Scilab Textbook Companion for Digital Signal Processing: A Modern Introduction by A. Ashok¹

Created by Edulakante Nagarjun Reddy B.Tech (pursing) Electronics Engineering NIT Surat(SVNIT) College Teacher Jigisha Patel Cross-Checked by K. Suryanarayan, IITB

August 11, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Digital Signal Processing: A Modern Introduction
Author: A. Ashok
Publisher: Cenage Learning India Private Limited
Edition: 5
Year: 2010
ISBN: 81-315-0179-5

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
2	Discrete Signals	11
3	Response of Digital Filters	22
4	z Transform Analysis	44
5	Frequency Domain Analysis	50
6	Filter Concepts	74
7	Digital Processing of Analog Signals	86
8	The Discrete Fourier Transform and its Applications	98
9	Design of IIR Filters	120
10	Design of FIR filters	140

List of Scilab Codes

Exa 2.1a	Signal energy and power	11
Exa 2.1b	Average power of periodic signals	11
Exa 2.1c	Average power of periodic signals	12
Exa 2.2	Operations on Discrete Signals	12
Exa 2.3a	Even and Odd parts of Discrete signals	14
Exa 2.3b	Even and Odd parts of Discrete signals	15
Exa 2.4a	Decimation and Interpolation of Discrete signals	16
Exa 2.4b	Decimation and Interpolation of Discrete signals	18
Exa 2.4c	Decimation and Interpolation of Discrete signals	18
Exa 2.4d	Decimation and Interpolation of Discrete signals	19
Exa 2.5	Describing Sequences and signals	19
Exa 2.6	Discrete time Harmonics and Periodicity	19
Exa 2.7	Aliasing and its effects	20
Exa 2.8	Signal Reconstruction	21
Exa 3.5	FIR filter response	22
Exa $3.19a$	Analytical Evaluation of Discrete Convolution	22
Exa $3.19\mathrm{b}$	Analytical Evaluation of Discrete Convolution	24
Exa 3.19c	Analytical Evaluation of Discrete Convolution	25
Exa $3.20a$	Properties of Convolution	27
Exa $3.20\mathrm{b}$	Properties of Convolution	28
Exa $3.21a$	Convolution of finite length Signals	29
Exa $3.21\mathrm{b}$	Convolution of finite length Signals	30
Exa 3.21c	Convolution of finite length Signals	31
Exa 3.22	Convolution of finite length Signals	33
Exa 3.23	effect of Zero Insertion, Zero Padding on convol	35
Exa 3.25	Stability and Causality	37
Exa 3.26	Response to Periodic Inputs	38
Exa 3.27	Periodic Extension	39

Exa 3.28	System Response to Periodic Inputs
Exa 3.29	Periodic Convolution
Exa 3.30	Periodic Convolution by Circulant Matrix 40
Exa 3.32	Deconvolution By polynomial Division
Exa 3.33	Autocorrelation and Cross Correlation
Exa 3.35	Periodic Autocorrelation and Cross Correlation 42
Exa 4.1b	z transform of finite length sequences
Exa 4.4a	Pole Zero Plots 44
Exa 4.4b	Pole Zero plots
Exa 4.8	Stability of Recursive Filters
Exa 4.9	Inverse Systems
Exa 4.10	Inverse Transform of sequences
Exa 4.11	Inverse Transform by Long Division
Exa 4.12	Inverse transform of Right sided sequences
Exa 4.20	z Transform of Switched periodic Signals
Exa 5.1c	DTFT from Defining Relation
Exa $5.3a$	Some DTFT pairs using properties
Exa 5.3b	Some DTFT pairs using properties
Exa 5.3d	Some DTFT pairs using properties
Exa 5.3e	Some DTFT pairs using properties 60
Exa 5.4	DTFT of periodic Signals
Exa 5.5	The DFT, DFS and DTFT
Exa 5.7	Frequency Response of Recursive Filter 65
Exa $5.8a$	The DTFT in System Analysis
Exa 5.8b	The DTFT in System Analysis
Exa 5.9a	DTFT and steady state response
Exa 5.9b	DTFT and steady state response
Exa $5.10a$	System Representation in various forms 71
Exa $5.10\mathrm{b}$	System Representation in various forms
$Exa \ 6.1$	The Minimum Phase Concept
$Exa \ 6.4$	Linear Phase Filters
Exa 6.6	Frequency Response and Filter characteristics 76
Exa 6.7a	Filters and Pole Zero Plots
Exa 6.7b	Filters and Pole Zero Plots
Exa 6.8	Digital resonator Design
Exa 6.9	Periodic Notch Filter Design
Exa 7.3	Sampling oscilloscope
Exa 7.4	Sampling of Band pass signals

