[3;10;30;50];//Reported average time in min
14 XBbarr=[0.840;0.940;0.985;0.990];//Reported value of
       average conversion
15 tbar=3;
16 XBbar=0.840; // Average conversion for the that = 3 \text{ mins}
17
18 //CALCULATION
19 //Uniform-Reaction Model
20 x=(1/tbar)*(1/(1-XBbar)-1); //Term KrCA of Eqn.(20)
21 n=length(tbar1);
22 i=1;
23 while i<=n
24
       XBbar1(i)=1-1/(1+x*tbar1(i));//Average
```

```
conversion using calculated value of KrCA
          from Eqn.(20)
25
       i = i + 1;
26 end
27
28 //Shrinking-Core, Rection Control
29 touguess=2;//Guess value of tou
30 function[fn]=solver_func(tou)//Function defined for
      solving the system
31
       fn=(1-XBbar)-(0.25*tou/tbar)+(0.05*(tou/tbar)^2)
          -((1/120)*(tou/tbar)^3);
32 endfunction
33 [tou]=fsolve(touguess, solver_func, 1E-6); //Using
      inbuilt function for for solving Eqn.(23) for
      tou
34 i=1;
35 while i<=n
       XBbar2(i)=1-(0.25*tou/tbar1(i))+(0.05*(tou/tbar1))
36
          (i))<sup>2</sup>)-((1/120)*(tou/tbar1(i))<sup>3</sup>);//Average
          conversion using calculated value of tou from
           Eqn. (23)
37
       i = i + 1;
38 end
39
40 //Shrinking-Core, Diffusion Control
41 touguess1=2; //Guess value of tou
42 function[fn]=solver_func1(tou)//Function defined for
       solving the system
       fn = (1 - XBbar) - (1/5 + tou/tbar) + (19/420 + (tou/tbar))
43
          ^2) - (41/4620*(tou/tbar)^3) + (0.00149*(tou/tbar
          )^{4};
44 endfunction
45 [tou1]=fsolve(touguess1,solver_func1,1E-6);//Using
      inbuilt function for for solving Eqn.(23) for
      tou
46 i=1;
47 while i<=n
       //Average conversion using calculated value of
48
```

```
tou from Eqn. (23)
49
      XBbar3(i)=1-(1/5*tou1/tbar1(i))+(19/420*(tou1/tbar1(i)))
         tbar1(i))^2)-(41/4620*(tou1/tbar1(i))^3)
         +(0.00149*(tou1/tbar)^4);
50
      i = i + 1;
51 end
52
53 //OUTPUT
54 printf('(n)t(t)t);
55 printf('\nReported Data');
56 printf('\ntbar(min)\tXBbar,obs\tUniform Reaction\
     tShrinking-Core, Rection Controlt tShrinking-
     Core, Diffusion Control');
57 i=1;
58 while i<=n
      mprintf(' n\%f t\%f t\%f t/t\%f t/t\%f, tbar1(i),
59
         XBbarr(i),XBbar1(i),XBbar2(i),XBbar3(i));
60
      i=i+1;
61 end
62
                   END OF PROGRAM
63 / =
```

Scilab code Exa 18.4 Scale up of a Reactor with Flowing Solids

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2 
3 //Chapter-18, Example 4, Page 462
4 //Title: Scale-up of a Reactor with Flowing Solids
5 //
```

```
7 clear
8 clc
9
10 //INPUT
11 W=1;//Bed weight in kg
12 F1=0.01; //Solid feed rate in kg/min
13 dp=[200;600]; // Particle size in micrometer
14 XBbar=[0.85;0.64]; // Average conversion for
      corresponding particle sizes
15 rhos=2500;//Density of solid in kg/m<sup>3</sup>
16 ephsilonm=0.4; //Void fracton of fixed bed
17 F11=4;//Feed rate of solids in tons/hr
18 XBbar1=0.98;
19 dp1=600;
20 pi=3.14;
21
22 //CALCULATION
23 //Shrinking-Core, Rection Control
24 n=length(dp);
25 i=1;
26 touguess=2; //Guess value of tou
27 while i<=n
       function[fn]=solver_func2(tou)//Function defined
28
           for solving the system
29
           fn = (1 - XBbar(i)) - (0.25 + tou/107) + (0.05 + (tou))
              /107)^2) - ((1/120) * (tou/107)^3);
       endfunction
30
       [tou(i)]=fsolve(touguess,solver_func2,1E-6);//
31
          Using inbuilt function fsolve for solving Eqn
          (23) for tou
32
       i = i + 1;
33 end
34 \quad tou1=tou(2);
35
36 //For a single stage fluidized roaster
37 tbar1=0.25*(tou1/(1-XBbar1))/60;//Mean residence
```

