Scilab Textbook Companion for A Textbook Of Chemical Engineering Thermodynamics by K. V. Narayanan¹

Created by
Apurti Marodia
B.Tech
Chemical Engineering
NIT Tiruchirappalli
College Teacher
Dr. Prakash Kotecha
Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: A Textbook Of Chemical Engineering Thermodynamics

Author: K. V. Narayanan

Publisher: Prentice Hall Of India, New Delhi

Edition: 15

Year: 2011

ISBN: 978-81-203-1732-1

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Introduction and Basic Concepts	11
2	First Law of Thermodynamics	18
3	PVT Behaviour And Heat Effects	34
4	Second Law of Thermodynamics	51
5	Some Applications of the Laws of Thermodynamics	72
6	Thermodynamic Properties of Pure Fluids	105
7	Properties of Solutions	130
8	Phase equilibria	155
9	Chemical Reaction Equilibria	194

List of Scilab Codes

Exa 1.1	To find mans mass and weight on earth	11
Exa 1.2	To find height of manometer fluid	12
Exa 1.3	To find height from ground and Kinetic Energy	13
Exa 1.4	To determine the power developed in man	13
Exa 1.5	To determine the force exerted pressure work done and	
	change in potential energy	14
Exa 1.6	To determine work done by gas	15
Exa 1.7	To find the work done on surrounding	16
Exa 2.1	To find change in internal energy	18
Exa 2.2	To find heat liberated work done and change in internal	
	energy	19
Exa 2.3	To find the heat energy dissipated by brakes	20
Exa 2.4	To find internal energy change during each step and	
	work done during adiabatic process	20
Exa 2.5	To find change in internal energy and enthalpy	22
Exa 2.6	To find internal energy of saturated liquid and internal	
	energy and enthalpy of saturated vapour	23
Exa 2.7	To calculate molar internal energy change and molar	
	enthalpy change	24
Exa 2.8	To determine the theoretical horsepower developed	25
Exa 2.9	To find temperature of water delivered to second storage	
	tank	26
Exa 2.10	To find change in enthalpy and maximum enthalpy change	27
Exa 2.11	To determine heat transfer rates	28
Exa 2.12	To find change in internal energy enthalpy heat supplied	
	and work done	29
Exa 2.13	To determine change in internal energy and change in	
	enthalpy	31

Exa 3.1	To find the molar volume of air
Exa 3.2	Theoretical problem
Exa 3.3	To determine heat and work effects for each step
Exa 3.4	To calculate change in internal energy change in en-
	thalpy work done and heat supplied
Exa 3.5	To determine work done and amount of heat transferred 3
Exa 3.6	To compare the pressures
Exa 3.7	To calculate the volume
Exa 3.8	Theoretical problem
Exa 3.9	To calculate compressibility factor and molar volume .
Exa 3.10	To calculate heat of formation of methane gas
Exa 3.11	To calculate heat of formation of chloroform
Exa 3.12	To calculate standard heat of reaction at 773 K
Exa 3.13	To determine heat added or removed
Exa 3.14	To calculate theoretical flame temperature
Exa 4.1	To calculate the maximum efficiency
Exa 4.2	To determine minimum amount of work done and heat
	given to surrounding
Exa 4.3	To determine efficiency of proposed engine
Exa 4.4	To calculate entropy of evaporation
Exa 4.5	To determine change in entropy
Exa 4.6	To calculate the entropy change
Exa 4.7	To determine change in entropy
Exa 4.8	To determine the change in entropy
Exa 4.9	To calculate the total entropy change
Exa 4.10	To calculate entropy of 1 kmole of air
Exa 4.11	To determine change in entropy for the reaction
Exa 4.12	Theoretical problem
Exa 4.13	To calculate change in entropy and check whether the
	process is reversible
Exa 4.14	To determine the change in entropy of system
Exa 4.15	To calculate entropy change
Exa 4.16	To calculate entropy change in the process
Exa 4.17	To calculate loss in capacity of doing work
Exa 4.18	To calculate total change in entropy and available work
Exa 4.19	To calculate the molar entropy of metal
Exa 4.20	To calculate the absolute entropy of water vapour
Exa 5.1	To calculate the pressure at exit

Exa 5.2	To determine quality of steam flowing through the pipe	73
Exa 5.3	To determine the discharge velocity	74
Exa 5.4	To determine thermodynamic properties at throat and	
	critical pressure	75
Exa 5.5	Theoretical problem	77
Exa 5.6	Theoretical problem	77
Exa 5.7	To calculate work required and temperature after com-	
	pression	78
Exa 5.8	To calculate work required and temperature	79
Exa 5.9	To determine the least amount of power	80
Exa 5.10	To determine COP heat rejected and lowest temperature	81
Exa 5.11	To determine COP at given conditions	82
Exa 5.12	To determine power requirement and refrigeration ca-	
	pacity in tonnes	83
Exa 5.13	To calculate the COP and refrigeration circulation rate	84
Exa 5.14	To determine the COP and air circulation rate	86
Exa 5.15	To verify that given heat pump is equivalent to 30 kW	
	pump	87
Exa 5.16	To determine the amount of fuel burned	88
Exa 5.17	To calculate fraction of liquid in inlet stream and tem-	
	perature	89
Exa 5.18	To determine fraction of air liquified and temperature	
	of air	90
Exa 5.19	To determine ideal Rankine cycle efficiency thermal ef-	
	ficiency and rate of steam production	92
Exa 5.20	To determine the work output thermal efficiency and	
	rate of steam circulation	94
Exa 5.21	To determine fraction of steam withdrawn and thermal	
	efficiency of cycle	96
Exa 5.22	To determine mean effective pressure	98
Exa 5.23	To determine work done thermal effeciency and mean	
	effective pressure	100
Exa 5.24	To determine temperature pressure work and thermal	
	effeciency	102
Exa 6.1	To determine change in entropy of system	105
Exa 6.2	* *	106
Exa 6.3	To determine the melting point of mercury at 10 bar .	107
Exa 6.4	To calculate increase in entropy of solid magnesium	108

Exa 6.5	Theoretical problem
Exa 6.6	Theoretical problem
Exa 6.7	To calculate internal energy enthalpy entropy and fre
	energy for 1 mole of nitrogen
Exa 6.8	To calculate entropy change and mean heat capacity .
Exa 6.9	Theoretical problem
Exa 6.10	To calculate Cv for mercury
Exa 6.11	Theoretical problem
Exa 6.12	Theoretical problem
Exa 6.13	Theoretical problem
Exa 6.14	Theoretical problem
Exa 6.15	Theoretical problem
Exa 6.16	Theoretical problem
Exa 6.17	Theoretical problem
Exa 6.18	Theoretical problem
Exa 6.19	Theoretical problem
Exa 6.20	Theoretical problem
Exa 6.21	To estimate the fugacity of ammonia
Exa 6.22	To determine the fugacity of gas
Exa 6.23	To determine the fugacity coeffeceint at given pressure
Exa 6.24	Theoretical problem
Exa 6.25	To determine the fugacity of pure ethylene
Exa 6.26	To determine fugacity and fugacity coeffecient of steam
Exa 6.27	To estimate fugacity of ammonia
Exa 6.28	To calculate the fugacity of liquid water
Exa 6.29	To determine the fugacity of n butane in liquid state at
	given conditions
Exa 6.30	To determine the activity of solid magnesium
Exa 7.1	Theoretical problem
Exa 7.2	To find the volume of mixture
Exa 7.3	To find the required volume of methanol and water
Exa 7.4	To calculate the volume of water to be added and vol-
	ume of dilute alcohol solution
Exa 7.5	Theoretical problem
Exa 7.6	To determine enthalpies of pure components and at in-
	finite dilution
Exa 7.7	To calculate the partial molar volume of the components
Exa 7.8	Theoretical problem

Exa 7.9	Theoretical problem
Exa 7.10	To estimate the solubility of oxygen in water at 298 K
Exa 7.11	To confirm that mixture conforms to Raoults Law and
	to determine Henrys Law constant
Exa 7.12	To calculate activity and activity coeffecient of chloro-
	form
Exa 7.13	To determine fugacity fugacity coeffecient Henrys Law
	constant and activity coeffecient
Exa 7.14	Theoretical problem
Exa 7.15	Theoretical problem
Exa 7.16	Theoretical problem
Exa 7.17	To determine enthalpies at infinite dilution
Exa 7.18	Theoretical problem
Exa 7.19	To determine change in entropy for the contents of the vessel
Exa 7.20	To determine heat of formation of LiCl in 12 moles of
	water
Exa 7.21	To calculate the free energy of mixing
Exa 7.22	To calculate the mean heat capacity of 20 mol percent
	solution
Exa 7.23	To find the final temperature attained
Exa 7.24	Theoretical problem
Exa 8.1	Theoretical problem
Exa 8.2	Theoretical problem
Exa 8.3	Theoretical problem
Exa 8.4	Theoretical problem
Exa 8.5	Theoretical problem
Exa 8.6	To determine composition of vapour and liquid in equi-
	librium
Exa 8.7	To determine pressure at the beginning and at the end
	of the process
Exa 8.8	To determine temperature pressure and compositions.
Exa 8.9	To construct boiling point and equilibrium point diagram
Exa 8.10	Theoretical problem
Exa 8.11	To calculate van Laar constants
Exa 8.12	To calculate activity coeffecients in a solution containing
	10 percent alcohol

Exa 8.13	To calculate equilibrium vapour composition for solu-	
	tion containing 20 mole percent hydrazine	167
Exa 8.14	Theoretical problem	169
Exa 8.15	To determine the total pressure	170
Exa 8.16	To construct the Pxy diagram	171
Exa 8.17	To determine the composition and total pressure of azeotro	ope 172
Exa 8.18	Theoretical problem	174
Exa 8.19	To calculate equilibrium pressure and composition	174
Exa 8.20	To determine parameters in Wilsons equation	177
Exa 8.21	To alculate bubble and dew point and the composition	179
Exa 8.22	To calculate bubble and dew point temperatures	182
Exa 8.23	To test whetherthe given data are thermodynamically	
	consistent or not	185
Exa 8.24	Theoretical problem	186
Exa 8.25	To estimate the constants in Margules equation	187
Exa 8.26	To calculate the partial pressure of water in vapour phase	188
Exa 8.27	to calculate under three phase equilibrium	189
Exa 8.28	To prepare temperature composition diagram	191
Exa 9.1	Theoretical problem	194
Exa 9.2	Theoretical problem	194
Exa 9.3	Theoretical problem	195
Exa 9.4	Theoretical problem	196
Exa 9.5	Theoretical problem	196
Exa 9.6	To calculate equilibrium constant	197
Exa 9.7	To calculate equilibrium constant at 500 K	198
Exa 9.8	To alculate standard free energy change and heat of for-	
	mation	199
Exa 9.9	To estimate free energy change and equilibrium constant	
	at 700 K	200
Exa 9.10	to calculate equilibrium constant at 600 K	201
Exa 9.11	To calculate equilibrium constant at 500K	202
Exa 9.12	To find the value of n	203
Exa 9.13	To determine the percent conversion	205
Exa 9.14	To calculate fractional dissociation of steam	206
Exa 9.15	To determine conversion of nitrogen affected by argon	207
Exa 9.16	To calculate the fractional dissociation of steam	208
Exa 9.17	To calculate the fractional distillation of steam	210
Exa. 9.18	To evaluate the percent conversion of CO	211

Exa 9.19	To determine the composition of gases leaving the reactor	212
Exa 9.20	To evaluate the equilibrium constant	214
Exa 9.21	To calculate the decomposition pressure and tempera-	
	ture at 1 bar	215
Exa 9.22	To evaluate wt of iron produced per 100 cubic m of gas	
	admitted	216
Exa 9.23	To calculate the composition at equilibrium assuming	
	ideal behaviour	218
Exa 9.24	To determine the number of degrees of freedom	220

Chapter 1

Introduction and Basic Concepts

Scilab code Exa 1.1 To find mans mass and weight on earth

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 1
3 //Introduction and Basic Concepts
4 //Example 1
6 clear all;
7 clc;
8
9
10 // Given:
11 F = 300; //[N]
12 g_local = 4.5; //local gravitational acceleration [m/
13 g_earth = 9.81; //earth's gravitational acceleration
      [m/s^2]
14
15
16 //To find man's mass and weight on earth
17 m = F/g_local; //mass of man[kg]
```

```
18 w = m*g_earth; // weight of man on earth [N]
19 mprintf('Mass of man is %f kg',m);
20 mprintf('\nWeight of man on earth is %f N',w);
21
22
23 //end
```

Scilab code Exa 1.2 To find height of manometer fluid

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 1
3 //Introduction and Basic Concepts
4 //Example 2
5
6 clear all;
7 clc;
8
9
10 // Given:
11 p1 = 1.15*10^5; // measured pressure [N/m^2]
12 p2 = 1.01325*10^5; //atmospheric pressure [N/m^2]
13 sg = 2.95; //specific gravity of fluid
14
15 //To find height of manometer fluid
16 p = p1-p2; //difference in pressure
17 //Using equation 1.2 (Page no. 6)
18 h = p/(sg*(10^3)*9.8067); //height of manometer
     fluid [m]
19 mprintf('Height of manometer fluid is %f m',h);
20
21
22 //end
```

Scilab code Exa 1.3 To find height from ground and Kinetic Energy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 1
3 //Introduction and Basic Concepts
4 //Example 3
6 clear all;
7 clc;
9
10 // Given
11 PE = 1.5*10^3; //potential energy [J]
12 m = 10; //mass in kg
13 u = 50; // velocity in m/s
14
15 //To find height from ground and kinetic energy
16 //Using equation 1.8 (Page no. 8)
17 h = PE/(m*9.8067); // height from ground in m
18
19 //Using equation 1.9 (Page no. 8)
20 KE = 0.5*m*(u^2);// Kinetic energy in J
21 mprintf('Height from ground is %f m',h);
22 mprintf('\nKinetic Energy of body is \%3.2 e J', KE);
23
24
25 //end
```

Scilab code Exa 1.4 To determine the power developed in man

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 1
3 //Introduction and Basic Concepts
4 //Example 4
```

```
6 clear all;
7 clc;
8
9
10 //Given
11 F = 600; // weight in N
12 t = 120; //time in sec
13 h = 0.18; //height of stairs in m
14
15 //To determine the power developed in man
16 S = 20*h; //total vertical displacement in m
17 W = F*S; //work done in J
18 P = W/t; //power developed
19 mprintf('Power developed is %i W',P);
20
21
22 //end
```

Scilab code Exa 1.5 To determine the force exerted pressure work done and change in potential energy

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 1
//Introduction and Basic Concepts
//Example 5

clear all;
clc;

A = (%pi/4)*(0.1^2); //area in m^2
P = 1.01325*10^5; //pressure in N/m^2
m = 50; //mass of piston and weight in kg
for gravity (N/m^2)
```

```
15
16
17 //To determine the force exerted pressure work done
      and change in potential energy
18 //(a)
19 Fa = P*A; //force exerted by atmosphere in N
20 Fp = m*g; //force exerted by piston and weight in N
21 F = Fp+Fa; //total force exerted in N
22 mprintf ('Total force exerted by the atmosphere, the
      piston and the weight is %f N',F);
23
24 //(b)
25 Pg = F/A; //pressure of gas in N/m^2
26 mprintf('\nPressure of gas is \%5.4\,\mathrm{e} Pa',Pg);
27
28 //(c)
29 S = 0.4; //displacement of gas in m
30 W = F*S; //work done by gas in J
31 mprintf('\nWork done by gas is \%f J', W);
32
33 // (d)
34 PE = m*g*S; //change in potential energy in J
35 mprintf('\nChange in potential energy is %f J',PE);
36
37 //end
```

Scilab code Exa 1.6 To determine work done by gas

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 1
3 //Introduction and Basic Concepts
4 //Example 6
5
6
7 clear all;
```

```
8 clc;
9
10
11 // Given:
12 /P/D = constant, where P is pressure and D is
      diameter
13 / P = (2*10^5)*D
14 Df = 2.5; // final diameter (m)
15 Di = 0.5; //initial diameter (m)
16
17 //To determine work done by gas
18 / \text{Work done} = integral (PdV)
19 //W = intg((2*10^5*D)d(pi/6)(D^3))....that is
20 \ W = (\%pi/4)*10^5*((Df^4)-Di^4);
21 mprintf('Work done by gas is \%6.4 e J', W);
22
23 //end
```

Scilab code Exa 1.7 To find the work done on surrounding

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 1
//Introduction and Basic Concepts
//Example 7

clear all;
clc;

//Given:
T = 300; //temperature in K
P = 6.5*10^5; //pressure in N/m^2
Pa = 1.01325*10^5; //atmospheric pressure in N/m^2
R = 8.314; //ideal gas constant
```

```
16 m = 2; //mass of gas (kg)
17 M = 44; //molecular weihgt of gas
18
19 //To find the work done on surrounding
20 n = m/M; // n is number of kmoles
21 Vi = (n*R*10^3*T)/P; // initial volume in m^3
22 Vf = 2*Vi; //final volume in m^3
23 V = Vf-Vi; //change in volume
24 Ps = Pa+(5000*9.8067); //pressure on surroundings
25 W = Ps*V; //work done on the surroundings
26 mprintf('Work done on surroundings is %5.2e J',W);
27
28
29 //end
```

Chapter 2

First Law of Thermodynamics

Scilab code Exa 2.1 To find change in internal energy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 1
7 clear all;
8 clc;
9
10
11 // Given
12 W = -2.25*745.7; //work done on system in J/s
13 Q = -3400*(10^3)/3600; //heat transferred to the
     surrounding in J/s
14
15 //To find the change in internal energy
16 //Using equation 2.4 (Page no. 26)
17 U = Q-W; //change in internal energy in J/s
18 mprintf('Internal energy of system increases by %f J
     /\mathrm{s} ',U);
19
```

Scilab code Exa 2.2 To find heat liberated work done and change in internal energy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 2
5
6
7 clear all;
8 clc;
9
10
11 //Given
12 T = 298; //temperature in K
13 P = 101; //pressure in kPa
14 n_{iron} = 2; //moles of iron reacted
15 Q = -831.08; //heat liberated in kJ
16 R = 8.314; //ideal gas constant
17
18 //To find heat liberated work done and change in
     internal energy
19 mprintf ('Heat liberated during the reaction is %f kJ
      ',Q);
20 n_oxygen = 1.5; //moles of oxygen reacted
21
22
  //Using ideal gas equation P(Vf-Vi)=nRT and W=P(Vf-
     Vi)
23 W = -1.5*R*T; //work done by system in J
24
25 //Using equation 2.4 (Page no. 26)
26 U = (Q*10^3)-W; //change in internal energy in J
27 mprintf('\nWork done by gas is \%f J', W);
```

```
28 mprintf('\nChange in internal energy is %6.3e J',U);
29
30 //end
```

Scilab code Exa 2.3 To find the heat energy dissipated by brakes

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 3
5
6
7 clear all;
8
  clc;
9
10
11 //Given
12 u = 20; //speed of car in m/s
13 z = 30; //height vertically above the bottom of hill
      in m
14 m = 1400; //mass of car in kg
15
16 //To find the heat energy dissipated by brakes
17 //Using equation 2.3 (Page no. 26)
18 KE = -0.5*m*(u^2); //change in kinetic energy in J
19 PE = -m*9.81*z; //change in potential energy in J
20 Q = -(KE+PE); //heat dissipated by brakes in J
21 mprintf('Heat dissipated by brakes is %3.2e J',Q);
22
23 //end
```

Scilab code Exa 2.4 To find internal energy change during each step and work done during adiabatic process

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 4
5
7 clear all;
8 clc;
9
10
11 // Given:
12 //Step 1: constant pressure process
13 //Step 2: costant volume process
14 //Step 3: adibatic process
15
16 //To find internal energy change during each step
     and work done during adiabatic process
17
18 //For step 1
19 W1 = -50; //work received in J
20 Q1 = -25; //heat gven out in J
21 U1 = Q1-W1; //internal energy change in J
22 mprintf ('Change in internal energy for constant
     pressure process is %i J', U1);
23
24 //For step 2
25 W2 = 0; //work done for constant volume process is
26 Q2 = 75; //heat received in J
27 U2 = Q2; //internal energy change in J
28 mprintf('\nChange in internal energy for constant
     volume process is %i J', U2);
29
30 //For step 3
31 Q3 = 0; //no heat exchange in adiabatic process
32 //Since the process is cyclic
33 //U3+U2+U1 = 0;
34 \ U3 = -(U1+U2);
```

Scilab code Exa 2.5 To find change in internal energy and enthalpy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 n_water = 10^3; //moles of water
13 T = 373; //\text{tempearture}(K)
14 P = 101.3; //pressure(kPa)
15 sv_liquid = 0.00104; //specific volume of liquid (m
      ^3/\text{kmol}
  sv\_vapour = 1.675; //specific volume of vapour (m^3/specific volume)
16
      kmol)
17 Q = 1.03*10^3; //heat added in kJ
18
19 //To find change in internal energy and enthalpy
20 \ W = P*n_water*(sv_vapour-sv_liquid)*10^-3; //
      expansion work done in kJ
21 U = Q-W; //change in internal energy in kJ
22
23 //For constant pressure process
24 H = Q; //enthalpy change in kJ
```

```
25 mprintf('Change in internal energy is %f kJ',U);
26 mprintf('\nChange in enthalpy is %3.2e kJ',H);
27
28 //end
```

Scilab code Exa 2.6 To find internal energy of saturated liquid and internal energy and enthalpy of saturated vapour

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 6
6
7 clear all;
8 clc;
9
10
11 // Given:
12 T = 233; //temperature in K
13 VP = 1.005*10^3; //vapour pressure of CO2 in kPa
14 sv_liquid = 0.9*10^-3; //specific volume of liquid
     CO<sub>2</sub> in m<sup>3</sup>/kg
15 sv_vapour = 38.2*10^-3; //specicific volume of CO2
      vapour in m<sup>3</sup>/kg
16 L = 320.5; //latent heat of vaporisation of CO2 in
     kJ/kg
17 //Assuming at these conditions CO2 is saturated
      liquid so
18 H1 = 0; //enthalpy in liquid state
19
20 //To find internal energy of saturated liquid and
      internal energy and enthalpy of saturated vapour
21 //For saturated liquid
22 U1 = H1-(VP*sv_liquid); // internal energy in liquid
```

Scilab code Exa 2.7 To calculate molar internal energy change and molar enthalpy change

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 7
5
7 clear all;
8 clc;
9
10
11 // Given:
12 I = 0.5; //current in Amperes
13 V = 12; // voltage in volts
14 t = 5*60; //time in sec
15 m = 0.798; //mass of water vaporised in g
16 M = 18; // molecular mass of water in g
17
18 //To calculate molar internal energy change and
```

```
molar enthalpy change
19 Q = (I*V*t/1000); //electric energy supplied in kJ
20 // Referring equation 2.10 (Page no. 29)
21 H = (Q*M)/m; //molar enthalpy change in kJ/mole
22
23 //BY ideal gas equation PV=RT
24 // Referring equation 2.9 for constant pressure
     process (Page no. 29)
25 U = H-(8.314*10^-3*373); //molar internal energy
     change in kJ/mole
26 mprintf('Molar Enthalpy change during the process is
      \%i kJ/mole',H);
27
  mprintf('\nMolar Interanl Energy change during the
      process is %f kJ/mole',U);
28
29 //end
```

Scilab code Exa 2.8 To determine the theoretical horsepower developed

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 2
//First Law of Thermodynamics
//Example 8

clear all;
clc;

m = 1650; //mass of steam used in kg/hr
H1 = 3200; //enthalpy at 1368 kPa and 645 K in kJ/kg
H2 = 2690; //enthalpy at 137 kPa and 645 K in kJ/kg
//To determine the theoretical horsepower developed
```

Scilab code Exa 2.9 To find temperature of water delivered to second storage tank

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
4 //Example 9
5
6 clear all;
7 clc;
8
10 // Given:
11 m = 25*10^3; //mass flow rate of water in kg/h
12 P = 2; //power supplied by motor in hp
13 q = 42000; //heat given in kJ/min
14 z = 20; //elevation in m
15 T = 368; //temperature in K
16 To = 273; //standard temperature in K
17 Cp = 4.2; //specific heat of water in kJ/kg K
18
19 //To find temperature of water delivered to second
     storage tank
```

```
20 W = (P*745.7*10^-3*3600)/m; //work done per kg of
      water pumped in kJ/kg
21 Q = q*60/m; //heat given out per kg of fluid
22 PE = 09.81*z*10^-3; //change in potential energy in
      kJ/kg
23
24 //Using equation 2.13 (Page no. 32)
25 H = -Q+W-PE;
26 / H = H2-H1
27 	H1 = Cp*(T-To);
28 \text{ H2} = \text{H1+H};
29 //Let T1 be the temperature at second storage tank
30 \text{ T1} = \text{To+(H2/Cp)};
31 mprintf('Temperature of water at second storage tank
       is %i K', T1);
32
33 //end
```

Scilab code Exa 2.10 To find change in enthalpy and maximum enthalpy change

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 2
//First Law of Thermodynamics
//Example 10

clear all;
clc;

//Given:
D1 = 25; //internal diameter of pipe in mm
u1 = 10; //upstream velocity in m/s
D2 = 50; //downstream diameter of pipe in mm
```