Exa 7.6	Signal Reconstruction from Samples	88
Exa 7.7	Zero Interpolation and Spectrum Replication	89
Exa 7.8	Up Sampling and Filtering	90
Exa 7.9	Quantisation Effects	94
Exa 7.10	ADC considerations	94
Exa 7.11	Anti Aliasing Filter Considerations	95
Exa 7.12	Anti Imaging Filter Considerations	96
Exa 8.1	DFT from Defining Relation	98
Exa 8.2	The DFT and conjugate Symmetry	98
Exa 8.3	Circular Shift and Flipping	99
Exa 8.4	Properties of DFT	99
Exa 8.5a	Properties of DFT	100
Exa 8.5b	Properties of DFT	101
Exa 8.5c	Properties of DFT	103
Exa 8.6	Signal and Spectrum Replication	103
Exa 8.7	Relating DFT and DTFT	104
Exa 8.8	Relating DFT and DTFT	104
Exa 8.9a	The DFT and DFS of sinusoids	104
Exa 8.9b	The DFT and DFS of sinusoids	106
Exa 8.9c	The DFT and DFS of sinusoids	107
Exa 8.9d	The DFT and DFS of sinusoids	108
Exa 8.10	DFS of sampled Periodic Signals	110
Exa 8.11	The effects of leakage	111
Exa 8.15a	Methods to find convolution	112
Exa 8.15b	Methods to find convolution	114
Exa 8.16	Signal Interpolation using FFT	114
Exa 8.17	The Concept of Periodogram	115
Exa 8.18	DFT from matrix formulation	116
Exa 8.19	Using DFT to find IDFT	116
Exa 8.20	Decimation in Frequency FFT algorithm	116
Exa 8.21	Decimation in time FFT algorithm	117
Exa 8.22	4 point DFT from 3 point sequence	117
Exa 8.23	3 point IDFT from 4 point DFT	118
Exa 8.24	The importance of Periodic Extension	118
Exa 9.1	Response Invariant Mappings	120
Exa 9.2	Impulse Invariant Mappings	123
Exa 9.3ab	Modified Impulse Invariant Design	123
Exa 9.3cd	Modified Impulse Invariant Design	124
	- 0	

Exa 9.5	Mappings from Difference Algorithms	125
Exa 9.6	Mappings From Integration Algorithms	126
Exa 9.7	DTFT of Numerical Algorithms	126
Exa 9.8a	Bilinear Transformation	127
Exa 9.8b	Bilinear Transformation	129
Exa 9.9	D2D transformations	131
Exa $9.10a$	Bilinear Design of Second Order Filters	132
Exa $9.10\mathrm{b}$	Bilinear Design of Second Order Filters	134
Exa 9.10c	Bilinear Design of Second Order Filters	135
Exa 9.11	Interference Rejection	136
Exa 9.12	IIR Filter Design	138
Exa 10.2	Truncation and Windowing	140
Exa 10.3ab	FIR lowpass Filter design	141
Exa 10.3cd	l FIR filter Design	142
Exa $10.4a$	Half Band lowpass FIR filter Design	145
Exa $10.4\mathrm{b}$	Half Band bandstop FIR filter Design	147
Exa $10.5a$	Design by Frequency Sampling	149
Exa $10.5\mathrm{b}$	Design by Frequency Sampling	151
Exa $10.6a$	Optimal FIR Bandstop Filter Design	153
Exa $10.6b$	Optimal Half Band Filter Design	154
Exa 10.7	Multistage Interpolation	155
Exa 10.8	Design of Interpolating Filters	157
$Exa \ 10.9$	Multistage Decimation	158
Exa 10.10	Maximally Flat FIR filter Design	159
AP 1	Alias Frequency	160