6

```
time of solids in reactor in hr from Eqn. (24)
38 W1=F11*tbar1;
39 dtguess=2;//Guess value of tou
40 function [fn]=solver_func3(dt) // Function defined for
     solving the system
41
       fn=W1*10^3-(pi/4)*dt^2*0.5*dt*rhos*(1-ephsilonm)
          ; //Since Lm=0.5dt
42 endfunction
  [dt]=fsolve(dtguess, solver_func3, 1E-6); //Using
43
      inbuilt function follow for solving Eqn.(23) for
     tou
44 Lm=dt/2; //Length of bed required
45
46 //For a two-stage fluidized roaster
47 tbar2=tou1*sqrt(1/(20*(1-XBbar1)))/60;//Mean
      residence time of solids in reactor in hr from
     Eqn.(30)
48 W2=F11*tbar2;
49 dtguess1=2;//Guess value of tou
50 function[fn]=solver_func4(dt)//Function defined for
      solving the system
       fn=W2*10^3-(pi/4)*dt^2*0.5*dt*rhos*(1-ephsilonm)
51
          ;//Since Lm=0.5 dt
52 endfunction
  [dt1]=fsolve(dtguess, solver_func4, 1E-6); // Using
53
      inbuilt function for for solving Eqn.(23) for
     tou
54 Lm1=dt1/2; //Length of bed required
55
56 //OUTPUT
57 printf('\nSingle stage fluidized roaster');
58 printf('\n\tWeight of bed needed:%ftons',W1);
59 printf('\n\tDiameter of reactor:%fm',dt);
60 printf('\n\tLength of bed:%fm',Lm);
61 printf('\nTwo-stage fluidized roaster');
62 printf('\n\tWeight of bed needed:%ftons',W2);
63 printf('\n\tDiameter of reactor:%fm',dt1);
64 printf('\n\tLength of bed:%fm',Lm1);
```

```
155
```

```
65 printf('\nThese results show that this operation can
be accomplished in a single bed of %ftons or in
two beds of %f tons each.',W1,W2);
66
67 // END OF PROGRAM
```

Scilab code Exa 18.5 Design of a Roaster for Finely Ground Ore

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
      Engineering (II Edition). Butterworth-Heinemann,
     MA, pp 491
2
3 // Chapter - 18, Example 5, Page 468
4 //Title: Design of a Roaster for Finely Ground Ore
5 //
6
7 clear
8 clc
9
10 //INPUT
11 T=900; // Temperature in roaster in degree C
12 P=101325; // Pressure in Pa
13 R=8.314; // Universal gas constant
14 dpbar=150; // Average particle size in micrometer
15 rhosbar=4130; // Average particle density in kg/m<sup>3</sup>
16 kc=0.015//Rate constant in m/s for reaction which
      follows shrinking core model
17 Ds=8E-6; // Diffusion coefficient of solid in m<sup>2</sup>/s
18 uo=0.6; // Superficial gas velocity in m/s
19 D=2.3E-4;//Diffusion coefficient of gas in m^2/s
```

```
20 Lm=1;//Length of fixed bed in m
```

- 21 dte=0.4; // Equivalent diameter of bed
- 22 umf=0.025;//Velocity at minimum fluidization condition in m/s
- 23 ephsilonm=0.45;//Void fraction of fixed bed
- 24 ephsilonmf=0.50;//Void fraction at minimum fluidized condition
- 25 db=0.2;//Estimated bubble size in m
- 26 gammab=0.005;//Ratio of volume of dispersed solids to that of bubble phase

```
27 Fo=2;//Feed rate of solids in kg/s
```

28 XA=0.6677; // Conversion of Oxygen