```
15 //Since there is no external device for adding or
     removing energy as work
16 / Q = 0, Ws = 0
17
18 //To find change in enthalpy and maximum enthalpy
     change
19
20 //(a)
21 //Let A1 nad A2 be upstream and downstream
      crosssectional areas of pipe
22 u2 = ((D1/D2)^2)*u1; //downstream velocity in m/s
23 H = 0.5*(u1^2-u2^2); //change in enthalpy in J/kg
24 mprintf('Change in enthalpy is %f J/kg',H);
25
26 //(b)
27 //For maximum enthalpy change
28 u2 = 0;
29 Hmax = 0.5*u1^2; //(J/kg)
30 mprintf('\nMaximum enthalpy change for a sudden
      enlargement in pipe is %f J/kg', Hmax);
31
32 //end
```

Scilab code Exa 2.11 To determine heat transfer rates

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 2
//First Law of Thermodynamics
//Example 11

clear all;
clc;
```

```
11 // Given:
12 //At inlet:
13 T1 = 293; //Temperature(K)
14 P1 = 300+136.8; //Pressure(kPa)
15
16 //At exit:
17 T2 = 453; //Temperature(K)
18 P2 = 136.8; // Pressure(kPa)
19 Cp = 29.4; //specific heat capacity at constant
     pressure in kJ/kmol
20 m = 1000; //mass of hydrogen in kg
21 M = 2.02; //molecular mass of hydrogen
22
23 //To determine heat transfer rates
24 // Neglecting the kinetic nd potential energy changes
25 //Assuming the process to be occuring through a
     number of steps
26
27 //Step 1 be isothermal and step 2 be isobaric
28 H1 = 0; //change in enthalpy for step 1
29 H2 = (m/M)*Cp*(T2-T1)/1000; //change in enthalpy for
       step 2 in kJ
30 H = H2 + H1;
31 Q = H; //heat transferred in coils in kJ
32 mprintf('Heat transferred in coils is %f kJ', Q);
33
34 // end
```

Scilab code Exa 2.12 To find change in internal energy enthalpy heat supplied and work done

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 //First Law of Thermodynamics
4 //Example 12
```

```
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 m = 10; //mass of air in kg
13 P1 = 100; //initial pressure(kPa)
14 T1 = 300; //initial temperature(K)
15 T2 = 600; // final temperature (K)
16 R = 8.314; //ideal gas constant (kJ/kmol K)
17 Cp = 29.099; //specific heat capacity at constant
      pressure (kJ/kmol K)
18 Cv = 20.785; //specific heat capacity at constsant
     volume (kJ/kmol K)
19 M = 29; //molecular weight of air
20
21 //To determine change in internal energy enthalpy
     heat supplied and work done
22 n = m/M; //number of moles of gas(kmol)
23 V1 = (n*R*T1)/P1; //initial volume of air (m^3)
24
25 //(a)
26 // Constant volume process
27 V2 = V1; // final volume
28 //Change in internal energy U = n*intg(CvdT)...so
29 U = n*Cv*(T2-T1); //change in internal energy(kJ)
30 Q = U; //heat supplied(kJ)
31 W = 0; //\text{work done}
32 H = U+(n*R*(T2-T1)); //change in enthalpy(kJ)
33 disp('For constant volume process');
34 mprintf('\nChange in internal energy is %i kJ',U);
35 mprintf('\nHeat supplied is %i kJ',Q);
36 mprintf('\nWork done is \%i kJ',W);
37 mprintf('\nChange in enthalpy is %i kJ',H);
38
39 //(b)
```

```
// Constant pressure process
// Change in enthalpy H = n*intg(CpdT)...so
H = n*Cp*(T2-T1); //change in enthalpy(kJ)

U = H; //heat supplied(kJ)

U = H-(n*R*(T2-T1)); //change in internal energy(kJ)

mprintf('\n\nFor constant pressure process');
mprintf('\n\nChange in internal energy is %i kJ',U);
mprintf('\nHeat supplied is %i kJ',Q);
mprintf('\nWork done is %i kJ',W);
mprintf('\nChange in enthalpy is %i kJ',H);
// end
```

Scilab code Exa 2.13 To determine change in internal energy and change in enthalpy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 2
3 // First Law of Thermodynamics
  //Example 13
5
6
7 clear all;
  clc;
9
10
11 // Given:
12 R = 8.314; //ideal gas constant (kJ/kmol K)
13 Cv = 20.8; //specific heat capacity at constant
     volume (kJ/kmol K)
14 Cp = 29.1; //specific heat capacity at constant
     pressure (kJ/kmol K)
15 P1 = 10; //initial pressure(bar)
16 T1 = 280; //initial temperature in K
```

```
17 P2 = 1; // final pressure (bar)
18 T2 = 340; // final temperature (K)
19
20 //To determine the change in internal energy and
      change in enthalpy
21 //Solution
22 n = 1; //basis: 1 kmol of ideal gas
23 V1 = (n*R*T1)/(P1*100); //initial volume in m<sup>3</sup>
24 \text{ V2} = (n*R*T2)/(P2*100); //final volume in m^3
25
26 //Assuming the change in state is occuring along the
      following two step process
27 // 1. A constant volume process in which the pressure
        is reduced to the final value P2 and the
      temperature gets reduced to T2
  //Let Po and Vodenote the pressure and volume of
      system after this step
29 \text{ Po} = P2;
30 \text{ Vo} = \text{V1};
31 To = (Po*100*Vo)/(n*R);
32 \text{ U1} = \text{Cv}*(\text{To}-\text{T1});
33 H1 = U1+(V1*100*(P2-P1));
34 \text{ W1} = 0;
35 \ Q1 = U1;
36
37 / 2. A constant pressure process in which the gas is
       heated to the final temperature T2 and the final
       volume V2
38 \text{ H2} = \text{Cp}*(\text{T2-To});
39 \text{ U2} = \text{H2}-100*(\text{V2}-\text{V1});
40 \ Q2 = H2;
41 \text{ W2} = Q2 - U2;
42
43 //For actual process
44 U = U1+U2; //change in internal energy (kJ)
45 H = H1+H2; //change in enthalpy(kJ)
46 mprintf('Change in internal energy is %f kJ',U);
47 mprintf('\nChange in enthalpy is %f kJ',H);
```

49 //end

Chapter 3

PVT Behaviour And Heat Effects

Scilab code Exa 3.1 To find the molar volume of air

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 1
5
7 clear all;
8 clc;
9
10
11 // Given:
12 T = 350; //temperature in K
13 P = 10^5; //pressure in N/m<sup>2</sup>
14 R = 8.314; //ideal gas constant
15
16 //To find the molar volume of air
17
18 V = (R*T)/P; //molar volume in m^3
19 mprintf('Molar volume of air is %3.2e cubic m/mol', V
```

```
);
20
21 //end
```

Scilab code Exa 3.2 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 2
5
6
7 clear all;
8
  clc;
9
10
11 // Given:
12
13
14 //The given problem is theoretical and does not
      involve any numerical computation
15
16 // end
```

Scilab code Exa 3.3 To determine heat and work effects for each step

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 3
5
6
7 clear all;
```

```
8 clc;
9
10
11 // Given:
12 Cp = 29.3; //specific heat at constant pressure (kJ/
     kmol K)
13 R = 8.314; //ideal gas constant
14
15 //To determine heat and work effects for each step
16
17 //Step 1: Gas is heated at constant volume
18 T1 = 300; //temperature in K
19 P1 = 1; //initial pressure in bar
20 P2 = 2; //final pressure in bar
21 T2 = (P2/P1)*T1; //final temperature in K
22 Cv = Cp-R; //specific heat at constant volume
23 W1 = 0; //work done is zero as volume remains
     constant
24 Q1 = Cv*(T2-T1); //heat supplied in kJ/kmol
25 mprintf('For step 1');
26 mprintf('\nWork done in step 1 is \%i', W1);
27 mprintf('\nHeat supplied in step 1 is %f kJ/kmol',Q1
     );
28
29 //Step 2: The process is adiabatic
30 Q2 = 0; //the process is adiabatic
31 P3 = 1; //pressure after step 2 in bar
32 \text{ gama} = (Cp/Cv);
33 T3 = ((P3/P2)^{(gama-1)/gama)}*T2; //temperature
      after step 2
34 W2 = (Cv*(T2-T3)); //work done by system
35 mprintf('\n nFor step 2');
36 mprintf('\nHeat supplied in step 2 is %i', Q2);
37 mprintf('\nWork done by system in step 2 is %f kJ/
     kmol', W2);
38
39 //Step 3: The process is isobaric
40 T4 = 300; //temperature after step 3 (K)
```

```
41 Q3 = Cp*(T4-T3); //heat supplied during step 3(kJ/kmol)
42 U = (Cv*(T4-T3)); //change in internal energy during step 3(kJ/kmol)
43 W3 = Q3-U; //Using first law of thermodynamics
44 mprintf('\n\nFor step 3');
45 mprintf('\nHeat given out by the system in step 3 is %f kJ/kmol',Q3);
46 mprintf('\nWork done on the system in step 3 is %f kJ/kmol',W3);
47
48 //end
```

Scilab code Exa 3.4 To calculate change in internal energy change in enthalpy work done and heat supplied

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 4
5
7 clear all;
8 clc;
9
10
11 // Given:
12 R = 8.314; //ideal gas constant
13 Cp = 30; // specific heat at constant pressure (J/mol
     K
14
15 //To calculate change in internal energy change in
      enthalpy work done and heat supplied
```

```
16
17 //(a): Gas is expanded isothermally
18 T = 600; //temperature in K
19 P1 = 5; //initial pressure in bar
20 P2 = 4; //final pressure in bar
21 U1 = 0; //since the process is isothermal
22 H1 = 0; //since the process is isothermal
23 W1 = (R*T*log(P1/P2)); //work done during the
     process
24 Q1 = W1; //heat supplied during the process
25 mprintf('When gas is expanded isothermally');
26 mprintf('\nChange in internal energy in isothermal
     process is %i',U1);
27 mprintf('\nChange in enthalpy in isothermal process
     is %i', H1);
  mprintf("\nWork done during the process is %f kJ/
     kmol", W1);
29 mprintf('\nHeat supplied during the process is %f kJ
     /kmol',Q1);
30
31 //(b): Gas is heated at constant volume
32 V = 0.1; //volume (m^3)
33 P1 = 1; //initial pressure(bar)
34 T1 = 298; //initial temperature (K)
35 T2 = 400; // final temperature (K)
36 n = ((P1*V*10^5)/(R*T1)); //number of moles of gas
37 Cv = Cp-R; //specific heat at constant volume(J/mol
     K
38 U2 = n*Cv*(T2-T1); //change in internal energy(J)
39 H2 = n*Cp*(T2-T1); //change in enthalpy(J)
40 W2 = 0; //isochoric process
41 Q2 = U2+W2; //heat supplied (J)
42 mprintf('\n\nWhen gas is heated at constant volume')
43 mprintf('\nChange in internal energy is %f J',U2);
44 mprintf('\nChange in enthalpy is %f J', H2);
45 mprintf('\nWork done during the process is %i', W2)
```

```
46 mprintf('\nHeat supplied during the process is %f J',Q2);
47
48 //end
```

Scilab code Exa 3.5 To determine work done and amount of heat transferred

```
1 //A Textbook of Chemical Engineering Thermodynamics
   2 //Chapter 3
   3 //P-V-T Behaviour and Heat Effects
   4 //Example 5
   6
   7 clear all;
   8 clc;
   9
10
11 // Given:
12 function[y] = Cv(T);
                                  y = 27.4528 + (6.1839 * (10^{-3}) *T) - (8.9932 * (10^{-7}) * (6.1839 * (10^{-8}) *T) + (6.183
13
                                               T^2))-R;
14 endfunction
15
16 m = 20; //mass of air(kg)
17 n = 1.25; //polytropic constant
18 P1 = 1; //initial pressure(bar)
19 P2 = 5; //final pressure(bar)
20 T1 = 300; //temperature(K)
21 R = 8.314; //ideal gas constant
22 M = 29; //molecular wt of air
24 //To determine work done and amount of heat
```

transferred

```
25
\frac{26}{a} //(a): Work done by the compressor per cycle
27 n_mole = m/M; //moles of air(kmol)
28 V1 = ((n_mole*10^3*R*T1)/(P1*10^5)); //initial
      volume (m<sup>3</sup>)
  V2 = (V1*((P1/P2)^(1/n))); //final volume(m^3)
29
30
31 //Since the process is polytropic P(V^n)=c(say)
      constant)
32 c = P1*10^5*(V1^n);
33 / function[z] = f(V);
34 //
         z = c/(V^1.25);
35 //endfunction
36 / W1 = intg(V1, V2, f); so
37 W = (c/(1-n))*((V2^{(-n+1)})-(V1^{(-n+1)}))/1000;
38 mprintf('Work done by compressor is %4.3e J', W*1000)
39
40 //(b): Amount of heat transferred to surrounding
41 T2 = ((T1*V2*P2)/(V1*P1)); //final temp in K
42 \text{ U1} = intg(T1, T2, Cv);
43 U = U1*n_mole; //change in internal energy(kJ)
44 Q = U+W; //heat supplied
45 mprintf('\nChnage in internal energy is %f kJ',U);
46 mprintf('\nHeat supplied is \%f kJ',Q);
47
48 //end
```

Scilab code Exa 3.6 To compare the pressures

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 6
```

```
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 V = 0.3821*10^{-3} //molar volume (m<sup>3</sup>/mol)
13 T = 313; //temperature (K)
14 R = 8.314; //ideal gas constant
15 a = 0.365; b = 4.28*10^{-5}; //Vander Waals constant
16
17 //To compare the pressures
18
19 //(a): Ideal gas equation
20 P = ((R*T)/(V*10^5)); //pressure in bar
21 mprintf ('Pressure obtained by ideal gas equation is
      %f bar',P);
22
23 //(b): Van der Waals equation
24 P = ((((R*T)/(V-b))-(a/(V^2)))/(10^5));
25 mprintf('\nPressure obtained by Van der Waals
      equation is %f bar',P);
26
27 //end
```

Scilab code Exa 3.7 To calculate the volume

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 7
5
6
7 clear all;
```

```
8 clc;
9
10 //To find Approx Value
11 function[A] = approx(V,n)
12
     A=round(V*10^n)/10^n;//V-Value n-To what place
13
     funcprot(0)
14 endfunction
15
16
17 // Given:
18 T = 300; //\text{temperature}(K)
19 P = 100; //pressure(bar)
20 R = 8.314; //ideal gas constant
21 a = 0.1378; b = 3.18*10^-5; //Van der waals constant
22
23 //To calculate the volume
24
\frac{25}{a} //(a): Ideal gas equation
V_{ideal} = approx(((R*T)/(P*10^5)),6);
27 mprintf('Volume calculated by ideal gas equation is
      \%4.2e cubic m', V_ideal);
28
29 //(b): Van der Waals equation
30 function [y]=f(V);
       y = ((P*10^5) + (a/(V^2)))*(V-b) - (R*T); //function
31
          to calculate difference between calculated
          and assumed volume
32 endfunction
33
34 \text{ V_real} = 0;
35 for i = 0.20:0.01:0.30 //Van der waals volume should
       be nearly equal to Ideal gas valoume
       res = approx(f(i*10^-3),0);
36
       for j = -5:5
37
38
            if(j==res) //for very small difference i may
                be taken as exact volume
                V_{real} = i*10^{-3};
39
40
       end
```

```
41 end
42 end
43 mprintf('\nVolume calculated by Van der Waals
equation is %3.2e cubic m', V_real);
44
45 //end
```

Scilab code Exa 3.8 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 8
5
6
7 clear all;
8 clc;
9
10 //Given:
11
12 //The given problem is theoretical and does not involve any numerical computation
13
14 //end
```

Scilab code Exa 3.9 To calculate compressibility factor and molar volume

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 3
//P-V-T Behaviour and Heat Effects
//Example 9
```

```
7 clear all;
8 clc;
10 //To find Approx Value
11 function[A] = approx(V,n)
12
     A=round(V*10^n)/10^n;//V-Value n-To what place
13
     funcprot(0)
14 endfunction
15
16
17 // \text{Given}:
18 T = 500; //temperature (K)
19 P = 10; //pressure(bar)
20 R = 8.314; //ideal gas constant
21 B = -2.19*10^-4; C=-1.73*10^-8; //Virial
      coeffecients
22 Tc = 512.6; //critical temperature
23 Pc = 81; //critical pressure
24
25 //To calculate compressibility factor and molar
      volume
26
27 //(a): Truncated form of virial equation
28 V_ideal = approx(((R*T)/(P*10^5)),7); //ideal gas
      volume
29 function [z] = f1(V)
       z = (((R*T)/(P*10^5))*(1+(B/V)+(C/(V^2)))); //
30
          function for obtaining volume by virial
          equation
31 endfunction
32
33 //loop for hit and trial method
34 \text{ flag} = 1;
35 while(flag==1)
36
       V_virial = approx(f1(V_ideal),7);
       if (approx(V_ideal,5) == approx(V_virial,5))
37
           flag = 0;
38
39
           break;
```

```
40
           else
       V_ideal = V_virial;
41
42 end
43 end
44 mprintf ('Volume obtained vy virial equation is %4.3e
       cubic m', V_virial);
45 \ Z = approx(((P*10^5*V_virial)/(T*R)),3); //
      compressibility factor
46 mprintf('\nCompressibilty factor for virial equation
       is %f ',Z);
47
48 //(b): Redlich Kwong Equation
49 //Constants in Redlich Kwong equation
50 a = approx(((0.4278*(R^2)*(Tc^2.5))/(Pc*10^5)),4);
51 b = approx(((0.0867*R*Tc)/(Pc*10^5)),9);
52
53 V_{ideal} = approx(((R*T)/(P*10^5)),7); //ideal gas
      volume
54
55 //Function to find volume by Redlich Kwong equation
56 \text{ function } [x] = f2(V)
       x = ((R*T)/(P*10^5))+b-((a*(V-b))/((T^0.5)*(P
57
          *10^5)*V*(V+b)));
58 endfunction
59
60 //loop for hit and trial method
61 \text{ flag} = 1;
62 while (flag==1)
       V_redlich = approx(f2(V_ideal),7);
63
       if (approx(V_ideal,5) == approx(V_redlich,5))
64
           flag = 0;
65
66
           break;
           else
67
68
       V_ideal = V_redlich;
69 end
70 end
71 mprintf('\n\nVolume obtained by Redlich Kwong
      Equation is \%4.3e cubic m/mol', V_redlich);
```

```
72 Z = approx(((P*10^5*V_redlich)/(T*R)),3); //
          compressibility factor
73 mprintf('\nCompressbility factor by Redlich Kwong
          equation is %f',Z);
74
75 //end
```

Scilab code Exa 3.10 To calculate heat of formation of methane gas

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 10
5
7 clear all;
8 clc;
9
10
11 // Given:
12 Ha = -890.94; //standard heat for reaction a (kJ)
13 Hb = -393.78; //standard heat for reaction b (kJ)
14 Hc = -286.03; //standard heat for reaction c (kJ)
15
16 //To calculate heat of formation of methane gas
17 / c*2 + b - a gives the formation of methane from
     elements
18 Hf = (2*Hc)+Hb-Ha;
19 mprintf('Heat of formation of methane is %f kJ/mol',
     Hf);
20
21 // end
```

Scilab code Exa 3.11 To calculate heat of formation of chloroform

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 11
7 clear all;
  clc;
9
10
11 // Given:
12 Ha = -509.93; //heat of combustion of reaction a (kJ
13 Hb = -296.03; //heat of combustion of reaction b (kJ
14 Hc = -393.78; //heat of combustion of reaction c (kJ
15 Hd = -167.57; //heat of combustion of reaction d (kJ
16
  //To calculate heat of formation of chloroform
18 / (c + (3*d) - a - b  gives chloroform from its elements
19 Hf = Hc+(3*Hd)-Ha-Hb;
20 mprintf('Heat of formation of chloroform is %f kJ/
     mol', Hf);
21
22 //end
```

Scilab code Exa 3.12 To calculate standard heat of reaction at 773 K

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
```

```
4 //Example 12
5
7 clear all;
8 clc;
9
10
11 // Given:
12 Ho = -164987; //standard heat of reaction at 298 K
     in J
13 \text{ T1} = 298;
14 T2 = 773; //temperature(K)
15
16 //To calculate standard heat of reaction at 773 K
17 alpha = (2*29.16)+13.41-26.75-(4*26.88);
18 betta = ((2*14.49)+77.03-42.26-(4*4.35))*10^-3;
19 gama = ((2*-2.02)-18.74+14.25+(4*0.33))*10^-6;
20
21 //Using equation 3.54 (Page no. 67)
22 H1 = Ho-(alpha*T1)-(betta*(T1^2)/2)-(gama*(T1^3)/3);
23
24 //At 773 K
25 Hr = H1+(alpha*T2)+(betta*(T2^2)/2)+(gama*(T2^3)/3);
26 mprintf('Heat of reaction at 773 K is %f kJ', Hr
      /1000);
27
28 // end
```

Scilab code Exa 3.13 To determine heat added or removed

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 13
```

```
7 clear all;
8 clc;
9
10
11 // Given:
12 To = 298; //standard temperature(K)
13 T1 = 400; //temperature of reactants (K)
14 T2 = 600; //temperature of products (K)
15 Ho = -283.028; //standard heat of reaction (kJ/mol)
16
17 //To determine heat added or removed
18 // Basis:
19 n_CO = 1; //moles of CO reacted
20 \text{ n}_02 = 1; //\text{moles of oxygen supplied}
21 n_N2 = 1*79/21; //moles of nitrogen
22 \text{ n1\_02} = 0.5; //moles of oxygen required
23 n_CO2 = 1; //moles of carbon di oxide formed
24
25 	ext{ H1} = ((n_02*29.70) + (n_N2*29.10) + (n_C0*29.10))*(To-T1)
      )/1000; //enthalpy of cooling of reactants
26 	ext{ H2} = ((n1_02*29.70) + (n_N2*29.10) + (n_C02*41.45))*(T2-10)
      To)/1000; //enthalpy of heating the products
27 \text{ Hr} = \text{H1+Ho+H2};
28 mprintf('Heat supplied is %f kJ', Hr);
29
30 // end
```

Scilab code Exa 3.14 To calculate theoretical flame temperature

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 3
3 //P-V-T Behaviour and Heat Effects
4 //Example 14
```

```
7 clear all;
8 clc;
9
10
11 // Given:
12 To = 298; //standard temperature (K)
13 T1 = 373; //temperature of reactants (K)
14 Ho = 283178; //standard heat of combustion (J/mol)
15
16 //To calculate theoretical flame temperature
17 // Basis:
18 n_CO = 1; //moles of CO
19 n_02 = 1; //moles of oxygen supplied
20 \text{ n1}_{02} = 0.5; //moles of oxygen reacted
21 n_C02 = 1; //moles of carbon di oxide formed
22 \text{ n_N2} = 79/21; //\text{moles of nitrogen}
23
24 	ext{ H1} = ((n_02*34.83) + (n_N2*33.03) + (n_C0*29.23))*(To-T1)
      ); //enthalpy of cooling of reactants
25 //Using equation 3.55 (Page no. 69)
26 \text{ H2} = \text{Ho-H1};
27 Tf = H2/((n1_02*34.83)+(n_N2*33.03)+(n_C02*53.59))
      +298; //flame temperature
28 mprintf('Theoretical flame temperature is %f K', Tf);
29
30 // end
```

Chapter 4

Second Law of Thermodynamics

Scilab code Exa 4.1 To calculate the maximum efficiency

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 1
5
7 clear all;
8 clc;
9
10
11 // Given:
12 T1 = 700; //temperature of heat source(K)
13 T2 = 300; //temperature of heat sink(K)
14
15 //To calculate the maximum efficiency
16 eff=((T1-T2)/T1); //efficiency of a heat engine
17 mprintf('Maximum efficiency of heat engine is %f',
     eff);
18
```

```
19
20 //end
```

Scilab code Exa 4.2 To determine minimum amount of work done and heat given to surrounding

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 2
5
7 clear all;
8 clc;
10 // Given:
11 m = 1; //mass of water(kg)
12 T1 = 300; //temperature of surrounding(K)
13 T2 = 273; //temperature of water(K)
14 Hf = 334.11; //latent heat of fusion of ice(kJ/kg)
15
16
17 //To determine minimum amount of work and heat given
      upto surrounding
18
19 //(a)
20 Q2 = m*Hf; //heat absobed at temperature T2
21 W = ((Q2*(T1-T2))/T2); //minimumm amount of work
     required
22 mprintf('Minimum amount of work required is %f kJ', W
     );
23
24 //(b)
25 //Q1 is the heat given up the surrounding
26 \ Q1 = W + Q2;
```

```
27 mprintf('\nHeat given upto surrounding is %f kJ',Q1);
28
29
30 //end
```

Scilab code Exa 4.3 To determine efficiency of proposed engine

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 3
6
7 clear all;
8 clc;
9
10
11 // Given:
12 P_out = 4.5; //output power(hp)
13 P_in = 6.25; //input power(kW)
14 T1 = 1000; //source temperature (K)
15 T2 = 500; //\sin k temperature (K)
16
17 //To determine efficiency of proposed engine
18 ep = ((P_out*745.7)/(P_in*1000)); //proposed
      efficiency
19 mprintf('Efficiency of proposed engine is %f',ep);
20
21 em = ((T1-T2)/T1); //maximum efficiency
22 mprintf('\nThe maximum efficieny is %f',em);
23 mprintf('\nHence the claim of the proposed engine is
       impossible');
24
25
```

Scilab code Exa 4.4 To calculate entropy of evaporation

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 4
5
6
7 clear all;
  clc;
9
10
11 // Given:
12 P = 500; //pressure of dry saturated steam(kPa)
13
14 //From steam tables
15 Hv = 2106; // latent heat of vaporisation (kJ/kg)
16 T = 425; // saturation temperature (K)
17
18 //To calculate the entropy of evaporation
19 //By equation 4.25 (Page no. 93)
20 Sv = (Hv/T); //entropy change accompanying
      vaporisation
21 mprintf('Entropy of evaporation is %f kJ/kg K',Sv);
22
23 //end
```

Scilab code Exa 4.5 To determine change in entropy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
```

```
3 //Second Law of Thermodynamics
4 //Example 5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 m = 2; //\text{mass of } \text{gas}(\text{kg})
13 T1 = 277; //initial temperature(K)
14 T2 = 368; // final temperature(K)
15 Cv = 1.42; // specific geat at constant volume (kJ/kg
      K)
16
17 //To determine change in entropy
18 //Using equation 4.31 (Page no. 94)
19 S = (m*Cv*log(T2/T1)); //change in entropy(kJ/K)
20 mprintf('Change in entropy is %f kJ/K',S);
21
22
23 //end
```