List of Figures

2.1	Operations on Discrete Signals	.3
2.2	Even and Odd parts of Discrete signals	5
2.3	Even and Odd parts of Discrete signals	6
2.4	Even and Odd parts of Discrete signals	7
2.5	Even and Odd parts of Discrete signals	7
3.1	Analytical Evaluation of Discrete Convolution	23
3.2	Analytical Evaluation of Discrete Convolution	24
3.3	Analytical Evaluation of Discrete Convolution	25
3.4	Analytical Evaluation of Discrete Convolution	26
3.5	Analytical Evaluation of Discrete Convolution	27
3.6	Analytical Evaluation of Discrete Convolution	28
3.7	Convolution of finite length Signals	B 0
3.8	Convolution of finite length Signals	81
3.9	Convolution of finite length Signals	32
3.10	Convolution of finite length Signals	32
3.11	Convolution of finite length Signals	8 4
3.12	Convolution of finite length Signals	8 4
3.13	Convolution of finite length Signals	8 6
3.14	Convolution of finite length Signals	86
4 1	Pole Zero Plots	15
4.2	Pole Zero plots	16
1.2		.0
5.1	DTFT from Defining Relation	52
5.2	DTFT from Defining Relation	53
5.3	Some DTFT pairs using properties 5	55
5.4	Some DTFT pairs using properties 5	66
5.5	Some DTFT pairs using properties 5	68

5.6	Some DTFT pairs using properties
5.7	Some DTFT pairs using properties
5.8	Some DTFT pairs using properties
5.9	Some DTFT pairs using properties
5.10	DTFT of periodic Signals
5.11	DTFT of periodic Signals
5.12	Frequency Response of Recursive Filter
5.13	The DTFT in System Analysis
5.14	The DTFT in System Analysis
5.15	DTFT and steady state response
5.16	System Representation in various forms
5.17	System Representation in various forms
6.1	The Minimum Phase Concept
6.2	Linear Phase Filters
6.3	Linear Phase Filters
6.4	Frequency Response and Filter characteristics
6.5	Filters and Pole Zero Plots
6.6	Filters and Pole Zero Plots80
6.7	Filters and Pole Zero Plots
6.8	Filters and Pole Zero Plots
6.9	Digital resonator Design
6.10	Digital resonator Design
6.11	Periodic Notch Filter Design
6.12	Periodic Notch Filter Design
7.1	Sampling of Band pass signals
7.2	Sampling of Band pass signals
7.3	Zero Interpolation and Spectrum Replication
7.4	Zero Interpolation and Spectrum Replication
7.5	Up Sampling and Filtering
7.6	Up Sampling and Filtering
7.7	Anti Imaging Filter Considerations
8.1	The DFT and DFS of sinusoids
8.2	The DFT and DFS of sinusoids
8.3	The DFT and DFS of sinusoids
8.4	The DFT and DFS of sinusoids

8.5	The DFT and DFS of sinusoids 109
8.6	The DFT and DFS of sinusoids 109
8.7	The DFT and DFS of sinusoids 110
8.8	The DFT and DFS of sinusoids 111
8.9	The effects of leakage
8.10	The effects of leakage
8.11	Signal Interpolation using FFT
9.1	Response Invariant Mappings
9.2	Response Invariant Mappings
9.3	Modified Impulse Invariant Design
9.4	DTFT of Numerical Algorithms
9.5	DTFT of Numerical Algorithms
9.6	Bilinear Transformation
9.7	Bilinear Transformation
9.8	D2D transformations
9.9	Bilinear Design of Second Order Filters
9.10	Bilinear Design of Second Order Filters
9.11	Bilinear Design of Second Order Filters
9.12	Interference Rejection
9.13	IIR Filter Design
10.1	FIR lowpass Filter design
10.2	FIR lowpass Filter design
10.3	FIR filter Design
10.4	FIR filter Design
10.5	Half Band lowpass FIR filter Design
10.6	Half Band lowpass FIR filter Design
10.7	Half Band bandstop FIR filter Design
10.8	Half Band bandstop FIR filter Design
10.9	Design by Frequency Sampling
10.10	Design by Frequency Sampling
10.11	1 Optimal FIR Bandstop Filter Design 153
10.12	20ptimal Half Band Filter Design

Chapter 2

Discrete Signals

Scilab code Exa 2.1a Signal energy and power

```
1 // example 2.1.a, pg no.11
2 for i=1:1:50
3      x(1,i)=3*(0.5)^(i-1);
4 end
5 // summation of x
6 E=0
7 for i=1:1:50
8      E=E+x(1,i)^2;
9 end
10 disp("the energy of given signal is")
11 E
```