```
29 xA=0.21;//Mole fraction of oxygen in feed
```

- 30 mB=0.09744;//Molecular weight of ZnS
- 31 F=0.85; // Fraction of open area

```
32 g=9.81;//Acceleration due to gravity in square m/s<sup>2</sup>
33 pi=3.14;
```

```
34
```

35 //CALCULATION

```
36 //(a)Extreme Calculation
```

37 a=3/2;//Stoichiometric coefficient of Oxygen in the reaction equation

```
38 At=(Fo/mB)*(a)/(uo*(273/(T+273))*(XA*xA)/0.0224);
```

```
39 dt=sqrt(At/F*4/pi);
```

40

```
41 //(b) The Three-Step Procedure
```

- 42 / Step 1. Conversion of gas
- 43 ubr=0.711*(g*db)^0.5; //Rise velocity of bubble from Eqn.(6.7)
- 44 ub=1.6*{(uo-umf)+1.13*db^0.5}*dte^1.35+ubr;//Bubble rise velocity for Geldart B particle
- 45 delta=uo/ub;//Fraction of bed in bubbles from Eqn .(6.29)
- 46 ephsilonf=1-(1-delta)*(1-ephsilonmf);//Void fraction of fixed bed from Eqn.(6.20)
- 47 fw=0.15;//Wake volume to bubble volume from Fig. (5.8)
- 48 gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw

);//Volume of solids in cloud to that of the bubble from Eqn.(6.36)49 gammae=((1-ephsilonmf)*((1-delta)/delta))-gammabgammac; //Volume of solids in emulsion to that of the bubble from Eqn.(6.35)50 Kbc=4.5*(umf/db)+5.85*((D^0.5*g^0.25)/db^(5/4));// Gas interchange coefficient between bubble and cloud from Eqn.(10.27)51 Kce=6.77*((D*ephsilonmf*0.711*(g*db)^0.5)/db^3)^0.5; //Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)52 x=delta*Lm*(1-ephsilonm)/((1-ephsilonf)*uo);//Term Lf/ub of Eqn. (12.16) from Eqn. (6.19)CAi=xA*P/(R*(T+273));//Initial concentration of 53oxygen 5455 //Step 2. Conversion of solids 56 rhob=rhosbar/mB;//Density of ZnS 57 kbar=(kc^-1+(dpbar*10^-6/(12*Ds))^-1)^-1;//Modified rate constant from Eqn.(11) 58 tbar=At*Lm*(1-ephsilonm)*rhosbar/Fo;//Mean residence time of solids 59 Krguess=2;//Guess value of Kr 60 function[fn]=solver_func(Kr)//Function defined for solving the system 61 Kf=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce) +(1/(gammae*Kr)))));//Reaction rate for fluidized bed from Eqn.(14) 62 XA=1-exp(-x*Kf);//Conversion of oxygen from Eqn .(42)CAbar=(CAi*XA*uo)/(Kr*Lm*(1-ephsilonm));// 63 Average concentration of oxygen from Eqn. (43) tou=rhob*dpbar*10^-6*a/(2*kbar*CAbar);//Time for 64 complete reaction from Eqn.(9) v=tbar/tou;//Term tbar/tou 65 $XBbar = 3*y - 6*y^2 + 6*y^3 * (1 - exp(-1/y)); // Average$ 66 conversion of ZnS from Eqn.(22)

67 //Step 3. Material balance of both streams