Scilab code Exa 4.6 To calculate the entropy change

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 6
5
6
7 clear all;
8 clc;
9
```

```
//Given:
12 T = 300; //temperature in K
13 P1 = 10; //initial pressure(bar)
14 P2 = 1; //final pressure(bar)
15 R = 8.314; //ieal gas constant
16
17 //To calculate the entropy change
18 //Using equation 4.33(Page no. 94)
19 S = (R*log(P1/P2)); //(kJ/kmol K)
20 mprintf('Entopy change is %f kJ/kmol K',S);
21
22
23 //end
```

Scilab code Exa 4.7 To determine change in entropy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 // Second Law of Thermodynamics
4 //Example 14
5
6
7 clear all;
8
  clc;
9
10
11 // Given:
12 T1 = 335; //initial temperature in K
13 T2 = 300; // final temperature in K
14 P1 = 10; //initial pressure(bar)
15 P2 = 1; // final pressure (bar)
16 Cp = 29.3; //specific heat constant at constant
      pressure (kJ/kmol K)
17 R = 8.314; //ideal gas constant
18
```

Scilab code Exa 4.8 To determine the change in entropy

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 8
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 m1 = 10; //mass of water at 375 K (kg)
13 m2 = 30; //mass of water at 275 K (kg)
14 c = 4.2; //specific heat of water (kJ.kg~K)
15
16
  //To determine the change in entropy
17
18
19 //Let T be the final temperature (K)
20 T = ((m1*375) + (m2*275))/(m1+m2);
21 //S1 be change in entropy for hot water
22 S1 = (m1*c*log(T/375)); //[kJ/K]
23 //S2 be the change in entropy for cold water
```

```
24 S2 = (m2*c*log(T/275)); //[kJ/K]

25 //S be the total entropy change

26 S = S1+S2;

27 mprintf('The total entropy change is %f kJ/K',S);

28 //end
```

Scilab code Exa 4.9 To calculate the total entropy change

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 9
6
7 clear all;
8 clc;
9
10
11 // Given:
12 m1 = 35; //mass of steel in kg
13 m2 = 150; //mass of oil in kg
14 T1 = 725; //temperature of steel(K)
15 T2 = 275; //temperature of oil(K)
16 c1 = 0.88; // specific heat of steel (kJ/kg K)
17 c2 = 2.5; //specific heat of oil(kJ/kg K)
18
19
20 //To calculate the total entropy change
21 //Let T be the final temperature
22 T = (((m1*c1*T1)+(m2*c2*T2))/((m1*c1)+(m2*c2)));
23 //S1 be the in entropy for steel
24 S1 = (m1*c1*log(T/T1)); //[kJ/K]
25 //S2 be the change in entropy for oil
26 S2 = (m2*c2*log(T/T2)); //[kJ/K]
27 //S be the total entropy change
```

```
28 S = S1+S2;
29 mprintf('The total entropy change is %f kJ/K',S);
30
31 //end
```

Scilab code Exa 4.10 To calculate entropy of 1 kmole of air

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 10
5
6
7 clear all;
8 clc;
9
10 // Given:
11 n1 = 0.21; //volume % of oxygen in air
12 n2 = 0.79; //volume % of nitrogen in air
13 R = 8.314; //ideal gas constant
14
15
16 //To calculate entropy of 1 kmol of air
17 //Using equation 4.35 (Page no. 96)
18 S = (-R*(n1*log(n1)+n2*log(n2))); //[kJ/kmol K]
19 mprintf ('The total entropy change is %f kJ/kmol K',S
     );
20 //end
```

Scilab code Exa 4.11 To determine change in entropy for the reaction

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
```

```
3 //Second Law of Thermodynamics
4 //Example 11
6
7 clear all;
8 clc;
9
10 // Given:
11 //For the reaction
12 / CO + 1/2O2 -> CO2
13 H = -2.8318*10^5; //heat of reaction (J/mol)
14 T = 298; //temperature of reaction in K
15 // Absolute entropies for CO, O2, CO2 are (in J/mol K
16 \text{ S}_{\text{CO}} = 198;
17 S_02 = 205.2;
18 \text{ S}_{\text{CO2}} = 213.8;
19
20 //To determine the change in entropy for the
      reaction
21 // Referring equation 4.36 (Page no. 96)
22 S_reactant = S_CO + 0.5*S_O2; //entropy change for
      reactants
23 S_product = S_CO2; //entropy change for products
24 S = S_product - S_reactant; //total entropy change
25 mprintf('The total entropy change for the reaction
      is \%f J/mol',S);
26 mprintf('\nSince the reaction is highly irreversible
      , entropy change cannot be calculated as the
      ratio of heat of reaction to the temperature');
27
28 //The energy available for useful work is the
      difference between heat of reaction and entropy
      energy due to ireversible nature of the process
29 W_useful = -H+(T*S); //energy available for useful
      work (J)
30 mprintf('\nEnergy available for useful work is %3.2e
       J', W_useful);
```

```
31
32 //end
```

Scilab code Exa 4.12 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 4
//Second Law of Thermodynamics
//Example 12

clear all;
clc;
//Given
//Given
//This is a theoretical question and does not involve any numerical computation
//end
```

Scilab code Exa 4.13 To calculate change in entropy and check whether the process is reversible

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 13
5
6
7 clear all;
8 clc;
```

```
10 // Given:
11 H_steam = 2923.5; //enthalpy of superheated steam (
12 S_steam = 6.71; //entropy of superheated steam (kJ/
13 H_liquid = 845; //enthalpy of saturated liquid (kJ/
14 S_liquid = 2.32; //entropy of saturated liquid (kJ/
  T = 300; //temperature of system (K)
15
16
17 //To calculate change in entropy and check whether
     the process is reversible
18
19 S_system = S_liquid-S_steam; //change in entropy of
     steam
20
21 //Let Q be the heat given out during condensation
22 Q = -(H_liquid-H_steam);
23 S_surrounding = Q/T; //change in entropy of the
     surrounding
24 S_total = S_system+S_surrounding; //total entropy
     change
25 mprintf ('The total entropy change is \%f kJ/kg',
     S_total);
  mprintf('\nSince total entropy change is positive,
26
     the process is irreversible');
27
28 // end
```

Scilab code Exa 4.14 To determine the change in entropy of system

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
```

```
4 //Example 14
5
7 clear all;
8 clc;
10 // Given:
11 V = 1; //volume of each compartment in cubic meters
12 P_sat = 683.6; //pressure of saturated steam (kPa)
13 P_steam = 101.3; //pressure of supereated steam (kPa
14 T_{\text{sat}} = 437.2; //temperature of system (K)
15
16 // Referring steam tables
17 //For saturated steam at pressure 683.6 kPa and temp
      437.2 K
18 H_sat = 2761; //enthalpy of saturated steam (kJ/kg)
19 S_{\text{sat}} = 6.7133; //entropy of saturated steam (kJ/kg
20 spvol_sat = 278.9*10^{-3}; //specific volume of
     saturated steam (cubic m/kg)
21 U_sat = 2570.4; //specific internal energy of
     saturated steam (kJ/kg)
22
23 //For superheated steam at 101.3 kPa and 437.2 K
24 H_steam = 2804; //enthalpy of superheated steam (kJ/
     kg)
25 S_steam = 7.6712; //entropy of superheated steam (kJ
     /kg K)
  spvol_steam = 1976.2*10^-3; //specific volume of
     superheated steam (cubic m /kg)
27
  U_steam = 2603.3; //specific internal energy of
     superheated steam (kJ/kg)
28
29
30 //To determine the change in entropy of system
31
32 m_sat = V/spvol_sat; //mass of satureated steam(kg)
```

```
33 m_steam = V/spvol_steam; //mass of superheated steam
       (kg)
34 \text{ m\_sys} = \text{m\_sat+m\_steam}; //\text{mass of system (kg)}
35 spvol_sys = (2*V)/m_sys; //specific volume of system
       (cubic m/kg)
  //Since no heat exchange and work interaction occurs
36
       so internal energy after mixing remains the same
37 U1_sat = m_sat*U_sat; //internal energy of saturated
       steam (kJ)
38 U1_steam = m_steam*U_steam; //internal enegy of
      superheated steam (kJ)
39 U_sys = (U1_sat+U1_steam)/m_sys; //specific internal
       energy of system (kJ/kg)
40
41 // Referring steam tables
42 //At calculated U_sys and spvol_sys
43 S_sys = 6.9992; // specific entropy of system (kJ/kg
     K)
44 Si = ((m_sat*S_sat)+(m_steam*S_steam)); //initial
      entropy of system (kJ/K)
45 Sf = (m_sys*S_sys); //final entropy of system (kJ/K)
46 S = Sf-Si; //change in entropy
47 mprintf ('The change in entropy of the system is %f
     kJ/K',S);
48 mprintf('\nSince entropy change is positive, the
      process is irrevresible');
49
50 //end
```

Scilab code Exa 4.15 To calculate entropy change

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 15
```

```
5
6
7 clear all;
8 clc;
9
10 // Given:
11 V = 1; //volume of each compartment in cubic m
12 T = 300; //temperature of ideal gas in 1st
     compartment (K)
13 P = 200; //pressure of ideal gas in 1st compartment
     (kPa)
14 R = 8.314; //ideal gas constant
15
16 //To calculate entropy change
17 //Let n be the number of moles of gas
18 n = ((P*V)/(R*T));
19 //Since gas in vessel exchanges no heat and work
     with surrounding so internal energy remains same
20 //This implies temperature after mixing is same as
     that before mixing
21
22 // Final conditions:
23 Tf = 300; // final temperature (K)
24 Vf = 2; // final volume (cubic m)
25 Pf = 100; //final pressure (kPa)
26
27 // Initial conditions:
28 Ti = 300; //initial temperature (K)
29 Vi = 1; //initial volume (cubic m)
30 Pi = 200; //initial pressure (kPa)
31
32 //Using equation 4.33 (Page num 94)
33 S = n*R*log(Vf/Vi); //entropy change of system (kJ/K
34 //Since entropy of surrounding does not change
35 S_{total} = S; //total entropy change
36 mprintf('The change in total entropy is %f kJ/K',
     S_total);
```

```
37
38 //end
```

Scilab code Exa 4.16 To calculate entropy change in the process

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 16
5
6
7 clear all;
8 clc;
9
10 // Given:
11 m_oil = 5000; //mass flow rate of oil (kg/h)
12 Tin_{oil} = 500; //inlet temperature of oil (K)
13 Tin_water = 295; //inlet temperature of water (K)
14 c_oil = 3.2; // specific heat of oil (kJ/kg K)
15 c_water = 4.2; // specific heat of water (kJ/kg K)
16
17 //To calculate entropy change in the process
18
19 //Assuming oil is cooled to minimum permissible
     temperature
20 Tout_oil = 305; //exit temperature of oil (K)
21 Tout_water = 490; // \text{exit temperature of water (K)}
22
23 //Let m_water be the mass flow rate of water
24 //By enthalpy balance
25 m_water = ((m_oil*c_oil*(Tin_oil-Tout_oil))/(c_water
     *(Tout_water-Tin_water))); //(kg/h)
26 S_oil = m_oil*c_oil*log(Tout_oil/Tin_oil); //entropy
       change of oil (kJ/K)
27 S_water = m_water*c_water*log(Tout_water/Tin_water);
```

Scilab code Exa 4.17 To calculate loss in capacity of doing work

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 17
5
7 clear all;
8 clc;
9
10 // Given:
11 To = 275; //temperature of quenching oil (K)
12
13 //To calculate loss in capacity of doing work
14
15 // Referring example 4.9 (Page no. 95)
16 S_{steel} = -26.25; //change in entropy os casting (kJ
     /\mathrm{K}
17 S_oil = 43.90; //change in entropy of oil (kJ/K)
18
19 S_tot = S_steel+S_oil; //total entropy change
20 //Let W be loss in capacity for doing work
21 W = To*S_tot; //(kJ)
22 mprintf ('The loss in capacity for doing work is %f
     kJ',W);
23
24 //end
```

Scilab code Exa 4.18 To calculate total change in entropy and available work

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 18
5
6
7 clear all;
8 clc;
9
10 // Given:
11 m_{oil} = 5000; //mass flow rate of hydrocarbon oil (
12 Tin_oil = 425; //inlet temperature of oil (K)
13 Tout_oil = 340; //exit temperature of oil (K)
14 m_water = 10000; //mass flow rate of water (kg/h)
15 Tin_water = 295; //inlet temperature of water (K)
16 c_oil = 2.5; //mean specific heat of oil (kJ/kg K)
17 c_water = 4.2; //mean specific heat of water (kJ/kg
     K)
18
  //To determine total change in entropy and available
      work
20
21 //(a)
22 //By energy balance
23 Tout_water = ((m_oil*c_oil*(Tin_oil-Tout_oil))/(
     m_water*c_water))+295; //exit temperature of
     water (K)
24 S_oil = m_oil*c_oil*log(Tout_oil/Tin_oil); //change
     in entropy of oil (kJ/K)
25 S_water = m_water*c_water*log(Tout_water/Tin_water);
```

```
//change in entropy of water (kJ/K)
26 S_tot = S_oil+S_water; //total entropy change
27 mprintf('The total entropy change is %f kJ/K',S_tot)
28
29
30 //(b)
31 To = 295; //temperature at which heat is rejected to
       surrounding (K)
32 //Let Q be heat given out by the oil on cooling
33 Q = m_oil*c_oil*(Tin_oil-Tout_oil);
34 //Heat rejected to the surrounding at To by the
      Carnot Engine is given by
35 //Q2 = To(Q/T) = -To*S_oil
36 Q2 = -\text{To}*S_{\text{oil}}; //(kJ)
37 //Let W be the work output of engine
38 W = Q - Q2;
39 mprintf('\nThe work output of the engine would be \%4
      .3 \, \mathrm{e} \, \mathrm{kJ}', W);
40
41 // end
```

Scilab code Exa 4.19 To calculate the molar entropy of metal

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 4
//Second Law of Thermodynamics
//Example 19

clear all;
clc;
//Given:
//Given:
// Temperature of metal (K)
```

Scilab code Exa 4.20 To calculate the absolute entropy of water vapour

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 4
3 //Second Law of Thermodynamics
4 //Example 20
5
7 clear all;
8 clc;
9
10 // Given:
11 T = 473; //temperature at entropy is to be
     determined (K)
12 Tf = 273; //base temperature (K)
13 Tb = 373; // boiling temperature (K)
14 Cpl = 4.2; // avearge heat capacity of water (kJ/kg K
15 Cpg = 1.9; //avearge heat capacity of water vapour
     between 373 K and 473 K
```

Chapter 5

Some Applications of the Laws of Thermodynamics

Scilab code Exa 5.1 To calculate the pressure at exit

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 1
5
7 clear all;
8 clc;
9
10
11 // Given:
12 u1 = 1; //entering velocity of water (m/s)
13 d_ent = 0.2; //entrance diameter of reducer (m)
14 d_{exit} = 0.1; //exit diameter of reducer (m)
15 P_ent = 105; //pressure at entrance (kPa)
16 z = 5; //distance between entrance and exit (m)
17 g = 9.81; //acceleration due to gravity
18 den = 1000; // density of water (kg/m<sup>3</sup>)
```

```
20 //To calculate the pressure at exit
21 A1 = (\%pi/4)*d_ent^2; //cross\ section\ area\ of
      entrance (m<sup>2</sup>)
  A2 = (\%pi/4)*d_exit^2; //cross section area of exit
22
      (m^2)
23
24 //By the equation of continuity and since density of
       water remains constant
25 u2 = (A1*u1)/A2;
26
27 //By Bernoulli's equation between section 1 and 2 (
      Eq 5.20 Page no. 118)
28 P_{exit} = (-((u2^2-u1^2)/2)-(g*z)+(P_{ent*10^3/den}))*(
      den/10<sup>3</sup>);
29 mprintf('The pressure at exit is %f kPa',P_exit);
30
31 // end
```

Scilab code Exa 5.2 To determine quality of steam flowing through the pipe

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 2

clear all;
clc;
//Given:
P = 1000; //pressure of saturated steam (kPa)
T = 398; //temperature of escaping steam (K)
```

```
15 // Referring steam tables
16 H_vap = 2778; //enthalpy of saturated vapour at 1000
       kPa (kJ/kg)
17 H_liq = 763; //enthalpy of saturated liquid at 1000
     kPa (kJ/kg)
18 H_steam = 2726; //enthalpy of superheated steam at
      398 \text{ K} (kJ/kg)
19
  //To determine quality of steam flowing through the
20
      pipe
21 //Assuming potential and kinetic energy changes are
      neglegible
22 //Using equation 5.10 (Page no. 117)
23 / H = Q-Ws
24
25
  //Let section 1 be a point in pipe and x be the
      fraction of steam that is liquid
26 //Then H1 = x * H_{liq} + (1-x) * H_{vap}
27
28 //Let section 2 be the point in steam issuing from
      the leak in valve
29 H2 = 2726; //[kJ/kg]
30
31 //No work is done and no heat is exchanged between
      section 1 and 2
32 / S0, H1 = H2
33 \times = (H2-H_vap)/(H_liq-H_vap);
34 mprintf('The steam contains %f percent liquid',x
      *100);
35
36 / \text{end}
```

Scilab code Exa 5.3 To determine the discharge velocity

1 //A Textbook of Chemical Engineering Thermodynamics

```
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 3
5
7 clear all;
8 clc;
9
10
11 // Given:
12 m = 10; //mass flow rate of steam (kg/s)
13 H1 = 3062; //enthalpy of entering steam (kJ/kg)
14 H2 = 2875; //enthalpy of discharged steam (kJ/kg)
15 Q = -100/m; //heat loss to the surrounding (kJ/kg)
16 u1 = 0; //entering velocity of steam
17
18 //To determine the discharge velocity
19 //Using total energy balance (Eq. 5.9, Page no. 117)
20 // Neglecting change in potential energy and putting
     Ws = 0
21
22 H = H2 - H1;
23 	 u2 = sqrt((Q-H)*1000*2);
24 mprintf('The discharge velocity is %i m/s',u2);
25
26 //end
```

Scilab code Exa 5.4 To determine thermodynamic properties at throat and critical pressure

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 4
```

```
6
7 clear all;
8 clc;
9
10
11 // Given:
12 To = 600; //temperature of air (K)
13 Po = 2000; //pressure of air (kPa)
14 \text{ gama} = 1.4;
15 M = 0.8; //Mach number at throat
16 m = 29; // molecular mass of air
17 R = 8.314; //ideal gas constant
18
19 //To determine thermodynamical properties at throat
      and critical pressure
20
21 //(a)
\frac{1}{2} // Using equation 5.40 (Page no 123).. u^2 = (M^2) *
      gama*P*V
23 //Substituting this in eq. 5.39 (Page no. 123) and
      on rearranging we get
P = Po/((1+(((gama-1)/2)*M^2))^(gama/(gama-1)));
25 //Using eq. 5.39 and the relation PoVo = RTo/m
26 \text{ u = } \frac{\text{sqrt}((2*\text{gama*R*To*1000})/(m*(\text{gama}-1))*(1-(P/Po))}{\text{sqrt}((2*\text{gama*R*To*1000})/(m*(\text{gama}-1)))}
      ^((gama-1)/gama)));
27 / \text{Using eq. } 3.23 \text{ (Page no. } 49)
28 T = To*(P/Po)^((gama-1)/gama);
29 //Let d be the density
30 \ d_o = (Po*m)/(R*To);
31 //Since P*(V^gama) = P/(den^gama) = constant...so
32 d = d_o*((P/Po)^(1/gama));
33 mprintf('(a). At throat');
34 mprintf('\nPressure = \%i kPa',P);
35 mprintf('\nTemperature = \%i K',T);
36 mprintf('\nVelocity = \%f m/s',u);
37 mprintf('\nDensity = %f kg/cubic m',d);
38
39 //(b)
```

Scilab code Exa 5.5 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 5

clear all;
clc;
//Given:
//The given problem is theoretical and does not involve any numerical computation
//end
```

Scilab code Exa 5.6 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 6
```

```
6
7 clear all;
8 clc;
9
10
11 //Given:
12 //The given numerical is theoretical and does not involve any numerical computation
13
14 //end
```

 ${f Scilab}$ code ${f Exa}$ 5.7 To calculate work required and temperature after compression

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 7
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 P1 = 1; //initial pressure (bar)
13 T1 = 300; //initial temperature (K)
14 P2 = 10; // final pressure (bar)
15 gama = 1.3; //gama for CO2
16 V_rate = 100; //volumetric flow rate (m^3/h)
17
18 //To calculate work required and temperature after
     compression
)^((gama-1)/gama));
```

```
20 mprintf('The work required is %f kW',-Ws/1000);
21
22 //Using equation 3.23 (Page no.49)
23 T2 = T1*((P2/P1)^((gama-1)/gama));
24 mprintf('\nTemperature of gas after compression is %f K',T2);
25
26 //end
```

Scilab code Exa 5.8 To calculate work required and temperature

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 8
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 P1 = 100; //initial pressure of saturated steam (kPa
13 P2 = 500; // final pressure (kPa)
14 eff = 0.8; //compression efficiency
15
16 // Referring steam tables
17 // Properties of steam entering the compressor
18 H1 = 2675.5; // \text{enthalpy} (kJ/kg)
19 S1 = 7.3594; //\text{entropy} (kJ/kg K)
20
21 // Properties of compressed steam
22 H2 = 3008; // \text{enthalpy} (kJ/kg)
23 S2 = S1; //isentropic compression
```

```
24
25 //To calculate work required and temperature
26
27 \text{ Hs} = \text{H2-H1};
28 // Using eq. 5.44 (Page no. 128)
29 W_isentropic = -Hs;
30 W_act = W_isentropic/eff;
31 mprintf('The work required for compression is %f kJ/
      kg',-W_act);
32
33 H = Hs/eff; //actual change in enthalpy
34 H_act = H1+H; //actual enthalpy of steam leaving the
       compressor
35 //From steam tables for superheated steam at 500 kPa
       and enthalpy of H_act
36 T = 586; //temperature (K)
37 mprintf('\nTemperature of exhaust steam is %i K',T);
38
39 //end
```

Scilab code Exa 5.9 To determine the least amount of power

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 9

clear all;
clc;
//Given:
//Given:
// Ti = 288; //temperature of surrounding (K)
// Ti = 261; //temperature of solution (K)
```

```
14  Q2 = 1000; //heat removed (kJ/min)
15
16  //To determine the least amount of power
17  //Using eq. 5.57 (Page no. 137)
18  W = Q2*((T1-T2)/T2); //power in kJ/min
19  P = (W*1000)/(746*60); //power in hp
20  mprintf('Least amount of power necessary is %f hp',P
        );
21
22  //end
```

Scilab code Exa 5.10 To determine COP heat rejected and lowest temperature

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 10
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 T = 290; //operating temperature (K)
13 W = 1000; //\text{work} (J)
14 tof = 3516.67; //ton of refrigeration (W)
15
16 //To determine COP, heat rejected and lowest
      temperature
17
18 //(a)
19 \quad Q2 = tof;
20 COP = Q2/W; //coeffecient of performance
```

```
21 mprintf('(a). COP is %f',COP);
22
23 //(b)
24 Q1 = Q2+W; //heat rejected
25 mprintf('\n\n (b). Heat rejected is %f kW',Q1/1000);
26
27 //(c)
28 //Let T2 be the lowest temperature
29 T2 = T1*(Q2/Q1);
30 mprintf('\n\n (c). Lowest possible temperature in refrigerator is %f K',T2);
31
32 //end
```

Scilab code Exa 5.11 To determine COP at given conditions

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 11
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 T2 = 266;
13 T1 = 300; //operating temperatures of vapour
      compression refrigeration cycle (K)
14
15 //To determine COP at given conditions
16 //(a)
17 Ha = 656; //(kJ/kg)
18 Hb = 724; //(kJ/kg)
```

```
19 Hd = 144; //(kJ/kg)
20 \text{ Hc} = \text{Hd};
21 // Using eq. 5.61 (Page no. 139)
22 \text{ COP} = (\text{Ha-Hd})/(\text{Hb-Ha});
23 mprintf('(a). COP = \%f', COP);
24
25 //(b)
26 Ha = 652; //(kJ/kg)
27 Hb = 758; //(kJ/kg)
28 Hd = 159; //(kJ/kg)
29 \text{ Hc} = \text{Hd};
30 eff = 0.75; //efficiency of compressor
31 COP = (Ha-Hd)/((Hb-Ha)*(1/eff));
32 mprintf('\n\n (b). COP = \%f', COP);
33
34 //(c). Ideal Carnot refrigerator
35 \text{ COP} = T2/(T1-T2);
36 mprintf('\n' n\n (c). COP = \%f', COP);
37
38 //end
```

Scilab code Exa 5.12 To determine power requirement and refrigeration capacity in tonnes

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 12
clear all;
clc;
//Given:
```

```
12 Tin_cool = 288; //entering temperature of cooling
      water (K)
13 Tout_cool = 300; //discharge temperature of cooling
     water (K)
14 m_c = 0.25; //mass flow rate of coling water (kg/s)
15 m = 0.5; //mass flow rate of ammonia (kg/min)
16 Ha = 1426; //enthalpy of saturated ammonia vapour at
      258 \text{ K} (kJ/kg)
17 Hd = 281.5; //enthalpy of liquid ammonia at 294 K (
     kJ/kg)
18 eff = 0.9; //compressor efficiency
19 Cp = 4.2; //specific heat of water (kJ/kg K)
20 tof = 12660; //ton of refrigeration (kJ/h)
21
22 //To determine the power requirement and
      refrigeration capacity in tons
23 Q1 = m_c*Cp*(Tout_cool-Tin_cool); //heat rejected by
      compressor at constant pressure (kJ/s)
24 Q2 = (m/60)*(Ha-Hd); //heat absorbed (kJ/s)
25 W = Q1-Q2; //work required (kJ/s)
26 P = (W*1000)/(eff*746); //power requirement of
     compressor (hp)
  mprintf ('Power requirement of the compressor is %f
27
     hp',P);
28
29 rc = Q2*3600/tof; //refrigeration capacity (ton)
30 mprintf('\n Refrigeration capacity is %f ton',rc);
31
32 //end
```