Scilab code Exa 2.1b Average power of periodic signals

```
1 // example 2.1b, pg.no.11
2 n=1:1:10;
3 xn=6*cos((2*%pi*n')/4);
4 a=4;
```

Scilab code Exa 2.1c Average power of periodic signals

```
1 // example 2.1c, pg.no.11
2 n=1:4;
3 xn=6*%e^((%i*%pi*n')/2);
4 a=4;
5 p=0;
6 for i=1:1:a
7     p=p+abs(xn(i)^2);
8 end
9 P=p/a;
10 disp("The average power of given signal is")
11 P
```

Scilab code Exa 2.2 Operations on Discrete Signals

```
1 //example 2.2,pg no.12
2 x=[0 2 3 4 5 6 7];
3 n1=-3:1:3;
4 y=x;
5 n2=0:1:6;
6 f=x;
7 n3=-5:1:1;
```


Figure 2.1: Operations on Discrete Signals

```
8 g=x(length(x):-1:1);
9 n4 = -3:1:3;
10 h=x(length(x):-1:1);
11 n5 = -2:1:4;
12 s=x(length(x):-1:1);
13 n6 = -5:1:1;
14 a=gca();
15 subplot(231);
16 plot2d3('gnn',n1,x);
17 ylabel('x[n]');
18 subplot(232);
19 plot2d3('gnn',n2,y);
20 ylabel('y[n] = x[n-3]');
21 subplot(233);
22 plot2d3('gnn',n3,f);
23 ylabel('f[n] = x[n+2]');
24 subplot(234);
25 plot2d3('gnn',n4,g);
26 ylabel('g[n] = x[-n]');
27 subplot(235);
```

```
28 plot2d3('gnn',n5,h);
29 ylabel('h[n]=x[-n+1]');
30 subplot(236);
31 plot2d3('gnn',n6,s);
32 ylabel('s[n]=x[-n-2]');
```

Scilab code Exa 2.3a Even and Odd parts of Discrete signals

```
1 / \text{example } 2.3 \text{ a pg.no.} 14
2 clear;clc;close;
3 n = -2:2;
4 x1 = [4 -2 4 -6 0];
5 x^2=0.5 * x^1 / x [n]
6 x3=0.5*[x1(length(x1):-1:1)];//x[-n]
7 xe=(x2+x3);//even part
8 xo=(x2-x3);//odd part
9 a=gca();
10 a.thickness=2;
11 a.x_location="middle";
12 a.y_location="middle";
13 plot2d3('gnn',n,xe,rect=[-4 -6 4 6])
14 xtitle('graphical representation of even part of x[n
      ] ', 'n ', 'x [n] ')
15 xset('window',1)
16 b=gca();
17 b.thickness=2;
18 b.y_location="middle";
19 b.x_location="middle";
20 plot2d3('gnn',n,xo,rect=[-2 -4 2 4])
21 xtitle('graphical representation of odd part of x[n]
      ', 'n', 'x[n]')
```


Figure 2.2: Even and Odd parts of Discrete signals

Scilab code Exa 2.3b Even and Odd parts of Discrete signals

```
1 // example 2.3a pg.no.14
2 clear; clc; close;
3 x1=[0 0 0 0 0 1 1 1 1 ];
4 n=-4:4;
5 x2=0.5*x1//x[n]
6 x3=0.5*[x1(length(x1):-1:1)]//x[-n]
7 xe=(x2+x3); // even part
8 xo=(x2-x3); // odd part
9 a=gca();
10 a.thickness=2;
11 a.y_location="middle";
12 a.x_location="middle";
13 plot2d3('gnn',n,xe,rect=[-4 -1 4 1]);
```


Figure 2.3: Even and Odd parts of Discrete signals

```
14 xtitle('graphical representation of even part of x[n
]', 'n', 'x[n]')
15 xset('window',1)
16 b=gca();
17 b.thickness=2;
18 b.y_location="middle";
19 b.x_location="middle";
20 plot2d3('gnn',n,xo,rect=[-4 -1 4 1]);
21 xtitle('graphical representation of odd part of x[n]
', 'n', 'x[n]')
```