```
68
       fn=(Fo/mB)*XBbar-(At*uo*CAi*XA/a);//From Eqn.(44
         b)
69 endfunction
70 [Kr]=fsolve(Krguess, solver_func, 1E-6); //Using
      inbuilt function follow for solving for Kr
71 Kf=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)
     +(1/(gammae*Kr)))));//Reaction rate for
      fluidized bed from Eqn.(14)
72 XA=1-\exp(-x*Kf); // Conversion of oxygen from Eqn.(42)
73 CAbar=(CAi*XA*uo)/(Kr*Lm*(1-ephsilonmf));//Average
      concentration of oxygen from Eqn. (43)
74 tou=rhob*dpbar*10^-6*a/(2*kbar*CAbar);//Time for
      complete reaction from Eqn.(9)
75 y=tbar/tou;//Term tbar/tou
76 XBbar=3*y-6*y^2+6*y^3*(1-\exp(-1/y));//Average
      conversion of ZnS from Eqn.(22)
77
78
79 //(c) For other feed rates of solids
80 F1=[2;2.5;3;3.5]; // Various feed rates of solids in
     kg/s
81 n=length(F1)
82 i=1;
83 Krguess1=2;//Guess value of Kr
84 while i<=n
       tbar1(i)=At*Lm*(1-ephsilonm)*rhosbar/F1(i);//
85
          Mean residence time of solids
       function[fn]=solver_func1(Kr)//Function defined
86
          for solving the system
           Kf1=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr
87
              +1/((1/Kce)+(1/(gammae*Kr)))));//
              Reaction rate for fluidized bed from Eqn
              (14)
           XA1=1-exp(-x*Kf1);//Conversion of oxygen
88
              from Eqn.(42)
           CAbar1=(CAi*XA1*uo)/(Kr*Lm*(1-ephsilonm));//
89
              Average concentration of oxygen from Eqn
              (43)
```

90	tou1=rhob*dpbar*10^-6*a/(2*kbar*CAbar1);//		
	Time for complete reaction from Eqn. (9)		
91	y1(i)=tbar1(i)/tou1;//Term tbar/tou		
92	XBbar1(i)=3*y1(i)-6*y1(i)^2+6*y1(i)^3*(1- <mark>exp</mark>		
	(-1/y1(i)));//Average conversion of ZnS		
	$\mathrm{from} \ \mathrm{Eqn.}(22)$		
93	//Step 3. Material balance of both streams		
94	fn=(F1(i)/mB)*XBbar1(i)-(At*uo*CAi*XA1/a);//		
	From Eqn. $(44b)$		
95	endfunction		
96	[Kr1(i)]= <mark>fsolve</mark> (Krguess1,solver_func1,1E-6);//		
	Using inbuilt function fsolve for solving Eqn		
	.(23) for tou		
97	<pre>Kf1(i)=gammab*Kr1(i)+1/((1/Kbc)+(1/(gammac*Kr1(i</pre>		
)+1/((1/Kce)+(1/(gammae*Kr1(i))))));//		
	Reaction rate for fluidized bed from Eqn. (14)		
98	XA1(i)=1-exp(-x*Kf1(i));//Conversion of oxygen		
	from Eqn. (42)		
99	CAbar1(i)=(CAi*XA1(i)*uo)/(Kr1(i)*Lm*(1-		
	ephsilonmf));//Average concentration of		
	oxygen from Eqn.(43)		
100	<pre>tou1(i)=rhob*dpbar*10^-6*a/(2*kbar*CAbar1(i));//</pre>		
	Time for complete reaction from Eqn. (9)		
101	y1(i)=tbar1(i)/tou1(i);//Term tbar/tou		
102	XBbar1(i)=3*y1(i)-6*y1(i)^2+6*y1(i)^3*(1-exp(-1/		
	y1(i));//Average conversion of ZnS from Eqn		
	.(22)		
103	i=i+1;		
104	end		
105			
106	//OUTPUT		
107	<pre>printf('\nExtreme Calculation');</pre>		
108	printf('\n\tDiameter of tube with all its internals:		
	%fm',dt);		
109	<pre>printf('\nThree step procedure');</pre>		
110	$printf('\setminus n \setminus tConversion of ZnS:\%f', XBbar);$		
111	<pre>printt(\ nFor other teed rates of solids ');</pre>		
112	printf($'\n\tFeed(kg/s)\ttbar(s)\t\txBbar/XA\tKrbar(s)$		

Scilab code Exa 18.6 Design of a Roaster for Coarse Ore

```
1 //Kunii D., Levenspiel O., 1991. Fluidization
Engineering(II Edition). Butterworth-Heinemann,
MA, pp 491
2
3 //Chapter-18, Example 5, Page 471
4 //Title: Design of a Roaster for Coarse Ore
5 //
```

```
6
7 clear
8 clc
9
10 //INPUT
11 T=900;//Temperature in roaster in degree C
12 P=101325;//Pressure in Pa
13 R=8.314;//Universal gas constant
14 dp=750;//Particle size in micrometer5
15 Fo=2.5;//Feed rate of solids in kg/s
```