Scilab code Exa 5.13 To calculate the COP and refrigeration circulation rate

```
1\ //A\ Textbook of Chemical Engineering Thermodynamics 2\ //Chapter\ 5
```

```
3 //Some Applications of the Laws of Thermodynamics
4 //Example 13
6
7 clear all;
8 clc;
9
10
11 // Given:
12 m1 = 10; //machine rating (ton)
13 //Since 5 K approach is necessary
14 T1 = 293+5; //temperature of cooling water (K)
15 T2 = 261-5; //temperature of cold storage (K)
16 Ha = 181; //enthalpy of saturated vapour at 256 K (
     kJ/kg)
17
  Sa = 0.714; //entropy of saturated vapour at 256K (
     kJ/kg K
  Hc = 62; //enthalpy of saturated liquid at 298 K (kJ
      / kg)
19 Sc = 0.231; //entropy of saturated liquid at 298 K (
     kJ/kg K
20 Hb = 206; //enthalpy of superheated vapour (kJ/kg)
21 Sb = 0.714; //entropy of superheated vapour (kJ/kg)
22
23 //To calculate the COP and refrigerant circulation
      rate
24 // Referring fig 5.11 (Page no. 143)
25 / (DA/FA) = (Ha-Hd)/Hv
26 //(DA/FA) = (Sa-Sd)/Sv
27 / Hv/Sv = T2
28
29 //Combining the three relations, we get
30 Sd = Sc; //isentropic process
31 Hd = Ha-(T2*(Sa-Sd));
32 / \text{Using eq. } 5.64 \text{ (Page no. } 141)
33 COP = (Ha-Hd)/((Hb-Hc)-(Ha-Hd));
34 mprintf('COP = \%f', COP);
35
```

```
36  //Using equation 5.63 (Page no. 140)
37 m = (12660*m1)/(Ha-Hd); //refrigerant circulation
        rate (kg/h)
38 mprintf('\n Refrigerant circulation rate is %f kg/h'
        ,m);
39
40  //end
```

Scilab code Exa 5.14 To determine the COP and air circulation rate

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 14
6
7 clear all;
8 clc;
9
10
11 // Given:
12 m1 = 10; //machine rating (ton)
13 //Assuming 5 K approach in refrigerator and cooler
14 Ta = 261-5; //temperature of air leaving the
      refrigerator (K)
15 Tc = 293+5; //temperature of air leaving the cooler
      (K)
16 \text{ gama} = 1.4;
17 Cp = 1.008; //\text{sp.} heat of air (kJ/kg K)
18 P1 = 4.052;
19 P2 = 1.013; // operating pressures in bar
20
21 //To determine the COP and air circulation rate
\frac{1}{2} // Using eq. 5.66 (Page no. 145)
23 Tb = Ta*(P1/P2)^((gama-1)/gama);
```

Scilab code Exa 5.15 To verify that given heat pump is equivalent to 30 kW pump

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 15
5
7 clear all;
  clc;
9
10
11 // Given:
12 T1 = 300; //indoor temperatur (K)
13 T2 = 290; //outside temperature (K)
14 W_input = 1; //1 kW heat pump
15 W_output = 30; //given output (kW)
16
17 //To verify that given heat pump is equivalent to 30
      kW heater
```

Scilab code Exa 5.16 To determine the amount of fuel burned

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 16
5
7 clear all;
8 clc;
9
10
11 // Given:
12 T1 = 295; //temperature inside building (K)
13 T2 = 275; //temperature of outside air (K)
14 eff = 0.25; //overall efficiency of unit
15 Hc = 890.9; //heat of combustion of fuel (kJ/mol)
16 conv = 0.33; //efficiency of conversion of heat of
      combustion to electricity
17 Q1 = 10<sup>6</sup>; //amount of heat to be delivered
18
19 //To determine the amount of fuel burned
```

Scilab code Exa 5.17 To calculate fraction of liquid in inlet stream and temperature

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 17
5
7 clear all;
8 clc;
9
10
11 // Given:
12 //Referring steam tables at 2.54 bar
13 H1 = 2717; //enthalpy of saturated vapour (kJ/kg)
14 H2 = 538; //enthalpy of saturated liquid (kJ/kg)
15 S1 = 7.05; //entropy of saturated vapour (kJ/kg\ K)
16 S2 = 1.61; //entropy of saturated liquid (kJ/kg K)
17
18 H = 2700; //enthalpy of superheated steam at 1 bar
     and 385 \text{ K} (kJ/kg)
19 S = 7.42; //entropy of superheated steam at 1 bar
```

```
and 385 \text{ K} \text{ (kJ/kg K)}
20
  //To determine fraction of liquid in inlet stream
     and the temperature
22 //Let the fraction of liquid in inlet stream be x
23
24 //(a).. The expansion is isenthalpic
25 //Applying enthalpy balance around the throttle
      valve
26 / (x*H2) + (1-x)*H1 = H
27 \times = (H-H1)/(H2-H1);
28 //From steam tables
29 T = 401; //temperature of steam (K)
30 mprintf('(a). For isenthalpic expansion');
31 mprintf('\n The fraction of liquid in inlet stream
      is %f',x);
32 mprintf('\n The temperature of stream is \%i K',T);
33
34 //(b).. The expansion is isentropic
35 //Since entropy of saturated vapour at inlet
      pressure (S1) is less than entropy of steam
      leaving the turbine (S)
36 //So, the inlet stream is superheated, therefore
37 \times = 0;
38 //From steam tales
39 T = 478; //temperature of superheated steam having
      entropy of 7.42 kJ/kg K
40 mprintf('\n\n(b). For isentropic expansion');
41 mprintf('\n The fraction of liquid in inlet stream
      is %i',x);
42 mprintf('\n The temperature of stream is %i K',T);
43
44 //end
```

Scilab code Exa 5.18 To determine fraction of air liquified and temperature of air

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 18
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 // Referring Fig. 5.15 (Page no. 151)
13 Hc = 516; //enthalpy of high pressure gas at 120 bar
       and 306 \text{ K} (kJ/kg)
14 Ha = 526; //enthalpy of low pressure gas at 2 bar
      and 292 \text{ K} (kJ/kg)
15 Hf = 121; //entalpy of saturated liquid at 2 bar (kJ
      / kg)
16 Hg = 314; //enthalpy of saturated vapour at 2 bar (
      kJ/kg)
17
  //To determine the fraction of air liquified and
      temperature of air
19
20 //(a)...
21 //Using equation 5.73 (Page no. 152)
22 x = (Hc-Ha)/(Hf-Ha); //fraction of air liquified
23 mprintf('(a). The fraction of liquified air is \%f',x
      );
24
25 //(b)...
26 //Taking enthalpy balance around heat exchanger
27 \text{ Hd} = \text{Hc} - (1-x)*(\text{Ha-Hg});
28 //At enthalpy of Hd kJ/kg, from T-S diagram for air
29 T = 167; //temperature in K
```

```
30 mprintf('\n (b). Temperature of air on high pressure side of throttle valve is %i K',T);
31
32 //end
```

Scilab code Exa 5.19 To determine ideal Rankine cycle efficiency thermal efficiency and rate of steam production

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 19
6
7 clear all;
8 clc;
9
10
11 // Given:
12 P2 = 2800; //pressure of superheated steam (kPa)
13 P1 = 5; //pressure after expansion (kPa)
14 e_turbine = 0.85; //isentropic turbine efficiency
15 e_pump = 0.8; //isentropic pump efficiency
16 V = 1.005*10^{-3}; //specific volume of saturated
     liquid at 5 \text{ kPaHl} =
17
18 //From steam tables:
19 Hl = 138; //enthalpy of saturated liquid at 5 kPa (
     kJ/kg)
  Hv = 2562; //enthalpy of saturated vapour at 5 kPa (
     kJ/kg)
  H3 = 3063; //enthalpy of superheated steam at 2800
     kPa and 598 K (kJ/kg)
22 S1 = 0.4764; //entropy of saturated liquid at 5 kPa
     (kJ/kg K)
```

```
23 Sv = 8.3951; //entropy of saturated vapour at 5 kPa
      (kJ/kg K)
24 S3 = 6.6875; //entropy of superheated steam at 2800
      kPa and 598 K (kJ/kg K)
25
26
27 //To determine the ideal Rankine cycle efficiency,
      thermal efficiency and rate of steam production
28
29 //(a)..The ideal Rankine cycle efficiency for the
      stated conditions
30 // Referring fig 5.19(b) (Page no. 155) and
      considering feed water pump
31 Ws = V*(P2-P1); //work done by pump (kJ/kg)
32 \text{ H2} = \text{H1+Ws};
33 //Considering isentropic expansion in turbine
34 \text{ S4} = \text{S3};
35 x = (S4-S1)/(Sv-S1); //fraction of steam that is
      vapour
36 \text{ H4} = \text{H1} + x*(Hv-H1);
37 / \text{Using eq. } 5.80 \text{ (Page no. } 155)
38 e_r = ((H3-H2)-(H4-H1))/(H3-H2);
39 mprintf('(a). The ideal Rankine cycle efficiency for
       the stated conditions is %i percent', e_r*100);
40
41 //(b).. The thermal efficiency of plant
42 W_act = Ws/e_pump; //actual work requirement in pump
43 \text{ H}_2 = \text{Hl} + \text{W}_{act}; //enthalpy of water leaving the
      feed water pump
44 W_out = e_turbine*(H3-H4); //actual work output
45 H_4 = H3-W_out; //actual enthalpy of steam leaving
      the turbine
46 \text{ e_act} = ((H3-H_2)-(H_4-H1))/(H3-H_2);
47 mprintf('\n (b). The actual efficiency is %f percent
      ',e_act*100);
48
49 //(c).. The rate of steam production
50 W_net = e_act*(H3-H_2); //net work output (kJ/kg)
```

Scilab code Exa 5.20 To determine the work output thermal efficiency and rate of steam circulation

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 20
5
7 clear all;
8 clc;
9
10
11 // Given:
12 P2 = 7600; //pressure of superheated steam (kPa)
13 P1 = 5; //pressure after expansion (kPa)
14 V = 1.005*10^-3; //specific volume of saturated
     liquid (m^3/kg)
15
16 //From steam tables:
17 H_ll = 138; //enthalpy of saturated liquid at 5 kPa
     (kJ/kg)
18 S_11 = 0.4764; //entropy of saturated liquid at 5
     kPa (kJ/kg K)
19 H_v1 = 2562; //enthalpy of saturated vapour at 5 kPa
      (kJ/kg)
```

```
20 S_v1 = 8.3951; //entropy of saturated vapour at 5
      kPa (kJ/kg K)
21 H<sub>12</sub> = 830; //enthalpy of saturated liquid at 1400
      kPa(kJ/kg)
22 S<sub>12</sub> = 2.2842; //entropy of saturated liquid at 1400
       kPa (kJ/kg K)
23 H_v2 = 2790; //enthalpy of saturated vapour at 1400
      kPa (kJ/kg)
24 S_v2 = 6.4693; //entropy of saturated vapour at 1400
       kPa (kJ/kg K)
25 H5 = 3226; //enthalpy of superheated steam at 1400
      kPa and 658 K
  S5 = 7.2558; //entropy of superheated steam at 1400
26
      kPa and 658 K
  H3 = 3150; //enthalpy of superheated steam at 7600
      kPa and 673 K
28 S3 = 6.4022; //entropy of superheated steam at 1400
      kPa and 673 K
29
30 //To determine the work output, thermal efficiency
      and rate of steam circulation
31 / (a)
32 //For high pressure turbine
33 //Let the fraction of steam in vapour state be x
34 S4 = S3; //as the expansion process is isentropic
35 \times = (S4-S_12)/(S_v2-S_12);
36 \text{ H4} = \text{H}_{12} + \text{x*}(\text{H}_{v2}-\text{H}_{12});
37 \text{ W_high} = \text{H3-H4};
38
39 //For low pressure turbine
40 S6 = S5; //isentropic expansion
41 x = (S6-S_11)/(S_v1-S_11);
42 \text{ H6} = \text{H\_l1} + \text{x*(H\_v1-H\_l1)};
43 \text{ W_low} = \text{H5-H6};
44
45 mprintf('(a)');
46 mprintf('\n The work output of high pressure turbine
       is \%i kJ/kg', W_high);
```

```
47 mprintf('\n The work output of low pressure turbine
      is \%i kJ/kg', W_low);
48
49 //(b)
50 //Work output of feed pump is [-Ws = intg(VdP)]
51 \text{ Ws} = V*(P2-P1);
52 \text{ H2} = \text{H}_11+\text{Ws};
53 // Using eq. 5.82 (Page no. 159)
54 \text{ eff} = ((H3-H2)+(H5-H4)-(H6-H_11))/((H3-H2)+(H5-H4));
55 mprintf('\n\n (b)');
56 mprintf('\n Thermal efficiency is %f percent', eff
      *100);
57
58 //(c)
59 //The numerator of eq. 5.82 gives net work output
60 W_{net} = (H3-H2)+(H5-H4)-(H6-H_{11});
61 //For 1000 kW of net work output
62 rate = 3.6*10^6/W_net;
63 mprintf('\n\n (c)');
64 mprintf('\n The rate of steam circulation is \%f kg/h
      ', rate);
65
66 //end
```

Scilab code Exa 5.21 To determine fraction of steam withdrawn and thermal efficiency of cycle

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 21
clear all;
clc;
```

```
9
10
11 // Given:
12 P2 = 2800; //pressure of superheated steam (kPa)
13 P1 = 275; //pressure of withdrawn steam (kPa)
14 V = 1.070*10^-3; //specific volume of saturated
     liquid at 275 kPa
15
16 //From steam tables:
17 H6 = 138; //enthalpy of saturated liquid at 5 kPa
18 S6 = 0.4764; //entropy of saturated liquid at 5 kPa
19 H_v1 = 2562; //enthalpy of saturated vapour at 5 kPa
20 \text{ S_v1} = 8.3951; //entropy of saturated vapour at 5
     kPa
21 H1 = 549; //enthalpy of saturated liquid at 275 kPa
22 S1 = 1.6408; //entropy of saturated liquid at 275
     kPa
23 H_v2 = 2721; //enthalpy of saturated vapour at 275
     kPa
24 \text{ S_v2} = 7.0209; //entropy of saturated vapour at 275
     kPa
25 H3 = 3063; //enthalpy of superheated steam at 2800
     kPa and 598 K
  S3 = 6.6875; //entropy of superheated steam at 2800
     kPa and 598 K
27
28 //To determine the fraction of steam withdrawn and
      thermal efficiency of cycle
29 // Referring fig. 5.23 (Page no.161)
30 S4 = S3; //isentropic expansion
31 x = (S4-S1)/(S_v2-S1); //quality of steam
32 \text{ H4} = \text{H1} + x*(H_v2-\text{H1});
33 H7 = H6; //as the power input to the condensate pump
       is neglegible
34
35 //Applying energy balance around feed water heater
36 m = (H1-H7)/(H4-H7); //fraction of steam extracted
37 mprintf('Fraction of steam withdrawn is %f',m);
```

Scilab code Exa 5.22 To determine mean effective pressure

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 5
3 //Some Applications of the Laws of Thermodynamics
4 //Example 22
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 r = 8; //compression ratio
13 T1 = 290; //temperature at beginning (K)
14 P1 = 100; //pressure at the beginning (kPa)
15 Q1 = 450; //heat transferred per cycle (kJ/kg K)
16 Cp = 1.005; // specific heat of air (kJ/kg~K)
17 Cv = 0.718; //specific heat of air (kJ/kg K)
18 R = 8.314; //ideal gas constant
```

```
19 M = 29; //molecular wt of air
20
21 //To determine mean effective pressure
22 // Basis:
23 m = 1; //mass of air (kg)
24
25 //(a)
26 // Referring fig. 5.24 (Page no. 164)
27 V1 = (m*R*1000*T1)/(M*P1*10^3);
28
29 // Conditions at state 2
30 \ V2 = V1/r;
31 \text{ gama} = Cp/Cv;
32 T2 = T1*(r^(gama-1));
33 P2 = P1*(r^gama);
34 mprintf('(a)');
35 mprintf('\n At the end of first process');
36 mprintf('\n Temperature = \%f K',T2);
37 mprintf('\n Pressure = %f kPa', P2);
38
39 // Conditions at state 3
40 // Constant volume process
41 \ V3 = V2;
42 \text{ T3} = Q1/Cv + T2;
43 \text{ P3} = (T3/T2)*P2;
44 mprintf('\n\n At the end of second process');
45 mprintf('\n Temperature = \%f K',T3);
46 mprintf('\n Pressure = \%f kPa',P3);
47
48 // Conditions at state 4
49 T4 = T3/(r^{(gama-1))};
50 P4 = P3/(r^gama);
51 mprintf('\n At the end of third process');
52 mprintf('\n Temperature = \%f K', T4);
53 mprintf('\n Pressure = %f kPa',P4);
54 Q2 = Cv*(T4-T1); //heat rejected during the constant
       volume process
55
```

```
56 //(b)
57 // Using eq. 5.88 (Page no. 165)
58 eff = 1 - ((1/r)^{(gama-1)});
59 mprintf('\langle n \rangle n \langle n \rangle');
60 mprintf('\n Thermal efficiency is \%f', eff);
61
62 //(c)
63 W = Q1-Q2; //work done
64 mprintf('\n\n\n(c)');
65 mprintf('\n Work done is %f kJ/kg',W);
66
67 // (d)
68 Pm = W/(V1-V2);
69 mprintf('n n n (d)');
70 mprintf('\n Mean effective pressure is %f kPa',Pm);
71
72 //end
```

Scilab code Exa 5.23 To determine work done thermal effeciency and mean effective pressure

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 23

clear all;
clc;
//Given:
r = 15; //compression ratio
P1 = 100; //pressure in the beginning (kPa)
T1 = 300; //temperature in thebeginning (K)
```

```
15 Q1 = 500; //heat transfer rate (kJ/kg)
16 M = 29; //molecular wt of air
17 R = 8.314; //ideal gas constant
18
19 // Specific heats of air (kJ/kg K)
20 \text{ Cp} = 1.005;
21 \text{ Cv} = 0.718;
22
23 //To determine work done thermal efficiency and mean
       effective pressure
24 //Referring fig 5.25 (Page no. 167)
25
26 //(a)
27 // Isentropic compression 1-2
28 \text{ V1} = (R*1000*T1)/(M*P1*10^3);
29 T2 = T1*r^(gama-1);
30 P2 = P1*r^gama;
31 \quad V2 = V1/r;
32 mprintf('(a)');
33 mprintf('\n At the end of first process');
34 mprintf('\n Temperature = \%f K', T2);
35 mprintf('\n Pressure = %f kPa',P2);
36
37 //Consatnt pressure heat addition 2-3
38 T3 = Q1/Cp + T2;
39 V3 = (T3/T2)*V2;
40 \text{ P3} = \text{P2};
41 mprintf('\n\n At the end of second process');
42 mprintf('\n Temperature = \%f k',T3);
43 mprintf('\n Pressure = \%f kPa',P3);
44
45 //Isentropic expansion 3-4
46 \text{ V4} = \text{V1};
47 \text{ T4} = \text{T3/((V4/V3)^(gama-1))};
48 P4 = P3*((V3/V4)^gama);
49 mprintf('\n\n At the end of third process');
50 mprintf('\n Temperature = \%f K', T4);
51 mprintf('\n Pressure = \%f kPa', P4);
```

```
52 Q2 = Cv*(T4-T1); //heat rejected 4-1
53
54 //(b)
55 \text{ Wnet} = Q1-Q2;
56 mprintf('\n\n (b)');
57 mprintf('\n Net work done per cycle per kg air is %f
       kJ/kg', Wnet);
58
59 //(c)
60 eff = Wnet/Q1; //thermal efficiency
61 mprintf('n n (c)');
62 mprintf('\n Thermal efficiency is %f', eff);
63
64 // (d)
65 Pm = Wnet/(V1-V2); //mean effective pressure
66 mprintf('\n\n (d)');
67 mprintf('\n Mean effective pressure is %f kPa', Pm);
68
69 // end
```

Scilab code Exa 5.24 To determine temperature pressure work and thermal effeciency

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 5
//Some Applications of the Laws of Thermodynamics
//Example 24

clear all;
clc;
//Given:
//Given:
//Given:
10 //Given:
```

```
13 P1 = 100; //initial pressure (kPa)
14 T3 = 1200; //\max temperature (K)
15 P3 = 500; //\text{max pressure (kPa)}
16 Cp = 1.005; //(kJ/kg K)
17 Cv = 0.718; //(kJ/kg K)
18
19 //To determine pressure and temperature work and
      thermal efficiency
20 gama = Cp/Cv;
21
22 //(a)
23 \text{ P4} = \text{P1};
24 P2 = P3;
\frac{25}{\sqrt{\text{Isentropic compression } 1-2}}
26 \text{ T2} = \text{T1}*((P2/P1)^{((gama-1)/gama))};
27 mprintf('(a)');
28 mprintf('\n At the end of first process');
29 mprintf('\n Temperature = \%f K',T2);
30 mprintf('\n Pressure = %f kPa',P2);
31
32 // Process 2-3
33 mprintf('\n\n At the end of second process');
34 mprintf('\n Temperature = \%f K',T3);
35 mprintf('\n Pressure = %f kPa',P3);
36
37 //Isentropic expansion 3-4
38 T4 = T3/((P3/P4)^{(gama-1)/gama)};
39 mprintf('\n\n At the end of third process');
40 mprintf('\n Temperature = \%f K', T4);
41 mprintf('\n Pressure = %f kPa',P4);
42
43 // (b)
44 W_comp = Cp*(T2-T1); //work required by compressor
45 mprintf('\n\n (b)');
46 mprintf('\n Work required by compressor is %f kJ/kg'
      ,W_comp);
47
48 //(c)
```

```
49  W_turb = Cp*(T3-T4); //work done by turbine
50  mprintf('\n\n (c)');
51  mprintf('\n Work done by turbine is %f kJ/kg',W_turb
      );
52
53  //(d)
54  eff = 1-(P1/P2)^((gama-1)/gama);
55  mprintf('\n\n (d)');
56  mprintf('\n Thermal efficiency is %f',eff);
57
58  //end
```

Chapter 6

Thermodynamic Properties of Pure Fluids

Scilab code Exa 6.1 To determine change in entropy of system

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 1
5
7 clear all;
8 clc;
9
10
11 // Given:
12 betta = 1.25*10^{-3}; //coeffecient of expansion (K
13 V = 0.1; //molar volume of organic liquid (m^3/kmol)
14 P2 = 20; // final pressure (bar)
15 P1 = 1; //initial pressure (bar)
16
17 //To determine the change in entropy of system
18 / betta = (1/V) * (del V/del T) p
```

```
//Let k = (del V/del T)p
k = betta*V;
// Considering Maxwell's relation Eq. 6.24 (Page no. 193)
//dS = -k*(dP)
S = -k*(P2-P1)*10^5; //entropy change (J/kmol K)
mprintf('Change in entropy is %f J/kmol K',S);
mprintf('\n It is assumed that (del V/del T)p is constant in the pressure range 1 to 20 bar');
// end
```

Scilab code Exa 6.2 To calculate vapour pressure of water at 363 K

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 2
5
7 clear all;
8 clc;
9
10
11 // Given:
12 T1 = 363; //temperature (K)
13 T2 = 373; //temperature (K)
14 P2 = 101.3; //vapour pressure at 373 K (kPa)
15 H = 2275*18; //mean heat of vaporisation (kJ/kmol)
16 R = 8.314; //ideal gas constant (kJ/kmol K)
17
18 //To calculate vapour pressure of water at 363 K
19 // Using eq. 6.28 (Page no. 196)
20 P1 = P2/(%e^{(H/R)*((1/T1)-(1/T2)))};
```

Scilab code Exa 6.3 To determine the melting point of mercury at 10 bar

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 3
6
7 clear all;
8 clc;
9
10
11 // Given:
12 d_1 = 13.69*10^3; //density of mercury in liquid
     state (kg/m^3)
13 d_s = 14.193*10^3; //density of mercury in solid
     state (kg/m^3)
14 T1 = 234.33; //temperature in K
15 P1 = 1; //initial pressure in bar
16 P2 = 10; // final pressure in bar
17 Hf = 9.7876; //heat of fusion of mercury (kJ/kg)
18
19
  //To determine the melting point of mercury at 10
     bar
20 //Using Clapeyron equation [Eq. 6.25 Page no. 195]
21 //Assuming del_V/del_H remains constant, log(T2/T1)
     = (del_V/del_H)*(P2-P1)
22
23 del_V = (1/d_1) - (1/d_s);
24 T2 = T1*(%e^((del_V/Hf)*(P2-P1)));
```

Scilab code Exa 6.4 To calculate increase in entropy of solid magnesium

```
//A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 4
6
  clear all;
8
  clc;
9
10
  //Given:
11
12 T1 = 300; //initial temperature (K)
13 T2 = 800; //final temperature (K)
14
15 //Heat capacity (J/mol K)
16 / \text{Cp} = 26.04 + (5.586 * 10^{-3} + \text{T}) + (28.476 * 10^{4} + \text{T}^{-2})
17
  //To determine the increase in entropy of solid
18
      magnesium
19 //Integrating Eq 6.31 (Page no. 198), we get
20 //S = intg (Cp*(dT/T))
21 S = 26.04*log(T2/T1)+5.586*10^{-3}*(T2-T1)
      +28.476*10^4/(-2)*(T2^-2-T1^-2);
  mprintf('The increase in entropy of solid magnesium
      is \%f J/mol K',S);
23
24 //end
```