Scilab code Exa 2.4a Decimation and Interpolation of Discrete signals

1 //example 2.4 a pg.no.17

Figure 2.4: Even and Odd parts of Discrete signals

Figure 2.5: Even and Odd parts of Discrete signals

```
2 x=[1 2 5 -1];
3 xm=2;//denotes 2nd sample has pad.
4 y=[x(1:2:xm-2),x(xm:2:length(x))]//decimation
5 h=[x(1:1/3:length(x))]//step interpolated
6 g=h;
7 for i=2:3
8 g(i:3:length(g))=0;
9 end
10 //zero interpolated
11 x1=1:3:3*length(x);
12 s=interpln([x1;x],1:10)//linear interpolated
```

Scilab code Exa 2.4b Decimation and Interpolation of Discrete signals

```
1 //example 2.4 b,c.pg.no.17
2 x=[3 4 5 6];
3 xm=3;//denotes 3rd sample has pad
4 xm=xm-1;//shifting
5 g=[x(xm-2:-2:1),x(xm:2:length(x))]//decimation
6 xm=3;
7 h=[x(1:1/2:length(x))]//step interpolated
```

Scilab code Exa 2.4c Decimation and Interpolation of Discrete signals

```
1 //example 2.4c,pg.no.17
2 x=[3 4 5 6];
3 xm=3;
4 xm=xm+1*(xm-1);//shift in pad due to interpolation
5 xm=xm-2//normal shifting
6 x1=[x(1:1/3:length(x))]//step interpolated
7 xm=3;
8 xm=xm+2*(xm-1)//shift in pad due to interpolation
9 y=[x1(1:2:xm-2),x1(xm:2:length(x1))]//decimation
```

Scilab code Exa 2.4d Decimation and Interpolation of Discrete signals

```
1 // example 2.4d, pg.no.17
2 x=[2 4 6 8]
3 xm=3;//denote 3rd sample has pad
4 x1=[1 3 5 7]
5 x2=interpln([x1;x],1:6)
6 xm=xm+1*(xm-1);//shift in pad due to interpolation
7 xm=xm-1//shift in pad due to delay
8 y=[x2(2:2:xm-2),x2(xm:2:length(x2))]//decimation
```

Scilab code Exa 2.5 Describing Sequences and signals

```
1 // example 2.5, pg.no.20
2 x=[1 2 4 8 16 32 64];
3 y=[0 0 0 1 0 0 0];
4 z=x.*y;
5 a=0;
6 for i=1:length(z)
7 a=a+z(i);
8 end
9 z,a//a=summation of z
```

Scilab code Exa 2.6 Discrete time Harmonics and Periodicity

```
1 //example 2.6 pg.no.23
2 function[p]=period(x)
3 for i=2:length(x)
4 v=i
```

```
if (abs(x(i)-x(1))<0.00001)
5
6
             k=2
             for j=i+1:i+i
7
                  if (abs(x(j)-x(k))<0.00001)</pre>
8
9
                      v = v + 1
10
                  end
11
             k = k + 1;
12
             end
13
         end
14
        if (v==(2*i)) then
15
             break
16
        end
17 end
18 p=i-1
19 endfunction
20 for i=1:60
21
        x1(i)=cos((2*%pi*8*i)/25);
22 end
23 for i=1:60
        x2(i) = \exp((i*0.2*i*\%pi) + \exp(-\%i*0.3*i*\%pi);
24
25 \text{ end}
26 \text{ for } i=1:45
        x3(i)=2*cos((40*%pi*i)/75)+sin((60*%pi*i)/75);
27
28 \text{ end}
29 period(x1)
30 period(x2)
31 period(x3)
```

check Appendix AP 1 for dependency:

Aliasfrequency.sci

Scilab code Exa 2.7 Aliasing and its effects

```
1 //example 2.7.pg.no.27
2 f=100;
```

```
3 s=240;
4 s1=s;
5 aliasfrequency(f,s)
6 s=140;
7 s1=s;
8 aliasfrequency(f,s,s1)
9 s=90;
10 s1=s;
11 aliasfrequency(f,s,s1)
12 s=35;
13 s1=s;
14 aliasfrequency(f,s,s1)
```

check Appendix AP 1 for dependency:

Aliasfrequency.sci

Scilab code Exa 2.8 Signal Reconstruction

```
1 f=100;
2 s=210;
3 s1=420;
4 aliasfrequency(f,s,s1)
5 s=140;
6 aliasfrequency(f,s,s1)
```