```
16 uo=0.6; // Superficial gas velocity in m/s
17 W=80140; //Weight of bed in kg
18 ephsilonmf=0.50; //Void fraction at minimum fluidized
       condition
19 umf=0.5; // Velocity at minimum fluidization condition
       in m/s
20 db=0.2; //Estimated bubble size in m
21 g=9.81; // Acceleration due to gravity in square m/s^2
22 Lm=1;//Length of fixed bed in m
23 ephsilonm=0.45; //Void fraction of fixed bed
24 xA=0.21; //Mole fraction of oxygen in feed
25 \text{ kc=0.015}//\text{Rate constant in m/s for reaction which}
      follows shrinking core model
26 Ds=8E-6; // Diffusion coefficient of solid in m^2/s
27 rhosbar=4130; // Average particle density in kg/m<sup>3</sup>
28 mB=0.09744;//Molecular weight of ZnS
29 a=3/2; // Stoichiometric coefficient of Oxygen in the
      reaction equation
30
31 //CALCULATION
32 //Selection of models to represent reactor
33 ubr=0.711*(g*db)^0.5; //Rise velocity of bubble from
     Eqn. (6.7)
34 f=ubr/(umf/ephsilonmf);
35
36 //Step 1.
37 ub=uo-umf+ubr;//Rise velocity of bubbles from Eqn
      (6.8)
38 delta=(uo-umf)/(ub+2*umf);//Fraction of the bed in
      bubbles from Eqn.(6.26)
39 Krguess=2;//Guess value of Kr
40 x=Lm*(1-ephsilonm)*umf*(1-delta)/uo^2;
41 CAi=xA*P/(R*(T+273));//Initial concentration of
     oxygen
42
43 // Step 2.
44 kbar=(kc^-1+(dp*10^-6/(12*Ds))^-1)^-1;//Modified
      rate constant from Eqn.(11)
```

```
45 tbar=W/Fo; //Mean residence time of solids from Eqn
      (14.2)
46 rhob=rhosbar/mB;//Density of ZnS
  function[fn]=solver_func1(Kr) // Function defined for
47
      solving the system
       XA=1-\exp(-x*Kr); //Conversion from Eqn.(42)
48
       CAbar=(CAi*XA*uo^2)/(Kr*Lm*(1-ephsilonm)*umf*(1-
49
          delta));//Average concentration of oxygen
          from Eqn.(43)
       tou=rhob*dp*10^-6*a/(2*kbar*CAbar);//Time for
50
          complete reaction from Eqn.(9)
       y=tbar/tou;//Term tbar/tou
51
52
       XBbar = 3*y - 6*y^2 + 6*y^3 * (1 - exp(-1/y)); // Average
          conversion of ZnS from Eqn.(22)
53
       //Step 3.
       fn=XBbar-1.2*XA;//From Table E5, for Fo=2.5kg/s
54
55 endfunction
   [Kr]=fsolve(Krguess, solver_func1, 1E-6); //Using
56
      inbuilt function follow for solving for Kr
57 XA=1-\exp(-x*Kr); // Conversion from Eqn. (42)
58 CAbar=(CAi*XA*uo^2)/(Kr*Lm*(1-ephsilonm)*umf*(1-
     delta))//Average concentration of oxygen from Eqn
      (43)
59 tou=rhob*dp*10^-6*a/(2*kbar*CAbar);//Time for
      complete reaction from Eqn.(9)
60 y=tbar/tou; //Term tbar/tou
61 XBbar=3*y-6*y^2+6*y^3*(1-exp(-1/y));//Average
      conversion of ZnS from Eqn.(22)
62
63 //OUTPUT
64 printf('\nSelection of models to represent reactor')
65 printf('\n\tSince ratio ubr/(umf/ephsilonmf) = \%f <1,
      the reactor is operating in slow bubble regime',
      f);
66 printf('\n\tSince particle size =\%f micrometer, they
       react according to shrinking-core model', dp);
```

```
67 printf('\n\tConversion obtained for %f micrometer
```

68		particle:%f',dp,XBbar);
69	//=	END OF PROGRAM