Scilab code Exa 6.5 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 5
6
7 clear all;
8
  clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
     involve any numerical computation
14
15 // end
```

Scilab code Exa 6.6 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 6

clear all;
clc;
//Given:
```

```
12
13 //The given example is theoretical and does not
     involve any numerical computation
14
15 //end
```

Scilab code Exa 6.7 To calculate internal energy enthalpy entropy and fre energy for 1 mole of nitrogen

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 7
5
7 clear all;
8 clc;
9
10
11 // Given:
12 T = 773; //temperature (K)
13 P = 100; //pressure (bar)
14 Ho = 0; //enthalpy of nitrogen at 273 K and 1 bar
15 So = 192.4; //entropy of nitrogen at 298 K and 1 bar
16 To = 273; //(K)
17 Po = 1; //(bar)
18 R = 8.314; //ideal gas constant (kJ/kmol K)
19 / Cp = 27.3 + (4.2*10^- - 3*T) molal heat capacity at 1
     bar
20
21 //To calculate internal energy enthalpy entropy and
      free energyfor one mole of nitrogen
22 //Step 1:
23 //Assuming that nitrogen is initially at 273 K and 1
      bar
```

```
24 / del_H1 = intg(CpdT)
25 \text{ del}_H1 = 27.3*(T-To)+4.2*10^-3*(T^2-To^2)/2;
26
27 //Assuming that nitrogen is initially at 298 K and 1
        bar
28 / del_S1 = intg(Cp*(dT/T))
29 del_S1 = 27.3*log(T/To)+4.2*10^-3*(T-To);
30 \text{ H1} = \text{Ho} + \text{del}_{\text{H}};
31 S1 = So + del_S1;
32
33 / Step 2:
34 / del_H2 = [V - T*(del_V/del_T)p]dP
35 //Since nitrogen behaves as ideal gas
36 //(del_V/del_T)p = R/P, V-(R*T)/P = 0
37 \text{ del_H2} = 0;
38 \text{ del_S2} = -R*\log(P/Po);
39 H = H1 + del_H2;
40 S = S1 + del_S2;
41
42 //Internal energy: U = H-PV = H-RT (J/mol)
43 \ U = H - (R*T);
44
45 //Gibbs free energy (J/mol)
46 \text{ G} = \text{H-(T*S)};
47
48 mprintf('Enthalpy is \%5.3 \,\mathrm{e}\,\mathrm{J/mol}',H);
49 mprintf('\n Entropy is %f J/mol K',S);
50 mprintf('\n Internal energy is %4.3e J/mol',U);
51 mprintf('\n Gibbs free energy is \%4.3 \,\mathrm{e} J/mol',G);
52
53 //end
```

Scilab code Exa 6.8 To calculate entropy change and mean heat capacity

1 //A Textbook of Chemical Engineering Thermodynamics

```
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 8
5
7 clear all;
8 clc;
9
10
11 // Given:
12 //Equation of state: P(V-B) = RT + (A*P^2)/T
13 Cp = 33.6; //mean specific heat at atmosheric
      pressure (J/mol K)
14 A = 1*10^-3; //m^3 K/(bar)mol
15 B = 8.0*10^-5; //m^3/mol
16 R = 8.314*10^-5; //ideal gas constant (m<sup>3</sup> (bar)/mol
      K)
17
18 //To calculate entropy change and mean heat capacity
19
20 //(a). The entropy change when the state of gas is
      changed from state 1 (4 bar, 300 K) to state 2
      (12 bar, 400 K)
21 //The proposed changed is assumed to take place in 3
       steps in series as illustrated in Fig. 6.4 (Page
       no. 206)
22 //Step 1: Process AC, isothermal at 300 K
23 //Step 2: Process CD, isobaric at 1 bar
24 //Step 3: Process DB, isothermal at 400 K
25 / (del_V/del_T)p = R/P - AP/T^2
26
27 //For step 1:
28 Po = 4; //pressure at A (bar)
29 P1 = 1; //pressure at C (bar)
30 T = 300; //temperature (K)
31 / del_S1 = intg [(del_V/del_T)pdP]
32 \text{ del_S1} = (R*\log(Po/P1) - (A/T^2)*(Po^2-P1^2)/2)
      *10<sup>5</sup>; //(J/mol K)
```

```
33
34 //For step 2:
35 T1 = 300; //temperature at C (K)
36 T2 = 400; //temperature at D (K)
37 del_S2 = Cp*log(T2/T1); //(J/mol K)
38
39 //For step 3:
40 P2 = 1; //pressure at D (bar)
41 P3 = 12; //pressure at B (bar)
42 T = 400; //temperature (K)
43 del_S3 = (R*log(P2/P3) - (A/T^2)*(P2^2-P3^2)/2)
      *10<sup>5</sup>; //(J/mol K)
44 S = del_S1+del_S2+del_S3; //total entropy change
45 mprintf('(a). Total entropy change is \%f J/mol K', S)
46
47 / (b). The mean heat capacity at 12 bar
48 // If the change is broungt along ACo and CoB
49 //For ACo
50 P1 = 4; //pressure at A (bar)
51 P2 = 12; //pressure at Co (bar)
52 T = 300; //temperature (K)
53 \text{ del_S1} = R*log(P1/P2) - (A/T^2)*(P1^2-P2^2)/2;
54
55 //For CoB
56 T2 = 400; //temperature at B (K)
57 T1 = 300; //temperature at Co (K)
58 \text{ del_S2} = \text{S-del_S1};
59 \text{ Cpm} = \text{del}_S2/(\log(T2/T1));
60 mprintf('\n (b). The mean heat capacity at 12 bar is
       \%f J/mol K', Cpm);
61
62 //end
```

Scilab code Exa 6.9 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 9
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13
  //The given example is theoretical and does not
      involve any numerical computation
14
15 // end
```

Scilab code Exa 6.10 To calculate Cv for mercury

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 10

clear all;
clc;

//Given:
betta = 1.8*10^-4; //coeffecient of volume expansion (K^-1)
 k = 3.9*10^-6; //coeffecient of compressibility (bar ^-1)
 T = 273; //temperature in K
```

```
15 d = 13.596*10^3; //density (kg/m^3)
16 Cp = 0.14*10^3; //(J/kg K)
17
18 //To calculate Cv for mercury
19 //Using equation 6.55 (Page no. 208)
20 Cv = Cp - (betta^2*T*10^5)/(k*d);
21
22 mprintf('Cv for mercury is %f J/kg K',Cv);
23
24 //end
```

Scilab code Exa 6.11 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 11
5
6
7 clear all;
8 clc;
9
10
11 //Given:
12
13 //The given example is theoretical and does not involve any numerical computation
14
15 //end
```

Scilab code Exa 6.12 Theoretical problem

1 //A Textbook of Chemical Engineering Thermodynamics

```
// Chapter 6
// Thermodynamic Properties of Pure Fluids
// Example 12

clear all;
clc;
// Given:
// Given:
// The given example is theoretical and does not involve any numerical computation
// end
// end
```

Scilab code Exa 6.13 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 13
5
6
7 clear all;
8 clc;
9
10
  //Given:
11
12
  //The given example is theoretical and does not
      involve any numerical computation
14
15 //end
```

Scilab code Exa 6.14 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 14

clear all;
clc;
//Given:
//Given:
//The given example is theoretical and does not involve any numerical computation
//end
```

Scilab code Exa 6.15 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 15

clear all;
clc;
//Given:
```

```
12
13 //The given example is theoretical and does not
     involve any numerical computation
14
15 //end
```

Scilab code Exa 6.16 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 16
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
  //The given example is theoretical and does not
      involve any numerical computation
14
15 / \text{end}
```

Scilab code Exa 6.17 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 17
```

```
7 clear all;
8 clc;
9
10
11 //Given:
12
13 //The give example is theoretical and does not involve any numerical computation
14
15 //end
```

Scilab code Exa 6.18 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 18
6
7 clear all;
8 clc;
9
10
11
  //Given:
12
13 //The given example is theoretical and does not
     involve any numeriacl computation
14
15 // end
```

Scilab code Exa 6.19 Theoretical problem

1 //A Textbook of Chemical Engineering Thermodynamics

```
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 19
5
6
7 clear all;
8 clc;
9
10
11 //Given:
12
13 //The given example is theoretical and does not involve any numerical computation
14
15 //end
```

Scilab code Exa 6.20 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 20
5
6
7 clear all;
8 clc;
9
10
  //Given:
11
12
  //The given example is theoretical and does not
13
      invove any numerical computation
14
15 //end
```

Scilab code Exa 6.21 To estimate the fugacity of ammonia

```
//A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 21
6
7 clear all;
8
  clc;
9
10
11 // Given:
12 //Eqution of state: P(V-b) = RT
13 P = 10; //pressure (bar)
14 T = 298; //temperature (K)
15 b = 3.707*10^-5; //Vander Waal's constant (m<sup>3</sup>/mol)
16 R = 8.314; //ideal gas constant
17
18 //To estimate the fugacity of ammonia
19 // Since PV = RT + Pb, Z = 1 + (Pb/RT)
20 //Using equation 6.127 (Page no. 228)
21 f = P*(%e^((b*P*10^5)/(R*T)));
22 mprintf('Fugacity f = %f bar',f);
23
24 //end
```

Scilab code Exa 6.22 To determine the fugacity of gas

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
```

```
4 //Example 22
5
7 clear all;
8 clc;
9
10
11 // Given:
12 / (intg(alphadP) = -556.61 J/mol
13 P = 50; //pressure in bar
14 T = 300; //temperature in K
15 R = 8.314; //ideal gas constant
16
17 //To determine the fugacity of gas
18 //Using equation 6.130 (Page no. 230)
19 f = P*\%e^{(-556.61/(R*T))};
20 mprintf ('Fugacity of gas at 50 bar and 300 K is %i
      bar',f);
21
22 //end
```

Scilab code Exa 6.23 To determine the fugacity coeffecient at given pressure

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 23

clear all;
clc;
//Given:
```

```
12 //Equation of state: PV = RT(1-0.00513P)
13 P = [1 \ 5 \ 10]; //pressures in bar
14
15 //To determine fugacity coefficient at given
      pressures
16 // According to Eq. 6.118 (Page no. 228)
17 / RTd(ln f) = VdP = RT(d ln P - 0.00513dP)
18 / \text{phi} = \%e^{(-0.00513*P)}
19
20 \text{ for } i = 1:3
       phi(i) = %e^{(-0.00513*P(i))};
21
       mprintf('\n Fugacity coeffecient at %i bar is %f
          ',P(i),phi(i));
23
  end
24
25 //end
```

Scilab code Exa 6.24 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 24
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
      involve any numerical computation
14
15 //end
```

Scilab code Exa 6.25 To determine the fugacity of pure ethylene

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 25
6
7 clear all;
8 clc;
9
10
11 // Given:
12 P = 100; //pressure in bar
13 T = 373; //temperature in K
14 a = 0.453; //Vander Waal's constant (J m<sup>3</sup>/mol<sup>2</sup>)
15 b = 0.571*10^-4; //Vander Waal's constant (m<sup>3</sup>/mol)
16 V = 2.072*10^-4; //molar volume (m<sup>3</sup>/mol)
17 R = 8.314; //ideal gas constant
18
19 //To determine the fugacity of pure ethylene
20 // \text{Using eq. } 6.139 \text{ (Page no. } 233)
21 \quad \ln_f = (b/(V-b)) - ((2*a)/(R*T*V)) + \log((R*T*10^-5))
      /(V-b));
22 f = %e^ln_f;
23 mprintf('Fugacity is %f bar',f);
24
25 // end
```

Scilab code Exa 6.26 To determine fugacity and fugacity coeffecient of steam

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 26
5
7 clear all;
8 clc;
9
10
11 // Given:
12 T = 623; //temperature in K
13
14 //Data from steam tables:
15 H = 3159; //enthalpy at 1000 kPa and 623 K (kJ/kg)
16 S = 7.3; //entropy at 1000 kPa and 623 K (kJ/kg K)
17 Ho = 3176; //enthalpy at 101.3 kPa and 623 K (kJ/kg)
18 So = 8.38; //entropy at 101.3 kPa and 623 K (kJ/kg K
19 fo = 101.3; // fugacity at 101.3 kPa (kPa)
20 R = 8.314/18; //ideal gas consatnt (kJ/kg K)
21
22 //To determine fugacity and fugacity coeffecient of
     steam
23 ln_{phi} = (1/(R*T))*((H-Ho)-T*(S-So));
24 f = fo*%e^ln_phi;
25 \text{ phi} = f/fo;
26 mprintf('Fugacity of steam is %f bar',f/100);
27 mprintf('\n Fugacity coeffecient is %f',phi);
28
29 / \text{end}
```

Scilab code Exa 6.27 To estimate fugacity of ammonia

1 //A Textbook of Chemical Engineering Thermodynamics

```
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 27
5
7 clear all;
8 clc;
9
10
11 // Given:
12 T = 473; //temperature in K
13 P = 50*10^5; //pressure in Pa
14 d = 24.3; // density of ammonia (kg/m<sup>3</sup>)
15 m = 17; // molecular wt of ammonia
16 R = 8.314; //ideal gas constant
17
18 //To estimate the fugacity of ammonia
19 V = m/(d*1000); //molar volume of ammonia (m^3/kmol)
20 // Using eq. 6.142 (Page no. 234)
21 f = (V*(P^2))/(R*T);
22 mprintf('The fugacity of ammonia is %f bar',f/10^5);
23
24 //end
```

Scilab code Exa 6.28 To calculate the fugacity of liquid water

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 6
3 //Thermodynamic Properties of Pure Fluids
4 //Example 28
5
6
7 clear all;
8 clc;
```

```
10
11 // Given:
12 T = 303; //temperature in K
13 P = 10; //pressure in bar
14 Ps = 4.241/100; //saturation pressure (bar)
15 sp_vol = 1.004 *10^-3; //specific volume at 303 K (m)
      3/kg
16 R = 8.314; //ideal gas constant
17
18 //To calculate the fugacity of liquid water
19 V = sp_vol*10^-3*18; //molar volume (m<sup>3</sup>/mol)
20
21 //Assuming vapour behaves as an ideal gas
22 	ext{ f_sat} = Ps;
23 // Using Eq. 6.144 (Page no. 235)
24 \ln_{phi} = (V/(R*T))*(P-Ps)*10^5;
25 f = f_sat * %e^ln_phi;
26 mprintf ('Fugacity of liquid water at given
      conditions is %f bar',f);
27
28 //end
```

Scilab code Exa 6.29 To determine the fugacity of n butane in liquid state at given conditions

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 29
clear all;
clc;
```

```
11 // Given:
12 T = 350; //temperature in K
13 P = 60; //pressure in bar
14 Ps = 9.35; //vapour pressure at 350 K (bar)
15 V = 0.1072*10^{-3}; //molar volume (m<sup>3</sup>/mol
16 phi = 0.834; //fugacity coeffecient
17 R = 8.314; //ideal gas constant
18
19 //To determine fugaity of n butane in liquid state
      at given conditions
20 	ext{ f_sat = phi*Ps;}
21 / \text{Using eq. } 6.144 \text{ (Page no. } 235)
21 \ln_{phi} = (V/(R*T))*(P-Ps)*10^5;
23 	 f = f_sat*%e^ln_phi;
24 mprintf ('Fugacity of n-butane in liquid state at
      given conditions is %f bar',f);
25
26 // end
```

Scilab code Exa 6.30 To determine the activity of solid magnesium

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 6
//Thermodynamic Properties of Pure Fluids
//Example 30

clear all;
clc;

//Given:
M = 24.32; //molecular wt of solid magnesium
T = 300; //temperature in K
P = 10; //pressure in bar
```

```
15  Po = 1; //reference state pressure (bar)
16  d = 1.745*10^3; //density of Mg at 300 K in kg/m^3
17
18  //To determine the ativity of solid magnesiun
19  //Using eq. 6.149 (Page no. 237)
20  ln_a = (M/(d*10^3*R*T))*(P-Po)*10^5;
21  a = %e^ln_a;
22  mprintf('Acivity of solid magnesium at 300 K and 10 bar is %f',a);
23
24  //end
```

Chapter 7

Properties of Solutions

Scilab code Exa 7.1 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 7
//Properties of Solutions
//Example 1

clear all;
clc;
//Given:
//Given:
//The given example is theoretical and does not involve any numerical computation
//end
```

Scilab code Exa 7.2 To find the volume of mixture

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 2
5
7 clear all;
8 clc;
9
10
11 // Given:
12 V = 0.1; //volume of mixture required (m^3)
13 Ve = 0.03; //volume of alcohol
14 Vw = 0.07; //volume of water
15 de = 789; // density of ethanol (kg/m<sup>3</sup>)
16 dw = 997; // density of water (kg/m^3)
17 pe = 53.6*10^-6; //partial molar volume of ethanol (
     m^3/mol
18 pw = 18*10^-6; //partial molar volume of water (m<sup>3</sup>/
     mol)
19 Me = 46; //molecular wt of ethanol
20 Mw = 18; //molecular wt of water
21
22 //To find the volume of mixture
23 ne = (Ve*de*10^3)/Me; //number of moles of ethanol
24 nw = (Vw*dw*10^3)/Mw; //number of moles of water
25 xe = ne/(ne+nw); //mole fraction of ethanol
26 xw = 1-ne; //mole fraction of water
27 \text{ act_V} = (\text{ne*pe}) + (\text{nw*pw});
28 if (V == act_V)
29
       then mprintf ('It is possible to prepare the
          required solution');
30 else
31
       Ve_act = (Ve/act_V)*V;
32
       Vw_act = (Vw/act_V)*V;
       mprintf('\n For the given volumes of ethanol and
33
           water, it is not possible to prepare 0.1
          cubic m of mixture');
```

Scilab code Exa 7.3 To find the required volume of methanol and water

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 3
6
7 clear all;
  clc;
8
9
10
11 // Given:
12 V = 2; //volume of desired solution (m^3)
13 x1 = 0.3; //moles fraction of methanol
14 x2 = 0.7; //moles fraction of water
15 V1 = 38.632*10^-6; //partial molar volume of
      methanol (m<sup>3</sup>/mol)
16 V2 = 17.765*10^-6; //partial molar volume of water (
     m^3/mol
17 mol_V1 = 40.727*10^-6; //molar volume of ethanol (m
      ^3/\text{mol}
18 mol_V2 = 18.068*10^-6; //molar volume of water (m<sup>3</sup>/
19
20 //To find the required volume of methanol and water
21 V_{mol} = (x1*V1)+(x2*V2); //molar volume of desired
```

```
solution
22 n = V/V_mol; //no. of moles in the desired solution
23 n1 = x1*n; //moles of methanol
24 n2 = x2*n; //moles of water
25 V_m = n1*mol_V1;
26 V_w = n2*mol_V2;
27 mprintf('Volume of methanol to be taken is %f cubic m', V_m);
28 mprintf('\n Volume of water to be taken is %f cubic m', V_w);
29 30 //end
```

Scilab code Exa 7.4 To calculate the volume of water to be added and volume of dilute alcohol solution

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 4
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 V1_w = 0.816*10^-3; // partial molar volume of water
     in 96% alcohol solution
13 V1_e = 1.273*10^-3; //partial molar volume of
     ethanol in 96% alcohol solution
14 V2_w = 0.953*10^-3; // partial molar volume of water
     in 56% alcohol solution
15 V2_e = 1.243*10^-3; //partial molar volume of
     ethanol in 56% alcohol solution
```

```
16 d = 0.997*10^3; //density of water (kg/m<sup>3</sup>)
17
18 //To calculate the volume of water to be added and
      volume of dilute alcohol solution
19 // Basis:
20 V = 2*10^-3; //volume of alcohol solution (m<sup>3</sup>)
V_{sp} = (0.96*V1_e) + (0.04*V1_w); //volume of 1 kg of
      laboratory alcohol
22 m_e = V/V_sp; //mass of 2*10^-3 m<sup>3</sup> alcohol
23
24 //(a).
25 //Let mass of water added be m kg
26 //Taking an alcohol balance
27 m = (m_e*0.96)/0.56 - m_e;
28 v = m/d;
29 mprintf('\n (a).');
30 mprintf('\n Mass of water added is %f kg',m);
31 mprintf('\n Volume of water added is %4.3e cubic m',
      v);
32
33 //(b)
34 m_sol = m_e + m; //mass of alcohol solution obtained
35 \text{ sp\_vol} = (0.56*V2\_e) + (0.44*V2\_w); // \text{specific volume}
      of 56% alcohol
36 V_dil = sp_vol*m_sol; //volume of dilute alcohol
      solution
37 mprintf('\n\n (b)');
38 mprintf('\n Volume of dilute alcohol solution is \%5
      .4e cubic m', V_dil);
39
40 // \text{end}
```

Scilab code Exa 7.5 Theoretical problem

1 //A Textbook of Chemical Engineering Thermodynamics

```
2 //Chapter 7
3 //Properties of Solutions
4 //Example 5
5
6
7 clear all;
8 clc;
9
10
11 //Given:
12
13 //The given example is theoretical and does not involve any numerical computation
14
15 //end
```

Scilab code Exa 7.6 To determine enthalpies of pure components and at infinite dilution

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 6
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 //Function for enthalpy:
13 H = 400*x1 + 600*x2 + x1*x2*(40*x1+20*x2)
14
15 //To determine enthalpies for pure component and at
     infinite dlution
```

```
16
17 //(a).
18 //The given subpart is theoretical and does not
                               involve numerical computation
19
 20 //(b).
 21 // Using eq. 7.27 (Page no. 264)
\frac{1}{2} //H = H1_bar as x1 = 1
 23 H1 = 420-60+40;
 24 // Using eq. 7.28 (Page no. 264)
 \frac{25}{H} = \frac{H2_{bar}}{as} = 1
 26 \text{ H2} = 600;
27 mprintf('\n (b).');
 28 mprintf('\n Pure state enthalpies are:');
 29 mprintf('\n H1 = \%i J/mol', H1);
30 mprintf('\n H2 = \%i J/mol', H2);
31
32 //(c).
33 // H1_{inf} = H1_{bar} as x1 = 0, so from eq. 7.27
34 \text{ H1\_inf} = 420;
 \frac{35}{4} = \frac{1}{4} \ln f = \frac{1
36 \text{ H2\_inf} = 640;
37 mprintf('\n\n (c).');
 38 mprintf('\n At infinite dilution:');
 39 mprintf('\n H1 = \%i J/mol', H1_inf);
40 mprintf('\n H2 = \%i J/mol', H2_inf);
41
42 //end
```

Scilab code Exa 7.7 To calculate the partial molar volume of the components

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 //Properties of Solutions
```

```
4 //Example 7
5
7 clear all;
8 clc;
9
10
11 // Given:
12 //Volume as a function of molality:
13 function [y] = V(m)
       y = 1.003*10^{-3} + 0.1662*10^{-4*m} + 0.177*10^{-5*m}
14
          ^1.5 + 0.12*10^-6*m^2
15 endfunction
16
17 m = 0.1; // molality of solution (mol/kg)
18
19 //To calculate the partial molar volume of the
      components
20 // Differentiating Eq. 7.29 with reference to m, we
21 V1_bar = 0.1662*10^-4 + 0.177*1.5*10^-5*m^0.5 +
      0.12*2*10^-6*m;
22
23 V_{sol} = V(m); //volume of aqueous soluttion
24 \text{ n1} = \text{m};
25 \text{ n2} = 1000/18;
26 \ V2_bar = (V_sol - n1*V1_bar)/n2;
27 mprintf('Partial molar volume of water = %4.3e cubic
      m/mol', V2\_bar);
28 mprintf('\n Partial molar volume of NaCl = %4.3e
      cubic m/mol', V1_bar);
29
30 //end
```

Scilab code Exa 7.8 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 8
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not any
      numerical computation
14
15 // end
```

Scilab code Exa 7.9 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 9
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not any
     numerical computation
14
15 // end
```

Scilab code Exa 7.10 To estimate the solubility of oxygen in water at 298 K

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 10
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 K = 4.4*10^4; //Henry's law constant (bar)
13 pp = 0.25; //partial pressure of oxygen in bar
14 M_02 = 32; //molecular wt of oxygen
15 M_water = 18; //molecular wt of water
16
17 //To estimate the solubility of oxygen in water at
      298 K
18 // Using eq. 7.72 (Page no. 275)
19 x_02 = pp/K; //mole fraction of O2
20 mprintf('Solubility of oxygen is %5.4e moles per
     mole of water', x_0^2;
21
22 //In mass units
23 \text{ sol}_{02} = (x_{02}*M_{02})/M_{water};
24 mprintf('\n Solubility of oxygen in mass units is %4
      .3e kg oxygen per kg water', sol_02);
25
26 //end
```

Scilab code Exa 7.11 To confirm that mixture conforms to Raoults Law and to determine Henrys Law constant

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 11
7 clear all;
8 clc;
9
10
11 // Given:
12 \text{ xb} = [0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0];
13 pa_bar = [0.457 \ 0.355 \ 0.243 \ 0.134 \ 0.049 \ 0];
14 pb_bar = [0 0.046 0.108 0.187 0.288 0.386];
15
16 //To confirm mixture conforms to Raoult's Law and to
       determine Henry's law constant
17 clf
18 \text{ xa} = 1-xb;
19 plot(xa,pa_bar);
20 plot(xa,pb_bar);
21 xtitle(" ", "Mole fraction of A", "Partial Pressure");
22
23 //For Raoult's Law plotting
24 x = linspace(0,1,6);
25 \text{ y1} = linspace(0,0.457,6);
26 \text{ y2} = linspace(0.386,0,6);
27 \text{ plot2d}(x,y1,style=3);
28 \text{ plot2d}(x,y2,style=3);
29
30 //For Henry's law plotting
```