Chapter 3

Response of Digital Filters

Scilab code Exa 3.5 FIR filter response

Scilab code Exa 3.19a Analytical Evaluation of Discrete Convolution

```
1 // Analytical evaluation of Discrete Convolution
2 clear; close; clc;
3 max_limit=10;
4 h=ones(1,max_limit);
5 n2=0:length(h)-1;
6 x=h;
```


Figure 3.1: Analytical Evaluation of Discrete Convolution

```
7 n1 = -length(x) + 1:0;
8 y=convol(x,h);
9 n=-length(x)+1:length(h)-1;
10 a=gca();
11 subplot(211);
12 plot2d3('gnn',n2,h)
13 xtitle('impulse Response', 'n', 'h[n]');
14 a.thickness=2;
15 a.y_location="origin";
16 subplot(212);
17 plot2d3('gnn',n1,x)
18 a.y_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset("window",1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 xtitle('output response', 'n', 'y[n]');
```


Figure 3.2: Analytical Evaluation of Discrete Convolution

Scilab code Exa 3.19b Analytical Evaluation of Discrete Convolution

```
1 clear; close; clc;
2 max_limit=10;
3 for n=1:max_limit
       h(n) = (0.4)^n;
4
5 end
6 n2=0:length(h)-1;
   for n=1:max_limit
7
8
       x(n) = (0.8)^n;
9 \text{ end}
10 n1 = -length(x) + 1:0;
11 y = convol(x,h)
12 n=-length(x)+1: length(h)-1;
13 a=gca();
```


Figure 3.3: Analytical Evaluation of Discrete Convolution

```
14 subplot(211);
15 plot2d3('gnn',n2,h)
16 xtitle('impulse Response', 'n', 'h[n]');
17 a.thickness=2;
18 a.y_location="origin";
19 subplot(212);
20 plot2d3('gnn',n1,x)
21 a.y_location="origin";
22 xtitle('input response', 'n', 'x[n]');
23 xset("window",1);
24 a=gca();
25 plot2d3('gnn',n,y)
26 xtitle('output response', 'n', 'y[n]');
```


Figure 3.4: Analytical Evaluation of Discrete Convolution

Scilab code Exa 3.19c Analytical Evaluation of Discrete Convolution

```
1 // Analytical Evaluation of Discrete convolution
2 clear;close;clc;
3 max_limit=5;
4 h(1)=0;
5 for n=2:max_limit
6
       h(n) = 0.8^n;
7 end
8 n2=0:length(h)-1;
9 x=[0 ones(1:max_limit)]
10 n1 = -length(x) + 1:0;
11 y = convol(x,h);
12 n=-length(x)+1:length(h)-1;
13 a=gca();
14 subplot(211);
15 plot2d3('gnn',n2,h)
16 xtitle('impulse Response', 'n', 'h[n]');
17 a.thickness=2;
18 a.y_location="origin";
```


Figure 3.5: Analytical Evaluation of Discrete Convolution

```
19 a=gca();
20 subplot(212);
21 plot2d3('gnn',n1,x)
22 a.y_location="origin";
23 xtitle('input response','n','x[n]');
24 xset("window",1);
25 a=gca();
26 plot2d3('gnn',n,y)
27 a.y_location="origin";
28 a.x_location="origin";
29 xtitle('output response','n','y[n]');
```

Scilab code Exa 3.20a Properties of Convolution

Figure 3.6: Analytical Evaluation of Discrete Convolution

```
1 // properties of convolution
2 x=[1 2 3 4 5];
3 h=[1 zeros(1:5)];
4 a=convol(x,h);
5 b=convol(h,x);
6 a==b
```

Scilab code Exa 3.20b Properties of Convolution

```
1 // Convolution with Step Function
2 x=[1 2 3 4 5];
3 h=[ones(1:5)];
4 a=convol(h,x);
5 b(1)=a(1);
6 for i=2:length(x)
7 b(i)=b(i-1)+x(i);
8 end
```