```
31 \times = [0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0];
32 //Form the partial presures plot of component A and
33 yh1(1) = 0; yh1(2) = 0.049; //For component A
34 \text{ for } i = 3:6
35
       yh1(i) = yh1(i-1)+(x(i)-x(i-1))*((yh1(2)-yh1(1))
          /(x(2)-x(1));
36 \, \text{end}
37
38 yh_2(6) = 0; yh_2(5) = 0.046; //For component B
39 i = 4;
40 while (i~=0)
       yh_2(i) = yh_2(i+1) + (x(i)-x(i+1))*((yh_2(6)-
41
          yh_2(5))/(x(6)-x(5));
42
       i = i-1;
43 end
44 plot2d(x,yh1,style=6);
45 plot2d(x,yh_2,style=6);
46 legend("Partial pressure "," ","Raoults law"," ","
      Henrys Law");
47
48 //(a)
49 mprintf ('From the graph it can be inferred that, in
      the region where Raoults law is obeyed by A, the
      Henrys law is obeyed by B, and vice versa');
50
51 //(b)
52 //Slope of Henry's law
53 mprintf('\n For component A, Ka = \%f bar', yh1(6));
54 mprintf('\n For component B, Kb = \%f \ bar', yh_2(1));
55
56 //end
```

Scilab code Exa 7.12 To calculate activity and activity coeffecient of chloroform

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 12
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 \text{ xa} = [0 \ 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0];
13 Pa_bar = [0 \ 0.049 \ 0.134 \ 0.243 \ 0.355 \ 0.457];
14 Pb_bar = [0.386 0.288 0.187 0.108 0.046 0];
15
16 //To calculate activity and activity coeffecient of
      chloroform
17 \text{ xb} = 1 - xa;
18 Pbo = 0.386; //vapour pressure of pure chloroform
19 //(a). Based on standard state as per Lewis-Randall
      rule
20
21 mprintf('Based on Lewis Randall Rule');
22 mprintf(' \ n
                Activity
                                      Activity coeffecient
      ');
  for i = 1:6
23
       a(i) = Pb_bar(i)/Pbo;
24
       mprintf('\n
                        %f',a(i));
25
       if(xb(i)==0)
26
            mprintf('
27
                               Not defined');
       else ac(i) = a(i)/xb(i);
28
                                \%f',ac(i));
            mprintf('
29
30
       end
31 end
32
```

```
33 / (b). Based on Henry's Law
34 Kb = 0.217; //bar (From Example 7.11 Page no. 276)
35
36 mprintf('\n\n Based on Henrys Law');
37 \text{ mprintf}(' \setminus n)
                 Activity
                                       Activity coeffecient'
      );
  for i = 1:6
38
39
       a(i) = Pb_bar(i)/Kb;
       mprintf('\n
                        %f',a(i));
40
       if(xb(i)==0)
41
            mprintf('
                                 Not defined');
42
43
       else
44
            ac(i) = a(i)/xb(i);
                                   \%f',ac(i));
            mprintf('
45
46
       end
47 \text{ end}
48
49 //end
```

Scilab code Exa 7.13 To determine fugacity fugacity coeffecient Henrys Law constant and activity coeffecient

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 7
//Properties of Solutions
//Example 13

clear all;
clc;
//Given:
P = 20; //pressure in bar
//Function for fugacity of component 1
```

```
14 function [y] = f1(x1);
       y = (50*x1) - (80*x1^2) + (40*x1^3)
15
16 endfunction
17
18 //To determine fugacity fugacity coeffecient Henry's
       Law constant and activity coeffecient
19
20 //(a)
21 // Fugacity of component in solution becomes fugacity
       of pure component when mole fraction approaches
      1 i.e.
22 \times 1 = 1;
23 	 f1_pure = f1(x1);
24 mprintf('(a). Fugacity f1 of pure component 1 is %i
      bar',f1_pure);
25
26 //(b)
27 \text{ phi} = f1_pure/P;
28 mprintf('\n (b). Fugacity coeffecient is %f', phi);
29
30 //(c)
31 //Henry's Law constant is \lim (f1/x1) and x1 tends to
32 \times 1 = 0;
33 K1 = 50 - (80*x1) + (40*x1^2);
34 mprintf('\n (c). Henrys Law constant is %i bar', K1);
35
36 //(d)
37 mprintf('\n (d)). This subpart is theoretical and
      does not involve any numerical computation');
38
39 //end
```

Scilab code Exa 7.14 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 14
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
      involve any numerical computation
14
15 // end
```

Scilab code Exa 7.15 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 15
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
     involve any numerical computation
14
15 // end
```

Scilab code Exa 7.16 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 16
5
6
7 clear all;
8 clc;
9
10
  //Given:
11
12
  //The given example is theoretical and does not
13
      involve any numerical computation
14
15 // end
```

Scilab code Exa 7.17 To determine enthalpies at infinite dilution

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 //Properties of Solutions
4 //Example 17
5
6
7 clear all;
8 clc;
9
```

```
11 // Given:
12 //Function for enthalpy change of mixture
13 / H = x1*x2*(40*x1 + 20*x2)
14 H1_pure = 400; //enthalpy of pure liquid 1 at 298 K
      and 1 bar (J/mol)
15 H2_pure = 600; //enthalpy of pure liquid 2 (J/mol)
16
17 //To determine enthalpies at infinite dilution
18 //Using eq. 7.126 and 7.128 (Page no. 294)
19 / H1_bar = 20*(1-x1)^2 * (2x1+1)
20 // \text{Using eq. } 7.127 \text{ and } 7.128 \text{ (Page no. } 294)
21 / H2_bar = 40*x1^3
22
23 //For infinite dilution x1 = 0, delH1_inf = H1_bar
24 \times 1 = 0;
25 delH1_inf = 20*((1-x1)^2)*(2*x1+1);
26 H1_inf = H1_pure + delH1_inf; //(J/mol)
27
28 //For infinite dilution of 2, x1 = 1 and delH2_inf =
       H2_bar
29 \times 1 = 1;
30 \text{ delH2\_inf} = 40*x1^3;
31 H2_inf = delH2_inf + H2_pure; //(J/mol)
32
33 mprintf ('Enthalpy at infinite dilution for component
       1 is %i J/mol', H1_inf);
34 mprintf('\n Enthalpy at infinite dilution for
      component 2 is %i J/mol', H2_inf);
35
36 //end
```

Scilab code Exa 7.18 Theoretical problem

```
1\ //A\ Textbook of Chemical Engineering Thermodynamics 2\ //Chapter\ 7
```

```
//Properties of Solutions
//Example 18

clear all;
clc;
//Given:
// Given:
// The given example is theoretical and does not involve any numerical computation
// end
```

Scilab code Exa 7.19 To determine change in entropy for the contents of the vessel

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 19
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 R = 8.314; //ideal gas constant
13 n1 = 100; // moles of nitrogen
14 n2 = 100; //moles of oxygen
15
16 //To determine the change in entropy of the contents
       of the vessel
```

Scilab code Exa 7.20 To determine heat of formation of LiCl in 12 moles of water

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 20
6
7 clear all;
8 clc;
9
10
11 // Given:
12 //For reaction 1
13 // \text{Li} + 1/2 \text{Cl}2 \longrightarrow \text{LiCl}
14 Hf = -408.610; //heat of formation (kJ)
15
16 //For reaction 2
17 // \text{LiCl} + 12 \text{H2O} \longrightarrow \text{LiCl} (12 \text{H2O})
18 H_{sol} = -33.614; //heat of solution (kJ)
19
20 //To determine heat of formation of LiCl in 12 moles
        of water
```

```
//Adding reaction 1 and 2, we get
//Li + 1/2Cl2 + 12H2O --> LiCl(12H2O)
H_form = Hf+H_sol;
mprintf('Heat of formation of LiCl in 12 moles of water is %f kJ', H_form);
//end
//end
```

Scilab code Exa 7.21 To calculate the free energy of mixing

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 21
5
7 clear all;
8 clc;
9
10
11 // Given:
12 R = 8.314; //ideal gas constant
13 n1 = 3; // moles of hydrogen
14 n2 = 1; //moles of nitrogen
15 T = 298; //temperature in K
16 P1 = 1; //pressure of hydrogen in bar
17 P2 = 3; //pressure of nitrogen in bar
18
19 //To calculate the free energy of mixing
20 V1 = (n1*R*T)/(P1*10^5); //volume occupied by
     hydrogen
21 V2 = (n2*R*T)/(P2*10^5); //volume occupied by
      nitrogen
22 V = V1+V2; //total volume occupied
```

```
23 P = ((n1+n2)*R*T)/(V*10^5); //final pressure
      attained by mixture (bar)
24
25 //It is assumed that process is taking in two steps
26 //Step 1: Individual gases are separately brought to
       final pressure at constant temperature
  //Step 2: The gases are mixed at constant
      temperature and pressure
28
\frac{29}{\text{For step } 1}
30 G1 = R*T*(n1*log(P/P1) + n2*log(P/P2));
31
32 //For step 2, using eq. 7.121 (Page no. 292)
33 \times 1 = n1/(n1+n2);
34 \times 2 = n2/(n1+n2);
35 \text{ G2} = (n1+n2)*R*T*(x1*log (x1) + x2*log (x2));
36
37 G = G1+G2; //free energy in J
38 mprintf('The free energy of mixing when partition is
       removed is \%f kJ', G/1000);
39
40 // end
```

Scilab code Exa 7.22 To calculate the mean heat capacity of 20 mol percent solution

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 //Properties of Solutions
4 //Example 22
5
6
7 clear all;
8 clc;
9
```

```
10
11 // Given:
12 C_water = 4.18*10^3; //heat capacity of water (J/kg
13 C_ethanol = 2.58*10^3; //heat capacity of ethanol (J
               / \text{kg } \text{K}
14 G1 = -758; //heat of mixing 20 mol percent ethanol
               water at 298 K(J/mol)
15 G2 = -415; //heat of mixing 20 mol percent ethanol
               water at 323 K (J/mol)
16 n_wat = 0.8; // moles of water
17 n_{eth} = 0.2; //moles of ethanol
18 T1 = 323; //initial temperature in K
19 T2 = 298; //final temperature in K
20
21 //To calculate the mean heat capacity of 20 mol
                percent solution
22 //The whole process is divided in 4 steps
23
24 //Step 1: Water is cooled from 323 K to 298 K
25 H1 = n_{*} = n_{*}
26
27 //Step 2: Ethanol is cooled from 323 to 298 K
28 H2 = n_{eth}*46*C_{ethanol}*(T2-T1)/1000; //(J)
29
30 //Step 3: 0.8 mol water and 0.2 mol ethanol are
               mixed at 298 K
31 H3 = G1; //(J)
32
33 / Step 4:
34 // Mixture is heated to 323 K
35 / H = Cpm*(T1-T2)
36 \text{ H} = G2;
37 \text{ Cpm} = (H-H1-H2-H3)/(T1-T2);
39 mprintf ('Mean heat capacity of solution is %f J/mol
              K', Cpm);
40
```

Scilab code Exa 7.23 To find the final temperature attained

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 23
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 To = 298; //initial temperature (K)
13 Cpm = 97.65; //Mean heat capacity of solution (J/mol
      K)
14 Hs = -758; //heat of mixing (J/mol)
15
16 //To find the final temperature attained
17 //Since the process is adiabatic
18 H = 0;
19 T = (H-Hs)/Cpm + To;
20 mprintf ('The final temperature attained by the
      mixing is \%f K',T);
21
22 //end
```

Scilab code Exa 7.24 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 7
3 // Properties of Solutions
4 //Example 24
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
     involve any numerical computation
14
15 / end
```

Chapter 8

Phase equilibria

Scilab code Exa 8.1 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 8
//Phase Equilibria
//Example 1

clear all;
clc;
//Given:
//Given:
//The given example is theoretical and does not involve any numerical computation
//end
```

Scilab code Exa 8.2 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 2
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13
  //The given example is theoretical and does not
      involve any numerical computation
14
15 // end
```

Scilab code Exa 8.3 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 3
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
     involve any numerical computation
14
15 // end
```

Scilab code Exa 8.4 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 8
//Phase Equilibria
//Example 4

clear all;
clc;
//Given:
//Given:
//The given example is theoretical and does not involve any numerical computation
//end
```

Scilab code Exa 8.5 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 5
5
6
7 clear all;
8 clc;
9
```

```
11 //Given:
12
13 //The given example is theoretical and does not
        involve any numerical computation
14
15 //end
```

Scilab code Exa 8.6 To determine composition of vapour and liquid in equilibrium

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 6
6
  clear all;
8
  clc;
9
10
  //Given:
12 P1 = 106; //vapour pressure of n-heptane (kPa)
13 P2 = 74; //vapour pressure of toluene (kPa)
14 P = 101.3; //total pressure (kPa)
15
16 //To determine the composition of the liquid and
     vapour in equilibrium
17
  //Referring eq. 8.51 (Page no. 332)
18
19 //Let x be mol fraction of heptane in liquid
20 x = (P-P2)/(P1-P2);
21 // Using eq. 8.54 (Page no. 333)
22 y = x*(P1/P);
23
24 mprintf ('Composition of liquid heptane is %f mol
```

Scilab code Exa 8.7 To determine pressure at the beginning and at the end of the process

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 7
5
7 clear all;
8 clc;
9
10
11 // Given:
12 P1 = 135.4; //vapour pressure of benzene (kPa)
13 P2 = 54; //vapour pressure of toluene (kPa)
14
15 //To determine the pressure at the beginning and at
     the end of process
16
17 //At beginning
18 x = 0.5; //liquid phase composition
19 // Using eq. 8.51 (Page no. 332)
20 P_beg = P2 + (P1-P2)*x;
21
22 //At the end
23 y = 0.5; //vapour phase composition
24 //Using eq. 8.54 (Page no. 333) and rearranging
25 P_{end} = (P1*P2)/(P1-y*(P1-P2));
```

Scilab code Exa 8.8 To determine temperature pressure and compositions

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 8
6
7 clear all;
8 clc;
9
10
11 // Given:
12 // Antoine Equations:
13
14 function [y1] = P1(T)
       y1 = %e^{(14.5463 - 2940.46/(T-35.93))} //vapour
15
          pressure of acetone
16 endfunction
17
18 function [y2] = P2(T)
       y2 = %e^{(14.2724 - 2945.47/(T-49.15))} //vapour
19
          pressure of acetonitrile
20 endfunction
21
22 //To determine temperature pressure and compositions
\frac{23}{a} //(a). To calculate x1 and y1
```

```
24 T = 327; //temperature in K
25 P = 65; //pressure in kPa
26
27 \text{ P1_s} = \text{P1(T)};
28 P2_s = P2(T);
29 // Using eq. 8.51 (Page no. 332)
30 \times 1 = (P-P2_s)/(P1_s-P2_s);
31 / \text{Using eq. } 8.54 \text{ (Page no. } 333)
32 \text{ y1} = x1*(P1_s/P);
33 mprintf('(a)');
34 mprintf('\n x1 = \%f',x1);
35 mprintf('\n y1 = \%f',y1);
36
37 / (b). To calculate T and y1
38 P = 65; //pressure in kPa
39 \times 1 = 0.4;
40
41 \text{ flag} = 1;
42 T2 = 340; //temperatue (assumed)
43 while (flag==1)
        P1_s = P1(T2);
44
        P2_s = P2(T2);
45
        P_{calc} = P2_s + x1*(P1_s-P2_s)
46
        if ((P_calc-P) <=1)</pre>
47
             flag = 0;
48
49
        else
50
             T2 = T2-0.8;
51
        end
52 end
53 \text{ y1} = \text{x1*(P1_s/P)};
54 mprintf('\n\n (b)');
55 mprintf('\n Temperature is %f K',T2);
56 mprintf('\n y1 = \%f', y1);
57
\frac{58}{(c)}. To calculate P and y1
59 T3 = 327; //temperature in K
60 \times 1 = 0.4;
61
```

```
62 \text{ P1_s} = \text{P1(T3)};
63 \text{ P2_s} = \text{P2(T3)};
64 P = P2_s + x1*(P1_s-P2_s);
65 \text{ y1} = \text{x1*(P1_s/P)};
66 mprintf('\n\n (c)');
67 mprintf('\n Pressure is %f kPa',P);
68 mprintf('\n y1 = \%f', y1);
69
70 //(d). To calculate T and x1
71 P = 65; //pressure in kPa
72 \text{ y1} = 0.4;
73
74 \text{ flag} = 1;
75 T = 340; //assumed temperature (K)
76 while (flag==1)
77
        P1_s = P1(T);
        P2_s = P2(T);
78
        y1_calc = (P1_s*(P-P2_s))/(P*(P1_s-P2_s));
79
        if ((y1_calc-y1)>=0.001)
80
81
             flag = 0;
82
        else
83
             T = T-2;
84
        end
85 end
86 	 x1 = y1*(P/P1_s);
87 mprintf('\n\n (d)');
88 mprintf('\n Temperature = \%f K',T);
89 mprintf('\n x1 = \%f',x1);
90
91 //(e). To calculate P and x1
92 T = 327; //temperature (K)
93 \text{ y1} = 0.4;
94
95 \text{ P1_s} = \text{P1(T)};
96 	ext{ P2_s} = 	ext{P2(T)};
97 // \text{Using eq. } 8.54 \text{ and } 8.51
98 	 x1 = (y1*P2_s)/(P1_s-y1*(P1_s-P2_s));
99 P = x1*(P1_s/y1);
```

```
100 mprintf('\n\n (e)');
101 mprintf('\n Pressure = %f kPa',P);
102 mprintf('\n x1 = \%f',x1);
103
104 / (f). To calculate fraction of the system is liquid
        and vapour in equilibrium
105 T = 327; //temperature (K)
106 P = 65; //pressure (kPa)
107 \text{ y1} = 0.7344;
108
109 \text{ P1_s} = \text{P1(T)};
110 P2_s = P2(T);
111 x1 = (P-P2_s)/(P1_s-P2_s);
112 //Let f be the fraction of the mixture that is
      liquid
113 //Applying acetone balance
114 f = (0.7-y1)/(x1-y1);
115 mprintf('n n (f)');
116 mprintf('\n Fraction of mixture that is liquid is \%f
        percent', f*100);
117
118 //end
```

Scilab code Exa 8.9 To construct boiling point and equilibrium point diagram

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 9
5
6
7 clear all;
8 clc;
```

```
10
11 // Given:
12 P = 101.3; //total pressure over the system (kPa)
13 T = [371.4 378 383 388 393 398.6];
14 Pa = [101.3 125.3 140.0 160.0 179.9 205.3];
15 Pb = [44.4 55.6 64.5 74.8 86.6 101.3];
16
17 //To construct boiling point and equilibrium point
      diagram
18 \text{ for } i = 1:6
       xa(i) = (P-Pb(i))/(Pa(i)-Pb(i)); //Using eq.
19
20
       ya(i) = xa(i)*(Pa(i)/P); //Using eq. 8.54
21 end
22
23 //(a).
24 //To construct boiling point diagram
25 clf
26 plot(xa,T);
27 plot(ya,T);
28 xtitle("Boiling Point diagram", "xa and ya","
      Temperature");
29
30 //(b).
31 //To construct the equilibrium diagram
32 xset ("window',1);
33 clf
34 plot (ya, xa);
35 xtitle ("Equilibrium Diagram", "xa", "ya");
36
37 / (c).
38 mprintf('(c). The given subpart is theoretical and
      does not involve any numerical computation');
39
40 // end
```

Scilab code Exa 8.10 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 8
//Phase Equilibria
//Example 10

clear all;
clc;
//Given:
//Given:
//The given example is theoretical and does not involve any numerical computation
//end
```

Scilab code Exa 8.11 To calculate van Laar constants

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 11
5
6
7 clear all;
8 clc;
9
10
11 //Given:
```

```
12 x1 = 46.1/100; // mole percent of A
13 P = 101.3; //total pressure of system (kPa)
14 P1_s = 84.8; //vapour pressure of component A (kPa)
15 P2_s = 78.2; //vapour pressure of component B (kPa)
16
17 //To calculate van Laar constants
18 gama1 = P/P1_s;
19 gama2 = P/P2_s;
20 \times 2 = 1 - \times 1;
21
22 //van Laar constants:
23 / \text{Using eq. } 8.69 \text{ (Page no. } 348)
24 A = log (gama1)*(1 + (x2*log(gama2))/(x1*log(gama1))
      )^2;
25 B = \log (\text{gama2})*(1 + (x1*\log(\text{gama1}))/(x2*\log(\text{gama2}))
26
27 mprintf('van Laar constants are:');
28 mprintf('\n A = \%f', A);
29 mprintf('\n B = \%f',B);
30
31 // end
```

Scilab code Exa 8.12 To calculate activity coeffecients in a solution containing 10 percent alcohol

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 12
5
6
7 clear all;
8 clc;
9
```

```
10
11 // Given:
12 x2 = 0.448; //mole fraction of ethanol
13 P = 101.3; //total pressure (kPa)
14 P1_s = 68.9; //Vapour pressure of benzene (kPa)
15 P2_s = 67.4; //vapour pressure of ethanol (kPa)
16
17 //To calculate activity coeffecients in a solution
      containing 10% alcohol
18 \times 1 = 1 - \times 2;
19 gama1 = P/P1_s;
20 \text{ gama2} = P/P2_s;
21
22 // Using eq. 8.69 (Page no. 348)
23 //van Laar constants:
24 A = log (gama1)*(1 + (x2*log(gama2))/(x1*log(gama1))
      )^2;
25 B = log (gama2)*(1 + (x1*log(gama1))/(x2*log(gama2))
      )^2;
26
27 //For solution containing 10% alcohol
28 \times 2 = 0.1;
29 \times 1 = 1 - \times 2;
30 \ln_g 1 = (A*x2^2)/(((A/B)*x1+x2)^2);
31 \quad \ln_{g2} = (B*x1^2)/((x1+(B/A)*x2)^2);
32 \text{ gama1} = \%e^ln_g1;
33 \text{ gama2} = \%e^1n_g2;
34
35 mprintf('Activity coeffecients:');
36 mprintf('\n For component 1: %f',gama1);
37 mprintf('\n For component 2: %f',gama2);
38
39 //end
```

Scilab code Exa 8.13 To calculate equilibrium vapour composition for solution containing 20 mole percent hydrazine

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 13
5
7 clear all;
8 clc;
9
10
11 // Given:
12 x2 = 0.585; //mol fraction of hydrazine
13 P = 101.3; //total pressure of system (kPa)
14 P2_s = 124.76; //vapour pressure of hydrazine (kPa)
15
16 //To calculate equilibrium vapour composition for
      solution containing 20% (mol) hydrazine
17 \times 1 = 1 - \times 2;
18 P1_s = 1.6*P2_s; //vapour pressure of water (kPa)
19 gama1 = P/P1_s;
20 \text{ gama2} = P/P2_s;
21
22 //Using eq. 8.69 (Page no. 348)
23 //van Laar constants:
24 A = \log (\text{gama1})*(1 + (x2*\log(\text{gama2}))/(x1*\log(\text{gama1}))
25 B = log (gama2)*(1 + (x1*log(gama1))/(x2*log(gama2))
      )^2;
26
27 //For solution containing 20% hydrazine
28 \times 2 = 0.2;
29 \times 1 = 1 - \times 2;
30 \ln_g 1 = (A*x2^2)/(((A/B)*x1+x2)^2);
31 \ln_g 2 = (B*x1^2)/((x1+(B/A)*x2)^2);
32 \text{ gama1} = \%e^ln_g1;
```

Scilab code Exa 8.14 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 14
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
      involve any numerical computation
14
15 // end
```

Scilab code Exa 8.15 To determine the total pressure

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 15
6
7 clear all;
8 clc;
9
10
11 // Given:
12 x1 = 0.047; //mol fraction of isopropanol
13 P1 = 91.11; //vapour pessure of pure propanol (kPa)
14 P = 91.2; //toatl pressure of system (kPa)
15 P2 = 47.36; //vapour pressure of water (kPa)
16
17 //van Laar consatnts:
18 A = 2.470;
19 B = 1.094;
20
21 //To determine the total pressure:
22 \times 2 = 1 - \times 1;
23 //Using eq. 8.68 (Page no. 348)
24 \ln_g 1 = (A*x2^2)/(((A/B)*x1 + x2)^2);
25 \ln_g 2 = (B*x1^2)/((x1 + (B/A)*x2)^2);
26 \text{ gama1} = \text{%e^ln_g1};
27 \text{ gama2} = \%e^1n_g2;
28
29 //Total pressure:
30 P_{tot} = (gama1*x1*P1) + (gama2*x2*P2);
31 if(P==P_tot)
32
       mprintf('This is equal to total pressure');
```

```
33 else
34 mprintf('This is less than the total pressure.

This error must have been caused by air leak'
);
35 end
36
37
38 //end
```

Scilab code Exa 8.16 To construct the Pxy diagram

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 16
5
7 clear all;
8 clc;
9
10
11 // Given:
12 P1 = 24.62; //vapour pressure of cyclohexane (kPa)
13 P2 = 24.41; //vapour pressure of benzene (kPa)
14
15 // Activity coeffecients are given by:
16 / \ln_{g} 1 = 0.458 * x2^{2};
17 / \ln_{-g} 2 = 0.458 * x1^2;
18
19 //To construct the P-x-y diagram
20 	 x1 = [0 	 0.2 	 0.4 	 0.6 	 0.8 	 1.0]
21 \times 2 = 1 - \times 1;
22
23 \text{ for } i = 1:6
       g1(i) = %e^{(0.458*x2(i)^2)}; // activity
```