Scilab code Exa 3.21a Convolution of finite length Signals

```
1 //convolution of finite length signals
2 clear;close;clc;
3 max_limit=10;
4 h = [1 2 2 3];
5 n2=0:length(h)-1;
6 x = [2 -1 3];
7 n1=0: length(x) - 1;
8 y=convol(x,h);
9 n=0:length(h)+length(x)-2;
10 a=gca();
11 subplot(211);
12 plot2d3('gnn',n2,h)
13 xtitle('impulse Response', 'n', 'h[n]');
14 a.thickness=2;
15 a.y_location="origin";
16 a=gca();
17 subplot(212);
18 plot2d3('gnn',n1,x)
19 a.y_location="origin";
20 a.x_location="origin";
21 xtitle('input response', 'n', 'x[n]');
22 xset("window",2);
23 \ a = gca();
24 plot2d3('gnn',n,y)
25 a.y_location="origin";
26 xtitle('output response', 'n', 'y[n]');
```


Figure 3.7: Convolution of finite length Signals

Scilab code Exa 3.21b Convolution of finite length Signals

```
1 clear; close; clc;
2 max_limit=10;
3 h=[2 5 0 4];
4 n2=-2:length(h)-3;
5 x=[4 1 3];
6 n1=-1:length(x)-2;
7 y=convol(x,h);
8 n=-3:length(x)+length(h)-5;
9 a=gca();
10 subplot(211);
11 plot2d3('gnn',n2,h)
12 xtitle('impulse Response', 'n', 'h[n]');
13 a.thickness=2;
```


Figure 3.8: Convolution of finite length Signals

```
14 a.y_location="origin";
15 a=gca();
16 subplot(212);
17 plot2d3('gnn',n1,x)
18 a.y_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset("window",1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 a.y_location="origin";
24 a.x_location="origin";
25 xtitle('output response', 'n', 'y[n]');
```

Scilab code Exa 3.21c Convolution of finite length Signals

Figure 3.9: Convolution of finite length Signals

Figure 3.10: Convolution of finite length Signals

```
1 clear; close; clc;
2 max_limit=10;
3 h = [1/2 1/2 1/2];
4 n2=0:length(h)-1;
5 x = [2 4 6 8 10];
6 n1=0:length(x)-1;
7 y = convol(x,h);
8 n=0:length(x)+length(h)-2;
9 a=gca();
10 subplot(211);
11 plot2d3('gnn',n2,h);
12 xtitle('impulse Response', 'n', 'h[n]');
13 a.thickness=2;
14 a.y_location="origin";
15 a=gca();
16 subplot(212);
17 plot2d3('gnn',n1,x);
18 a.y_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset("window",1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 a.y_location="origin";
24 a.x_location="origin";
25 xtitle('output response', 'n', 'y[n]');
```

Scilab code Exa 3.22 Convolution of finite length Signals

```
1 max_limit=10;
2 h=[2 5 0 4];
3 n2=0:length(h)-1;
```


Figure 3.11: Convolution of finite length Signals

Figure 3.12: Convolution of finite length Signals

```
4 x = [4 1 3];
5 n1=0: length(x) -1;
6 y = convol(x,h);
7 n=0:length(x)+length(h)-2;
8 a=gca();
9 subplot(211);
10 plot2d3('gnn',n2,h)
11 xtitle('impulse Response', 'n', 'h[n]');
12 a.thickness=2;
13 a.y_location="origin";
14 a=gca();
15 subplot(212);
16 plot2d3('gnn',n1,x)
17 a.y_location="origin";
18 a.x_location="origin";
19 xtitle('input response', 'n', 'x[n]');
20 xset("window",1);
21 a=gca();
22 plot2d3('gnn',n,y)
23 a.y_location="origin";
24 a.x_location="origin";
25 xtitle('output response', 'n', 'y[n]');
```

Scilab code Exa 3.23 effect of Zero Insertion, Zero Padding on convol.

```
1 // convolution by polynomial method
2 x=[4 1 3];
3 h=[2 5 0 4];
4 z=%z;
5 n=length(x)-1:-1:0;
6 X=x*z^n';
```


Figure 3.13: Convolution of finite length Signals

Figure 3.14: Convolution of finite length Signals

```
7 n1=length(h)-1:-1:0;
8 H=h*z^n1';
9 y=X*H
10 // effect of zero insertion on convolution
11 h=[2 0 5 0 0 0 4];
12 x=[4 0 1 0 3];
13 y=convol(x,h)
14 // effect of zero padding on convolution
15 h=[2 5 0 4 0 0];
16 x=[4 1 3 0];
17 y=convol(x,h)
```