```
coeffecient for component 1
       g2(i) = %e^{(0.458*x1(i)^2)}; //activity
25
          coeffecient for component 2
       P(i) = (g1(i)*x1(i)*P1) + (g2(i)*x2(i)*P2); //
26
          total pressure (kPa)
27
       y1(i) = (g1(i)*x1(i)*P1)/P(i);
28 end
29 disp(P);
30 disp(y1);
31
32 //To construct P-x-y diagram
33 clf
34 plot(x1,P);
35 plot(y1,P);
36 xtitle("P-x-y Diagram", "x1 and y1", "Pressure");
37
38 //end
```

Scilab code Exa 8.17 To determine the composition and total pressure of azeotrope

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 8
//Phase Equilibria
//Example 17

clear all;
clc;

//Given:
P = 40.25; //total pressure (kPa)
y1 = 0.566; //mol fraction of benzene in vapour phase
```

```
14 x1 = 0.384; //mol fraction of benzene in liquid
      state
15 P1 = 29.6; //vapour pressure of benzene (kPa)
16 P2 = 22.9; //vapour pressure of ethanol (kPa)
17
18 //To determine the composition and total pressure of
       azeotrope
19 \times 2 = 1 - \times 1;
20 	 y2 = 1-y1;
21
22 // Using eq. 8.47 (Page no. 325)
23 // Activity coeffecients:
24 g1 = (y1*P)/(x1*P1);
25 	 g2 = (y2*P)/(x2*P2);
26
27 // Using eq. 8.69 (Page no. 348)
28 //van Laar constants:
29 A = \log(g1)*((1 + (x2*\log(g2))/(x1*\log(g1)))^2);
30 B = \log(g2)*((1 + (x1*\log(g1))/(x2*\log(g2)))^2);
31
32 //Assuming azeotropic comp. (for hit and trial
      method)
33 \times 1 = 0.4;
34 \text{ flag} = 1;
35 while (flag == 1)
36
       x2 = 1 - x1;
37
       ln_g1 = (A*x2^2)/(((A/B)*x1 + x2)^2);
       ln_g2 = (B*x1^2)/((x1 + (B/A)*x2)^2);
38
       g1 = %e^1n_g1;
39
40
       g2 = %e^1n_g2;
41
       P_1 = g1*P1;
42
       P_2 = g2*P2;
       if((P_1-P_2) \le 1) and ((P_1-P_2) \ge -1)
43
44
            flag = 0;
45
       else
46
            x1 = x1+0.1;
47
       end
48 end
```

```
49
50 mprintf('Azeotropic compositon of benzene is %i
        percent',x1*100);
51 mprintf('\n Total pressure of azeotrope is %f kPa',(
        P_1+P_2)/2);
52
53 //end
```

Scilab code Exa 8.18 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 18
5
6
7 clear all;
8 clc;
9
10
11 //Given:
12
13 //The given example is theoretical and does not involve any numerical computation
14
15 //end
```

Scilab code Exa 8.19 To calculate equilibrium pressure and composition

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 19
```

```
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 //Wilson constants:
13 a12 = 1225.31; //(J/mol)
14 a21 = 6051.01; //(J/mol)
15 V1 = 74.05*10^-6; //(m^3/mol)
16 V2 = 18.07*10^-6; //(m^3/mol)
17
18 R = 8.314; //ideal gas constant
19 T = 349; //temperature in K
20
21 //Antoine Equation:
22 //Vapour pressure of 1st element
23 function [y1] = P1(T)
       y1 = %e^{(14.39155-(2795.817/(T-43.198)))}
24
25 endfunction
26
27 //Vapour pressure of 2nd element
28 function [y2] = P2(T)
       y2 = %e^{(16.26205 - (3799.887/(T-46.854)))}
29
30 endfunction
31
32 //To calculate equilibrium pressure and composition
33 // Using eq. 8.73 (Page no. 350)
34 // Wilson Parameters:
35 W12 = (V2/V1)*\%e^{-a12/(R*T)};
36 \text{ W21} = (\text{V1/V2}) * \%e^{(-a21/(R*T))};
37
38 //Using Antoine equation
39 \text{ P1_s} = \text{P1(T)};
40 \text{ P2_s} = \text{P2(T)};
41
42 //(a). Composition of vapour in equilibrium
```

```
43 \times 1 = 0.43;
44 \times 2 = 1 - \times 1;
45
46 // \text{Using eq. } 8.72 \text{ (Page no. } 350)
47 // Wilson equations:
48 // Activity coeffecient of 1st component
49 function [y3] = g_1(n1,n2) //n1 is mol fraction of 1
       and n2 is for 2
       y3 = %e^{-\log(n1 + W12*n2)} + n2*((W12/(n1+W12*n2))
50
          ))-(W21/(W21*n1+n2))));
51 endfunction
52
53 // Activity coeffecint of 2nd component
54 \quad function \quad [y4] = g_2(n1,n2)
       y4 = %e^{-\log(n2 + W21*n1)} - n1*((W12/(n1+W12*n2))
55
          ))-(W21/(W21*n1+n2))));
56 endfunction
57
58 // Activity coeffecients:
59 g1 = g_1(x1,x2);
60 	 g2 = g_2(x1,x2);
61
62 P = (g1*x1*P1_s) + (g2*x2*P2_s);
63 y1 = (g1*x1*P1_s)/P;
64
65 mprintf('(a).');
66 mprintf('\n Equilibrium pressure is %f kPa',P);
67 mprintf('\n Composition of acetone vapour in
      equilibrium is %f',y1);
68
69
70 //(b). Composition of liquid in equilibrium
71 	 y1 = 0.8;
72 	 y2 = 1 - y1;
73 g1 = 1; g2 = 1; //assumed activity coeffecients
74 P_{as} = 1/((y1/(g1*P1_s)) + (y2/(g2*P2_s)));
75
76 // Hit and trial method:
```

```
77 \text{ flag} = 1;
78 while (flag == 1)
        x1 = (y1*P_as)/(g1*P1_s);
79
80
        x2 = 1-x1;
81
       g1 = g_1(x1, x2);
       g2 = g_2(x1, x2);
82
       P_{calc} = 1/((y1/(g1*P1_s)) + (y2/(g2*P2_s)));
83
        if((P_calc-P_as) \le 1) and ((P_calc-P_as) \ge -1)
84
            flag = 0;
85
86
        else
87
            P_{as} = P_{calc};
88
        end
89 end
90
91 mprintf('\n\n (b).');
92 mprintf('\n Equilibrium Pressure is %f kPa', P_calc);
93 mprintf('\n Composition of acetone in liquid in
      equilibrium is %f',x1);
94
95 / end
```

Scilab code Exa 8.20 To determine parameters in Wilsons equation

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 8
//Phase Equilibria
//Example 20

clear all;
clc;
//Given:
P = 101.3; //total pressure of system (kPa)
```

```
13 T = 337.5; //temperature in K
14 \times 1 = 0.842;
15
16 // Antoine constants
17 //For methanol(1)
18 \quad A1 = 16.12609;
19 B1 = 3394.286;
20 \text{ C1} = 43.2;
21
22 //For methyl ethyl ketone (2)
23 \quad A2 = 14.04357;
24 B2 = 2785.225;
25 C2 = 57.2;
26
27 //To determine parameters in Wilson's equation
28 P1_s = %e^{(A1-(B1/(T-C1)))};
29 P2_s = %e^(A2-(B2/(T-C2)));
30 \times 2 = 1 - \times 1;
31 g1 = P/P1_s;
32 \text{ g2} = P/P2_s;
33
34 //Using eq. 8.72 and rearranging:
35 function [y1] = Wils(n) //n is the Wilson's
      parameter W12
36
       y1 = (((g1*x2)/(1-(n*x1/(x1+n*x2))+(x1/x2)*log(
           g1*(x1+n*x2))))^(x2/x1))*(g1*(x1+n*x2));
37 endfunction
38
39 \text{ flag} = 1;
40 W12 = 0.5; //assumed value
41 while (flag==1)
42
       res = Wils(W12);
43
       if ((res-1) > = -0.09)
44
            flag = 0;
45
       else
46
            W12 = W12 + 0.087;
47
       end
48
```

```
49 end
50
51 //For 2nd Wilson parameter:
52 //Using eq. 8.72 and rearranging:
53 k = log(g1*(x1+W12*x2))/x2 - (W12/(x1+W12*x2));
54 W21 = (-k*x2)/(1+k*x1);
55
56 mprintf("wilson parameters are: %f, %f', W12, W21);
57
58 //end
```

Scilab code Exa 8.21 To alculate bubble and dew point and the composition

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 21
6
7 clear all;
8 clc;
9
10
11 // Given:
12 P = 101.3; //total pressure in kPa
13 T = [333 343 353 363]; //temperatures(K)
14 Pa = [81.97 133.29 186.61 266.58]; // Partial
     pressure of component A (kPa)
15 Pb = [49.32 73.31 106.63 166.61]; // Partial pressure
      of component B (kPa)
16 Pc = [39.32 62.65 93.30 133.29]; // Partial pressure
     of component C (kPa)
17 xa = 0.45; //mole fraction of methanol
18 xb = 0.3; //mole fraction of ethanol
```

```
19 xc = 1-xa-xb; //mole fraction of propanol
20
21 //To calculate bubble and dew point and the
      composition
22
23 //(a). To calculate bubble point and vapour
      composition
24 clf
25 plot2d(T, Pa);
26 plot2d(T,Pb,style=3);
27 plot2d(T,Pc,style=6);
28 xtitle(" ","Temperature","Vapour pressures");
29 legend("Pa","Pb","Pc");
30
31 // Using eq. 8.84 (Page no. 362)
32 //At bubble temperature, sum(yi) = sum((xi*Pi)/P) =
      1
33 \text{ for } i = 1:4
       sum_y(i) = (xa*Pa(i))/P + (xb*Pb(i))/P + (xc*Pc(i))/P
34
          i))/P;
35 end
36
37 Tb = interpln([sum_y';T],1); //obtaining temperature
       at which sum (yi) = 1
38
39 //Obtaining vapour pressures at bubble temperature
40 Pb1 = interpln([T;Pa],Tb);
41 Pb2 = interpln([T; Pb], Tb);
42 Pb3 = interpln([T;Pc],Tb);
43
44 // Calculating equilibrium vapour composition
45 \text{ ya} = (xa*Pb1*100)/P;
46 \text{ yb} = (xb*Pb2*100)/P;
47 \text{ yc} = (xc*Pb3*100)/P;
48
49 mprintf('(a).');
50 mprintf('\n The bubble temperature is %f K',Tb);
51 mprintf('\n The equilibrium vapour contains %f
```

```
methanol, %f ethanol and %f propanol', ya, yb, yc);
52
53 //(b). The dew point and liquid composition
54 //Vapour phase compositions at dew point
55 ya = 0.45; //methanol
56 yb = 0.30; //ethanol
57 \text{ yc} = 0.25; //\text{propanol}
58
59 //At dew point, sum(xi) = sum ((yi*P)/Pi) = 1
60 \text{ for } i = 1:4
       sum_x(i) = (ya*P)/Pa(i) + (yb*P)/Pb(i) + (yc*P)/
61
          Pc(i);
62 end
63
64 Td = interpln([sum_x';T],1); //obtaining temperature
       at which sum (xi) = 1
65
66 //Obtaining vapour pressures at dew temperature
67 Pd1 = interpln([T;Pa],Td);
68 Pd2 = interpln([T;Pb],Td);
69 Pd3 = interpln([T;Pc],Td);
70
71 // Calculating liquid composition
72 \text{ xa} = (ya*P*100)/Pd1;
73 \text{ xb} = (yb*P*100)/Pd2;
74 \text{ xc} = (yc*P*100)/Pd3;
75
76 mprintf('\n\n (c).');
77 mprintf('\n The dew point is \%f K',Td);
78 mprintf('\n At dew point liquid contains %f methanol
      , %f ethanol and %f propanol',xa,xb,xc);
79
80 // end
```

Scilab code Exa 8.22 To calculate bubble and dew point temperatures

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 22
7 clear all;
8 clc;
9
10
11 // Given:
12 // All Ki values are obtained from Fig. 13.6 Of
      Chemical Engineer's Handbook, 5th ed.
13 P = 1447.14; //pressure of the system (kPa)
14 x = [0.25 \ 0.4 \ 0.35]; //composition of the components
15 T = [355.4 \ 366.5]; //assumed temperatures (K)
16 K1 = [2.00 \ 0.78 \ 0.33]; //value of Ki at 355.4 \ K
17 K2 = [2.30 \ 0.90 \ 0.40]; //value of Ki at 366.5 \ K
18
19 //To calculate bubble and dew point temperatures
20 //(a). The bubble point temperature and composition
      of the vapour
21
22 //At bubble point temperature, sum(K*x) = 1
23 \text{ Kx} = [0 \ 0];
24 \text{ for i } = 1:3
       Kx(1) = Kx(1) + K1(i) *x(i);
25
26
       Kx(2) = Kx(2) + K2(i) *x(i);
27 end
28 Tb = interpln([Kx;T],1);
29
30 //At Tb K, from Fig. 13.6 of Chemical Engineer's
      Handbook
31 \text{ Kb} = [2.12 \ 0.85 \ 0.37]
32
33 // Calculation of vapour composition
```

```
34 \text{ y1} = \text{Kb}(1) * x(1) * 100;
35 \text{ y2} = \text{Kb}(2)*x(2)*100;
36 \text{ y3} = \text{Kb}(3) * x(3) * 100;
37
38 mprintf('(a).');
39 mprintf('\n The bubble point temperature is %f K',Tb
      );
40 mprintf('\n At bubble point vapour contains %f
       percent propane, %f percent butane and %f percent
        pentane', y1, y2, y3);
41
42 //(b). The dew point temperature and composition of
       the liquid
43 T = [377.6 \ 388.8]; //assumed temperatures (K)
44 \text{ y} = [0.25 \ 0.40 \ 0.35]; //vapour composition at dew
      point
45 K1 = [2.6 \ 1.1 \ 0.5]; //at \ 377.6 \ K
46 K2 = [2.9 \ 1.3 \ 0.61]; //at \ 388.8 \ K
47
48 / At \text{ dew point}, \text{ sum}(yi/Ki) = 1
49 \text{ Ky} = [0 \ 0];
50 \text{ for } i = 1:3
        Ky(1) = Ky(1) + y(i)/K1(i);
51
        Ky(2) = Ky(2) + y(i)/K2(i);
52
53 end
54 \text{ Td} = interpln([Ky;T],1);
55
56 //At Td K,
57 \text{ Kd} = [2.85 \ 1.25 \ 0.59];
58
59 // Calculation of liquid composition
60 	 x1 = y(1)*100/Kd(1);
61 	 x2 = y(2)*100/Kd(2);
62 \times 3 = y(3) * 100 / Kd(3);
63
64 mprintf('\n\n (b).');
65 mprintf('\n The dew point temperature is \%f K', Td);
66 mprintf('\n Liquid at dew point contains %f percent
```

```
propane, %f percent butane and %f percent pentane
       ', x1, x2, x3);
67
68 //(c). Temperature and composition when 45\% of
       initial mixture is vaporised
69 / Basis:
70 	ext{ F} = 100; 	ext{ V} = 45; 	ext{ L} = 55;
71
72 //For the given condition eq. 8.91 (Page no. 364) is
        to be satisfied
73 / \text{sum}(zi/(1+ L/(VKi))) = 0.45
74
75 z = [0.25 0.4 0.35];
76 \text{ T} = [366.5 \ 377.6]; //assumed temperatures
77 K1 = [2.3 \ 0.9 \ 0.4]; //at \ 366.5 \ K
78 K2 = [2.6 1.1 0.5]; //at 377.6 K
79
80 \text{ Kz} = [0 \ 0];
81 \text{ for } i = 1:3
        Kz(1) = Kz(1) + z(i)/(1 + L/(V*K1(i)));
82
        Kz(2) = Kz(2) + z(i)/(1 + L/(V*K2(i)));
83
84 end
85
86 //The required temperature is T3
87 T3 = interpln([Kz;T],0.45);
88
89 //At T3 K
90 \text{ K3} = [2.5 \ 1.08 \ 0.48];
91
92 // Calculating liquid and vapour compositions
93 for i = 1:3
        y(i) = (z(i)/(1 + L/(V*K3(i))))/0.45;
94
95
        x(i) = ((F*z(i)) - (V*y(i)))/L;
        disp(x(i));
96
97 end
98
99 mprintf('\n\n (c).');
100 mprintf('\n The equilibrium temperature is %f K',T3)
```

```
;
101 mprintf('\n Liquid composition in equilibrium is %f percent propane, %f percent butane and %f percent pentane',x(1)*100,x(2)*100,x(3)*100);
102 mprintf('\n Vapour composition in equilibrium is %f percent propane, %f percent butane and %f percent pentane',y(1)*100,y(2)*100,y(3)*100);
103
104 //end
```

Scilab code Exa 8.23 To test whether the given data are thermodynamically consistent or not

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 23
5
6
7 clear all;
8
   clc;
9
10
11 // Given:
12 P = 101.3; //total pressure (kPa)
13 \times 1 = [0.003 \ 0.449 \ 0.700 \ 0.900];
14 \text{ y1} = [0.432 \ 0.449 \ 0.520 \ 0.719];
15 P1 = [65.31 63.98 66.64 81.31]; //(kPa)
16 P2 = [68.64 68.64 69.31 72.24]; //(kPa)
17
18 //To test whether the given data are
      thermodynamically consistent or not
19 \times 2 = 1 - \times 1;
20 	 y2 = 1 - y1;
21 \quad for \quad i = 1:4
```

```
22
       g1(i) = (y1(i)*P)/(x1(i)*P1(i));
23
       g2(i) = (y2(i)*P)/(x2(i)*P2(i));
       c(i) = log(g1(i)/g2(i)); //k = ln (g1/g2)
24
25 end
26
27 clf
28 plot(x1,c)
29 a = get("current_axes");
30 set(a, "x_location", "origin");
31
32 //As seen from the graph net area is not zero
33 mprintf ('The given experimental data do not satisfy
      the Redlich-Kistern criterion');
34
35 / \text{end}
```

Scilab code Exa 8.24 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 24
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
  //The given example is theoretical and does not
13
      involve any numerical computation
14
15 // end
```

Scilab code Exa 8.25 To estimate the constants in Margules equation

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 25
6
7 clear all;
8 clc;
9
10
11 // Given:
12 \times 1 = [0.0331 \ 0.9652]; //composition of chloroform
13 P = [40.84 \ 84.88]; //total pressure for system (kPa)
14 P1 = 82.35; //vapour pressure of chloroform at 328 K
       (kPa)
15 P2 = 37.30; //vapour pressure of acetone at 328 K (
      kPa)
16
17 //To estimate the constants in Margules equation
18 / \text{Using eq. } 8.103 \text{ and } 8.104 \text{ (Page no. } 375)
19 g1_inf = (P(1)-(1-x1(1))*P2)/(x1(1)*P1);
20 g2_{inf} = (P(2)-(x1(2)*P1))/((1-x1(2))*P2);
21
22 // Margules equation:
23 / \ln_{-g} 1 = x2^2 * [A + 2*(B-A)*x1]
24 / \ln_{-g} 2 = x1^2 * [B + 2*(A-B)*x2]
\frac{1}{2} \frac{1}{A} = \ln_{g} 1_{inf} when x1 tends to 0, same for B
26
27 A = log(g1_inf);
28 B = log(g2_inf);
29
30 mprintf('Margules constants are:');
```

Scilab code Exa 8.26 To calculate the partial pressure of water in vapour phase

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 26
6
7 clear all;
8 clc;
9
10
11 // Given:
12 //At 333 K
13 \times 1 = [0 \ 0.033 \ 0.117 \ 0.318 \ 0.554 \ 0.736 \ 1.000]; //
      liquid composition of acetone
14 pp1 = [0 25.33 59.05 78.37 89.58 94.77 114.63]; //
      partial pressure of acetone (kPa)
  Pw = 19.91; //vapour pressure of water at 333 K (kPa
15
16
17
  //To calculate the partial pressure of water in
      vapour phase
18
  //Using eq. 8.100 (Page no. 372) [Gibbs-Duhem
19
      Equation and rearranging
20
21
  //dp2/p2 = -x1/(1-x1)*intg(dp1/p1)
22
```

```
23 //\ln p2/Pw = -x1/(1-x1)*intg(dp1/p1)
24 //Let k = x1/((1-x1)*p1)
25 \text{ for } i = 2:6
26
       k(i) = x1(i)/((1-x1(i))*pp1(i));
27 end
28 k(1) = 0; k(7) = 0.1; //k(7) should tend to infinity
29
30 clf
31 plot(pp1,k)
32
33 //From graph, area gives the integration and hence
      partiaal pressure of water is calculated
34 pp2 = [19.91 19.31 18.27 16.99 15.42 13.90 0];
35
36 mprintf("The results are:");
37 mprintf('\n Acetone composition
                                             Partial
      pressure of water');
38 \text{ for } i = 1:7
       mprintf('\n
                           \%f
                                                       %f',
39
          x1(i),pp2(i));
40 \, \text{end}
41
42 //end
```

Scilab code Exa 8.27 to calculate under three phase equilibrium

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 27
5
6
7 clear all;
8 clc;
```

```
10
11 // Given:
12 P = 93.30; //total pressure in kPa
13 T1 = 353; //(K)
14 T2 = 373; //(K)
15 Pa1 = 47.98; //Vapour pressure of water at 353 K (
     kPa)
16 Pb1 = 2.67; //Vapour pressure of liquid at 353 \text{ K} (
     kPa)
  Pa2 = 101.3; //Vapour pressure of water at 373 K (
     kPa)
18 Pb2 = 5.33; //Vapour pressure of liquid at 373 K (
     kPa)
19
20 //To calculate under three phase equilibrium:
21 / (a). The equilibrium temperature
22 P1 = Pa1+Pb1; //sum of vapour pressures at 353 K
23 P2 = Pa2+Pb2; //at 373 K
24
25 //Since vapour pressure vary linearly with
     temperature, so T at which P = 93.30 \text{ kPa}
26 T = T1 + ((T2-T1)/(P2-P1))*(P-P1);
27 mprintf('(a)). The equilibrium temperature is \%f K', T
     );
28
29 //(b). The composition of resulting vapour
30 //At equilibrium temp:
31 Pa = 88.5; //vapour pressure of water (kPa)
32 Pb = 4.80; //vapour pressure of liquid (kPa)
33
34 //At 3-phase equilibrium, ratio of mol fractions of
     components is same as the ratio of vapour
     pressures
35 P = Pa+Pb; //sum of vapour pressures
36 y = Pa/P; //mole fraction of water
37 mprintf('\n The vapour contains %f mol percent water
      vapour',y*100);
38
```

Scilab code Exa 8.28 To prepare temperature composition diagram

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 8
3 //Phase Equilibria
4 //Example 30
6
7 clear all;
8 clc;
9
10
11 // Given:
12 T = [323 333 343 348 353 363 373]; //\text{temperatures} (K
13 P2 = [12.40 \ 19.86 \ 31.06 \ 37.99 \ 47.32 \ 70.11 \ 101.3]; //
      vapour pressure for benzene (kPa)
14 P1 = [35.85 51.85 72.91 85.31 100.50 135.42 179.14];
       //vapour pressure for water (kPa)
15 Tb = 353.1; // boiling temperature (K)
16 Pb = 101.3; // boiling pressure (kPa)
17
18 //To prepare temperature composition diagram
19
20 //To find three phase temperature
21 clf
22 \text{ for } i = 1:7
       P(i) = P1(i) + P2(i);
23
24 end
25 plot(P,T);
\frac{26}{\text{From graph}}, at P = 101.3 \text{ kPa.}.
27 T_{-} = 340; //three phase temperature
28
```

```
29 //At three phase temperature
30 P1_ = 71.18; //(kPa)
31 P2_{-} = 30.12; //(kPa)
32 xb_ = P1_/Pb; //mol fraction of benzene at triple
      point
33
34 //For the dew point curve
35 //For curve BE in temp range from 342 to 373 K
36 \text{ for } i = 3:7
37
       y1(i) = 1-(P2(i)/Pb);
38 end
39
40 clf
41 xset('window',1);
42 \text{ T1}(1) = 342; y1_(1) = 0.7;
43 for i= 2:6
       T1(i) = T(i+1);
44
       y1_{(i)} = y1(i+1);
45
46 end
47 plot(y1_,T1);
48
49 //For the curve Ae in the temp range of 342 K to
      353.1 K
50 \text{ for i} = 3:5
51
       y2(i) = P1(i)/Pb;
52 end
53
54 T2(1) = 342; y2_(1) = 0.7;
55 \text{ for } i = 2:4
       T2(i) = T(i+1);
56
57
       y2_{(i)} = y2(i+1);
58 end
59 plot(y2_,T2);
60 xrect(0,342,1,342);
61 xtitle ("Temperature Composition diagram", "xa, ya", "
      Temperature");
62
63 //end
```

Chapter 9

Chemical Reaction Equilibria

Scilab code Exa 9.1 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 9
//Chemical Reaction Equilibria
//Example 1

clear all;
clc;
//Given:
//Given:
//The given example is theoretical and does not involve any numerical computation
//end
```

Scilab code Exa 9.2 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 2
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13
  //The given example is theoretical and does not
      involve any numerical computation
14
15 // end
```

Scilab code Exa 9.3 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 3
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12
13 //The given example is theoretical and does not
     involve any numerical computation
14
15 // end
```

Scilab code Exa 9.4 Theoretical problem

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 4
6
7 clear all;
8 clc;
9
10
  //Given:
11
12
  //The given example is theoretical and does not
      involve any numerical computation
14
15 // end
```

Scilab code Exa 9.5 Theoretical problem

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 9
//Chemical Reaction Equilibria
//Example 5

clear all;
clc;
```

```
11 //Given:
12
13 //The given example is theoretical and does not
        involve any numerical computation
14
15 //end
```

Scilab code Exa 9.6 To calculate equilibrium constant

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 6
5
7 clear all;
8 clc;
9
10
11 // Given:
12 Go_reac = 97540; //standard free energy of formation
       of reactant (J/mol)
13 Go_pdt = 51310; //standard free energy of formation
      of product (J/mol)
14 R = 8.314; //ideal gas constant
15 T = 298; //temperature (K)
16 // Reaction: N2O4(g) --> 2NO2(g)
17
18 //To calculate equilibrium constant
19 // \text{Using eq. } 9.50 \text{ (Page no.413)}
20 \text{ Go} = 2*\text{Go_pdt} - \text{Go_reac};
21
22 // Using eq. 9.31 (Page no. 406)
23 K = %e^{-Go/(R*T)};
24 mprintf('The equilbrium constant %f',K);
```

```
25
26 //end
```

Scilab code Exa 9.7 To calculate equilibrium constant at 500 K

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 6
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 T1 = 298; //temperature in K
13 Hf = -46100; //standard heat of formation (J/mol)
14 Go = -16500; //standard free energy change (J/mol)
15 R = 8.314; //ideal gas constant
16 T = 500;
17 / \text{Reaction}: N2(g) + 3H2(g) \longrightarrow 2NH3(g)
18
19 //To calculate the equilibrium constant at 500~\mathrm{K}
20 // Using eq. 9.50 (Page no. 413)
21 \text{ del_Go} = 2*Go;
22
23 / \text{Using eq. } 9.31 \text{ (Page no. } 406)
24 K1 = e^{-del_Go/(R*T1)}; /equilibrium const at 298
       K
  Ho = 2*Hf; //standard heat of reaction
25
26
27 / \text{Using eq. } 9.37 \text{ (Page no. } 411)
28 K = K1*(%e^((-Ho/R)*(1/T - 1/T1)));
29 mprintf ('The equilibrium constant at 500 K is %f', K)
```

Scilab code Exa 9.8 To alculate standard free energy change and heat of formation

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 8
6
7 clear all;
8 clc;
9
10
11 // Given:
12 R = 8.314; //ideal gas constant
13 T2 = 317; //temperature in K
14 T1 = 391; //(K)
15 x2 = 0.31; //mol fraction of n-butane at 317 K
16 x1 = 0.43; //mol fraction of iso-butane at 391 K
17
  //To calculate standard free energy change and heat
18
      of reaction
19 //At 317 K
20 K2 = (1-x2)/x2; //equilibrium constant at 317 K
21 K1 = (1-x1)/x1; //equilibrium constant at 391 K
22
23 // Using eq. 9.31 (Page no. 406)
24 //Standard free energy change
25 G2 = -R*T2*log(K2); //at 317 K (J/mol)
26 G1 = -R*T1*log(K1); //at 391 K (J/mol)
27
```

```
28  //Using eq. 9.37 (Page no. 411)
29  Ho = -log(K2/K1)*R/(1/T2 - 1/T1);
30
31  mprintf('Standard free energy change of the reaction ');
32  mprintf('\n At 317 K is %f J/mol',G2);
33  mprintf('\n At 391 K is %f J/mol',G1);
34  mprintf('\n Average value of heat of reaction is %f J/mol',Ho);
35  //end
```

Scilab code Exa 9.9 To estimate free energy change and equilibrium constant at 700 K

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 9
5
7 clear all;
8 clc;
9
10
11 // Given:
12 // Reaction: N2(g) + 3H2(g) \longrightarrow 2NH3(g)
13 To = 298; //temperature in K
14 T = 700; //(K)
15 R = 8.314; //ideal gas constant
16 Hf = -46100; //standard heat of formation (J/mol)
17 Gf = -16500; //standard free energy of formtion of
      ammonia (J/mol)
18
19 // Specific heat data
```

```
20 / \text{Cp} = 27.27 + 4.93*10^{-3}\text{T} \text{ (for N2)}
21 / \text{Cp} = 27.01 + 3.51*10^{-3}\text{T} \text{ (for H2)}
22 / \text{Cp} = 29.75 + 25.11*10^{-3}\text{T} \text{ (for NH3)}
23
24 //To estimate free energy change and equilirium
       constant at 700 K
25 \text{ Ho} = 2*\text{Hf};
26 \text{ Go} = 2*\text{Gf};
27 \text{ alpha} = 2*29.75 - 27.27 - 3*27.01;
28 betta = (2*25.11 - 4.93 - 3*3.51)*10^-3;
29
30 // Using eq. 9.46 (Page no. 412)
31 \text{ del}_H = \text{Ho} - \text{alpha*To} - (\text{betta/2})*\text{To}^2;
32 // \text{Using eq. } 9.48 \text{ (Page no. } 413)
33 A = -(Go - del_H + alpha*To*log(To) + (betta/2)*To
       ^2)/(R*To);
34
35 / \text{Using eq. } 9.47 \text{ and } 9.48 \text{ (Page no. } 412)
36 K = %e^{(-del_H/(R*T))} + (alpha/R)*log(T) + (betta)
       /(2*R))*T + A);
37 G = del_H - alpha*T*log(T) -(betta/2)*T^2 - A*R*T;
38
39 mprintf('At 700 K');
40 mprintf('\n Equilibrium constant is \%3.2e', K);
41 mprintf('\n Standard free energy change is %f J/mol'
       ,G);
42
43 //end
```

Scilab code Exa 9.10 to calculate equilibrium constant at 600 K

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 //Chemical Reaction Equilibria
4 //Example 10
```

```
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 // Reaction : CO(g) + 2H2(g) \longrightarrow CH3OH(g)
13 T = 600; //temperature in K
14 R = 8.314; //ideal gas constant
15
16 //Gibbs free energy at 600 K (J/mol K)
17 Gc = -203.81; // for CO
18 Gh = -136.39; //for hydrogen
19 Gm = -249.83; //for methanol
20
21 //Heats of formation at 298 K (J/mol)
22 Hc = -110500; //for CO
23 Hm = -200700; //for methanol
24
25 //To calculate equilibrium constant at 600 K
26 Go = T*((Gm-Gc-(2*Gh)) + (1/T)*(Hm-Hc));
27 // \text{Using eq. } 9.31 \text{ (Page no. } 406)
28 K = %e^{(-Go/(R*T))};
29 mprintf('Equilibrium constant is %4.3e',K);
30
31 // end
```

Scilab code Exa 9.11 To calculate equilibrium constant at 500K

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 //Chemical Reaction Equilibria
4 //Example 11
```

```
7 clear all;
8 clc;
9
10
11 // Given:
12 // Reaction: N2(g) + 3H2(g) \longrightarrow 2NH3(g)
13 T = 500; //temperature in K
14 R = 8.314; //ideal gas constant
15
16 //Free energy at 500 K (J/mol K)
17 Fn = -177.5; // for nitrogen
18 Fh = -116.9; //for hydrogen
19 Fa = -176.9; //for ammonia
20
21 //The function (Ho at 298 K - Ho at 0 K) [J/mol]
22 Hn = 8669; //for nitrogen
23 Hh = 8468; // for hydrogen
24 Ha = 9920; // for methanol
25
26 // Free energy of formation at 298 K (J/mol)
27 Hf = -46100;
28
29 //To calculate equilibrium constant at 500 K
30 // \text{Using eq. } 9.53 \text{ (Page no. } 414)
31 \text{ sum}_F = (2*Fa - Fn - 3*Fh) - (2*Ha - Hn - 3*Hh)/T;
      //(J/mol K)
32 // Using eq. 9.57 (Page no.415)
33 Go = T*(sum_F + 2*Hf/T);
34 \text{ K} = \%e^{-Go/(R*T)};
35
36 mprintf('Equilibrium constant is %f',K);
37
38 //end
```

Scilab code Exa 9.12 To find the value of n

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 12
7 clear all;
8 clc;
9
10
11 // Given:
12 //M polymerises to Mn, n>1
13 P1 = 1; //pressure (bar)
14 P2 = 2; //(bar)
15 x1 = 0.15; //mol fraction of polymer at 1 bar
16 x2 = 0.367; //mol fraction of polymer at 2 bar
17
18 //To find the value of n
19
20 //(a)
21 //The given subpart is theoretical and does not
      involve any numerical computation
22
23 //(b)
24 / K1 = x1/(1-x1)^n = K*P1^n-1
25 / K2 = x2/(1-x2)^n = K*P2^n-1
26 // Dividing the above equations and taking log on
      both sides
  //(n-1)\log 2 = \log(x2/x1) + n\log(1-x1/1-x2)
27
28
29 n = round((\log(x2/x1) + \log(2))/(\log(2) - \log((1-x1))/(1-x)
     x2))));
30 mprintf('The value of n is %i',n);
31
32 //end
```

Scilab code Exa 9.13 To determine the percent conversion

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 13
6
7 clear all;
8 clc;
9
10
11 // Given:
12 / \text{Reaction}: N2 + 3H2 \longrightarrow 2NH3
13 K = 2*10^-4; //equilibrium constant of reaction
14
15 //To determine the percent conversion:
16
17 // Basis:
18 //1 mole nitrogen and 3 moles of hydrogen in the
      reactant mixture
19 //Let e be the extent of reaction
20 // Using eq. 9.3 (Page no. 400)
21 //mol fraction of nitrogen is (1-e)/(4-2e)
\frac{22}{mol} fraction of hydrogen is \frac{3-3e}{4-2e}
23 //mol fraction of ammonia is 2e/(4-2e)
24 //so, ([2e/(4-2e)]^2)/[(1-e)/(4-2e)][3(1-e)/(4-2e)
      ]^3 = K*P^2
25
26 //(a)
27 P = 20; //(bar)
28 / (e(4-2e)/(1-e)^2 = 0.73485
29 e = poly(0, 'e');
30 \text{ f} = 2.73845 * e^2 - 5.4697 * e + 0.73485;
```

Scilab code Exa 9.14 To calculate fractional dissociation of steam

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 14
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 //Reaction: CO(g) + H2O(g) --> CO2(g) + H2(g)
13 K = 1; //equilibrium constant for reaction
14
15 // Mole fraction of components:
16 //CO: (1-e)/2
17 / H2O: (1-e)/2
```

```
18 //CO2 : e/2
19 / H2: e/2
20
21 //To calculate fractional dissociation of steam
22
23 //(a).
24 / (e/2) (e/2) / [(1-e)/2] [(1-e)/2] = K
25 //Solving we get:
26 e = 1/2;
27 mprintf('(a) Fractional dissociation of steam is %i
      percent', e*100);
28
29 //(b). If reactant stream is diluted with 2 mol
      nitrogen
30 //Mole fraction of components
31 //CO: (1-e)/4
32 / H20: (1-e)/4
33 //\text{CO2}: e/4
34 / H2 : e/4
35
36 // so , K = (e/4)(e/4)/[(1-e)/4][(1-e)/4]
37 //On solving we get
38 e = 1/2;
39 mprintf('\n\n (b) After dilution fractional
      distillation of steam is %i percent', e*100);
40
41 // end
```

Scilab code Exa 9.15 To determine conversion of nitrogen affected by argon

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 //Chemical Reaction Equilibria
4 //Example 15
```

```
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 // Reaction: N2 + 3H2 \longrightarrow 2NH3
13 K = 2*10^-4; //equilibrium constant of reaction
14 P = 20; //pressure in bar
15
  //To determine conversion of nitrogen affected by
      argon
17
18 // Mole fraction of components
19 // Nitrogen: (1-e)/(6-2e)
20 //Hydrogen: 3(1-e)/(6-2e)
21 //Ammonia: 2e/(6-2e)
22
23 //[2e/(6-2e)]^2/[(1-e)/(6-2e)][3(1-e)/(6-2e)]^3 = K*
  //e(3-e)/(1-e)^2 = 0.3674
24
25
26 e = poly(0, 'e');
27 f = 1.3674*e^2 - 3.7348*e + 0.3674;
28 x = roots(f);
29 mprintf('Percentage coversion in presence of argon
      is \%f percent', x(2)*100);
30 mprintf('\n while in absence of argon is 14.48
      percent'); //From example 9.13
31
32 //end
```

Scilab code Exa 9.16 To calculate the fractional dissociation of steam

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 16
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 //Reaction: CO(g) + H2O(g) --> CO2(g) + H2(g)
13 P = 1; //pressure in bar
14 K = 1; //equilibrium constant of reaction
15
16 //To calculate the fractional dissociation of steam
17 //Basis: 1 mole water vapour present in reactant
      stream
18 //Let e be the extent of reaction
19
20 //(a). CO supplied is 100\% in excess of the
      stoichiometric requirement
21 // Mole fraction of components:
22 //\text{CO}: (2-e)/3
23 / H20: (1-e)/3
24 //CO2 : e/3
25 / H2 : e/3
26
27 //e^2/\{(1-e)(2-e)\} = K = 1, so
28 / 3e - 2 = 0;
29 e = 2/3;
30 mprintf('(a). The conversion of steam is %f percent'
      ,e*100);
31
32 //(b). CO supplied is only 50\% of the theoretical
      requirement
33 // Mole fraction of components
34 //CO: (0.5 - e) / 1.5
```

Scilab code Exa 9.17 To calculate the fractional distillation of steam

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 17
6
7 clear all;
  clc;
9
10
11 // Given:
12 //Reaction: CO(g) + H2O(g) --> CO2(g) + H2(g)
13 // Mixture contains 1 mol CO, 1 mol H20 and 1 mol CO2
       initially
14 K = 1; //equilibrium constant of reaction
15
16 //To calculate the fractional distillation of steam
17
18 //Mole fraction of components at equilibrium
19 //\text{CO}: (1-e)/3
20 / H2O: (1-e)/3
```

```
21 //CO2: (1+e)/3
22 //H2: e/3
23
24 //[e(1+e)]/[(1-e)^2] = K = 1
25 //3e-1 = 0
26 e = 1/3;
27 mprintf('Percentage conversion of steam is %f percent',e*100);
28
29 //end
```

Scilab code Exa 9.18 To evaluate the percent conversion of CO

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 18
5
6
7 clear all;
  clc;
9
10
11 // Given:
12 / \text{Reaction} : CO(g) + 2H2(g) \longrightarrow CH3OH(g)
13 Kf = 4.9*10^-5;
14 \text{ Kfi} = 0.35;
15 P = 300; //pressure in bar
16
17 //To evaluate the percent conversion of CO
18 //Basis: 100 moles of initial gas mixture
19 n_C0 = 25;
20 \text{ n}_{H2} = 55;
21 \text{ n_inert} = 20;
22 v = -1-2+1; //change in number of moles in reaction
```

```
23
24 // Mole fractions in the equilibrium mixture
25 /CO = (25 - e) / (100 - 2e)
26 / H2 = (55-2e)/(100-2e)
27 / CH3OH = e/(100-2e)
28
29 Ky = (Kf/Kfi)*P^{(-v)};
30 //[e/(100-2e)]/[(25-e)/(100-2e)][(55-2e)/(100-2e)]^2
      = Ky, so
31
32 e = poly(0, 'e');
33 f = (4+4*Ky)*e^3 - (400+320*Ky)*e^2 + (10000+8525*Ky)
     )*e - 75625*Ky
34 x = roots(f);
35
36 conv = x(3)/n_C0; // first two roots are complex
37 mprintf ('Percentage conversion of CO is %f percent',
      conv*100);
38
39 //end
```

Scilab code Exa 9.19 To determine the composition of gases leaving the reactor

```
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 9
//Chemical Reaction Equilibria
//Example 19

clear all;
clc;
//Given:
```

```
12 / \text{Reaction}: 1/2\text{N2} + 3/2\text{H2} \longrightarrow \text{NH3}
13 Kp = 1.25*10^-2; //equilibrium constant
14 P = 50; //pressure in bar
15 v = 1 - (3/2) - (1/2); //change in number of moles in
      reaction
16
17 //Initial composition of gas mixture
18 \, n_h = 60;
19 \, n_n = 20;
20 \text{ n_inert} = 100-\text{n_h-n_n};
21
22 //To determine the composition of gases leaving the
      reactor
23 //Mole fractions in the equilibrium mixture
24 / N2: [20 - (e/2)]/(100 - e)
25 //H2: [60 - (3e/2)]/(100 - e)
26 //NH3: e/(100-e)
27
28 Ky = Kp*(P^-v);
29 //e/(100-e)/[(20-(e/2)]^1/2[\{60-(3e/2)\}/(100-e)]^3/2
       = Ky
30
31 e = poly(0, 'e');
32 f = (1.6875*Ky^2-1)*e^4 - (270*Ky^2+200)*e^3 +
      (16200*Ky^2-10000)*e^2 - (334800*Ky^2)*e +
      4320000*Ky^2;
33 \times = roots(f);
34 e = x(4);
35
36 //x(4) being the only positive root is the
      percentage conversion
37 //Mole fractions in equilibrium mixture
38 x_n = (20-(e/2))/(100-e);
39 x_h = (60-3*(e/2))/(100-e);
40 \text{ x_a} = e/(100-e);
41 x_{inert} = 1 - x_{n} - x_{h} - x_{a};
42
43 mprintf('Composition of gas leaving the reactor is')
```

```
;
44 mprintf('\n Nitrogen : %f percent',x_n*100);
45 mprintf('\n Hydrogen : %f percent',x_h*100);
46 mprintf('\n Ammonia : %f percent',x_a*100);
47 mprintf('\n Inert gas : %f percent',x_inert*100);
48
49 //end
```

Scilab code Exa 9.20 To evaluate the equilibrium constant

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 20
6
7 clear all;
8 clc;
9
10
11 // Given:
12 / \text{Reaction}: C2H4(g) + H2O(l) \longrightarrow C2H5OH(aq)
13 P = 85; //pressure in bar
14 n_e = 0.015; //mol percent of ethanol
15 n_w = 0.95; //mole percent of water
16 n_a = 0.48; //mol percent of ethylene in vapour
      phase
17 M = 18; //molecular mass of water
18 fc = 0.9; //fugacity coeffecient for ethylene
19
20 //To evaluate the equilibrium constant
21 / K = a_c / (a_a * a_b)
22
23 m_e = n_e/(n_w*M*10^-3); //mol/kg water
24 \text{ a_c} = \text{m_e};
```

```
25 fa = fc*n_a*P; //bar
26 a_a = fa;
27
28 //Since mol fraction of water is close to unity, so
        fugacity coeffecient of water is assumed to be 1
29 a_b = n_w;
30 K = a_c/(a_a*a_b);
31 mprintf('The equilibrium constant is %5.4e (mol C2H4
        )/(kg water bar)',K);
32
33 //end
```

Scilab code Exa 9.21 To calculate the decomposition pressure and temperature at 1 bar

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 21
5
7 clear all;
8 clc;
9
10
11 // Given:
12 / \text{Reaction}: \text{CaCO3}(s) \longrightarrow \text{CaO}(s) + \text{CO2}(g)
13 T = 1000; //temperature of reaction in K
14 P = 1; //pressure in bar
15 R = 8.314; //ideal gas constant
16
17 //Function for standard free energy of the reaction
18 function [y] = G(T)
19
       y = 1.8856*10^5 - 243.42*T + 11.8478*T*log(T) -
           3.1045*10^{-}3*T^{2} + 1.7271*10^{-}6*T^{3} -
```

```
(4.1784*10^5)/T
20 endfunction
21
22
  //To calculate the decomposition pressure and
      temperaure at 1 bar
23 \text{ Go = G(T)};
24 K = %e^{-Go/(R*T)};
25 // Using eq. 9.75 (Page no. 432)
26 p_CO2 = K; //decomposition pressure
27 mprintf('Decomposition pressure of limestone at 1000
       K s \%f bar',p_CO2);
28
\frac{29}{At} pressure = 1 bar
30 \text{ K} = 1;
31 Go = 0; // since K = 1
32
33 T = 1160; //assumed temperature (K)
34 \text{ flag} = 1;
35 while(flag==1)
36
       res = round(G(T));
37
       if (res <= 0)
            flag = 0;
38
39
       else
            T = T+1;
40
41
       end
42 \text{ end}
43 mprintf('\nDecomposition temperature at 1 bar is %i
      K',T);
44
45 //end
```

Scilab code Exa 9.22 To evaluate wt of iron produced per 100 cubic m of gas admitted

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 22
5
6
7 clear all;
8 clc;
9
10
11 // Given:
12 //Reaction: FeO(s) + CO(g) \longrightarrow Fe(s) + CO2(g)
13 K = 0.403; //equilibrium constant of reaction
14 T = 1200; //temperature of reaction (K)
15 To = 273; //standard temperature (K)
16 Vo = 22.4*10^{-3}; //molar volume at STP
17 M = 55.8; //molecular mass of iron
18
19 //To calculate wt of iron produced per 100 m<sup>3</sup> of
      gas admitted
20 //Basis: 100 mol of gas entering
21 n = 100; // moles of gas entering
22 \text{ n_C} = 20; //\text{moles of carbon mono oxide}
23 n_N = 80; //moles of nitrogen
24
25 //Let e be the extent of reaction
26 //Mole fractions in equilibrium mixture
27 / CO = (20 - e) / 100
28 //CO2 = e/100
29 / (e/(20 - e)) = K
30 e = (20*K)/(1+K);
31 n_{CO2} = e; //moles of CO2 at equilibrium
32 \text{ n_Fe} = \text{n_CO2}; //\text{by stoichiometry}
33 V = (n*Vo*T)/To; //volume of 100 mol of gas at 1200
     K and 1 bar
34
35 //Let m be iron produced per 100 m^3 gas
36 \text{ m} = (n_Fe*100*M)/V;
```

```
37 mprintf('Iron produced per 100 cubic m of gas is %f
     kg',m/1000);
38
39 //end
```

Scilab code Exa 9.23 To calculate the composition at equilibrium assuming ideal behaviour

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 23
6
7 clear all;
8 clc;
9
10
11 // Given:
12 P = 1; //pressure in bar
13 K1 = 0.574; //equilibrium constant for eq. 9.88 (
      Page no. 437)
14 K2 = 2.21; //equilibrium constant for eq. 9.89 (Page
       no. 437)
15
16 //To calculate the composition at equilibrium
      assuming ideal behaviour
17 //Let e1 and e2 be the extent of first and second
      reactions
18
19 \text{ v1} = 1+3-1-1;
20 \quad v2 = 1+1-1-1;
21 \text{ Ky1} = \text{K1*P}^-\text{-v1};
22 \text{ Ky2} = \text{K2*P}^-\text{-v2};
23
```

```
24 //mole fractions in equilibrium mixture are:
25 / CH4: (1-e1)/(6+2e1)
26 / \text{H2O}: (5-e1-e2)/(6+2e1)
27 / CO: (e1-e2)/(6+2e1)
28 / H2: (3e1+e2)/(6+2e1)
29 / (CO2: e2/(6+2e1))
30
31 //For 1st reaction:
32 / \text{Ky1} = [(e1-e2)(3e1+e2)^3]/[(1-e1)(5-e1-e2)(6+2e1)]
      ^2]
33 //For 2nd reaction:
34 / \text{Ky2} = [e2(3e1+e2)]/[(e1-e2)(5-e1-e2)]
35 //on solving, we get:
36 deff('[y] = f2(e)', ['f_1 = [(e(1)-e(2))*(3*e(1)+e(2))]
      )^3]/[(1-e(1))*(5-e(1)-e(2))*(6+2*e(1))^2]-Kv1',
      f_2 = [e(2) * (3 * e(1) + e(2))] / [(e(1) - e(2)) * (5 - e(1) - e(2))]
      (2)) - Ky2', 'y = [f_1; f_2]']
37 eo = [0.9 \ 0.6]; //initial guesses
38 [e,fes,m] = fsolve(eo',f2);
39
40 // Mole fraction of components:
41 n_m = (1-e(1))/(6+2*e(1));
42 \quad n_w = (5-e(1)-e(2))/(6+2*e(1));
43 \text{ n_CO} = (e(1)-e(2))/(6+2*e(1));
44 \text{ n_h} = (3*e(1)+e(2))/(6+2*e(1));
45 \text{ n_c} = e(2)/(6+2*e(1));
46
47 mprintf('Mole fraction of the components are:');
48 mprintf('\n Methane = \%f',n_m);
49 mprintf('\n Water = \%f',n_w);
50 mprintf('\n Carbon monoxide = \%f', n_CO);
51 mprintf('\n Hydrogen = \%f', n_h);
52 mprintf('\n Carbon dioxide = \%f',n_c);
53
54 // end
```

Scilab code Exa 9.24 To determine the number of degrees of freedom

```
1 //A Textbook of Chemical Engineering Thermodynamics
2 //Chapter 9
3 // Chemical Reaction Equilibria
4 //Example 24
6
7 clear all;
8
   clc;
9
10
11 // Given:
12 //A system consisting of CO, CO2, H2, H2O, CH4
13
14 //To determine the number of degrees of freedom
15
16 //Formation reactions for each of compounds is
      written
17 / a. C + 1/2O2 \longrightarrow CO
18 / b \cdot C + O2 \longrightarrow CO2
19 / c \cdot H2 + 1/2O2 \longrightarrow H2O
20 / d. C + 2H2 \longrightarrow CH4
21
22 //Elements C and O2 are not present, so they are to
      be eliminated
  //Combining a and b
24 / e \cdot CO2 \longrightarrow CO + 1/2O2
25
26 //Combining a and d
27 / f. CH4 + 1/2O2 ---> CO + 2H2
28
29 //Combining c and e
30 //g \cdot CO2 + H2 \longrightarrow CO + H2O
```

```
31
32  //Combining c and f
33  //h. 3H2 + CO --> CH4 + H2O
34
35  //Equations g and h represent independent chemical
    reactions, so
36  r = 2;
37  C = 5;  //no. of components
38  pi = 1;  //no. of phases
39
40  //From eq. 9.90 (Page no. 438)
41  F = C-pi-r+2;
42  mprintf('The number of degrees of freedom are %i',F)
    ;
43
44  //end
```