Scilab code Exa 3.25 Stability and Causality

```
1 //concepts based on stability and Causality
2 function[]=stability(X)
3 if (abs(roots(X))<1)</pre>
       disp("given system is stable")
4
5 else
       disp("given system is not stable")
6
7 \text{ end}
8 endfunction
9 x = [1 - 1/6 - 1/6];
10 z = \% z;
11 n = length(x) - 1: -1:0;
12 //characteristic eqn is
13 X=x*(z)^n'
14 stability(X)
15 x = [1 -1];
16 n = length(x) - 1: -1:0;
17 //characteristic eqn is
18 X = x * (z)^n,
19 stability(X)
20 x = [1 -2 1];
21 n = length(x) - 1: -1:0;
```

```
22 // characteristic eqn is
23 X=x*(z)^n'
24 stability(X)
```

Scilab code Exa 3.26 Response to Periodic Inputs

```
1 //Response of periodic inputs
2 function[p]=period(x)
3 for i=2:length(x)
4
        v=i
        if (abs(x(i)-x(1))<0.00001)</pre>
5
6
            k=2
7
             for j=i+1:i+i
8
                 if (abs(x(j)-x(k))<0.00001)</pre>
9
                      v = v + 1
10
                 end
11
            k=k+1;
12
             end
13
         end
14
        if (v==(2*i)) then
15
             break
16
        end
17 end
18 p=i-1
19 endfunction
20 x = [1 \ 2 \ -3 \ 1 \ 2 \ -3 \ 1 \ 2 \ -3];
21 h=[1 1];
22 y = convol(x,h)
23 y(1)=y(4);
24 period(x)
25 period(y)
26 h=[1 1 1];
27 y = convol(x, h)
```

Scilab code Exa 3.27 Periodic Extension

```
1 //to find periodic extension
2 x=[1 5 2;0 4 3;6 7 0];
3 y=[0 0 0];
4 for i=1:3
5 for j=1:3
6 y(i)=y(i)+x(j,i);
7 end
8 end
9 y
```

Scilab code Exa 3.28 System Response to Periodic Inputs

```
1 //method of wrapping to fing convolution of periodic
       signal with one period
2 x = [1 2 -3];
3 h=[1 1];
4 y1 = convol(h, x)
5 y1=[y1, zeros(5:9)]
6 y2=[y1(1:3);y1(4:6);y1(7:9)];
7 y = [0 0 0];
8 for i=1:3
       for j=1:3
9
            y(i) = y(i) + y2(j,i);
10
11
       end
12 end
13 y
14 x=[2 1 3];
15 h=[2 1 1 3 1];
16 y1 = convol(h, x)
17 y1=[y1, zeros(8:9)]
```

```
18 y2=[y1(1:3);y1(4:6);y1(7:9)];
19 y=[0 0 0];
20 for i=1:3
21 for j=1:3
22 y(i)=y(i)+y2(j,i);
23 end
24 end
25 y
```

Scilab code Exa 3.29 Periodic Convolution

```
1 // periodic or circular convolution
2 x = [1 0 1 1];
3 h = [1 2 3 1];
4 y1 = convol(h, x)
5 y1=[y1, zeros(8:12)];
6 y_2 = [y_1(1:4); y_1(5:8); y_1(9:12)];
7 y = [0 0 0 0];
8 for i=1:4
9
       for j=1:3
            y(i) = y(i) + y2(j,i);
10
11
        end
12 end
13 y
```

Scilab code Exa 3.30 Periodic Convolution by Circulant Matrix

```
1 // periodic convolution by circulant matrix
2 x=[1 0 2];
3 h=[1;2;3];
4 // generation of circulant matrix
5 c(1,:)=x;
6 for i=2:length(x)
```

Scilab code Exa 3.32 Deconvolution By polynomial Division

```
1 // deconvolution by polynomial division
2 x=[2 5 0 4];
3 y=[8 22 11 31 4 12];
4 z=%z
5 n=length(x)-1:-1:0;
6 X=x*(z)^n'
7 n1=length(y)-1:-1:0;
8 Y=y*(z)^n1'
9 h=Y/X
```

Scilab code Exa 3.33 Autocorrelation and Cross Correlation

```
1 // discrete auto correlation and cross correlation
2 x=[2 5 0 4];
3 h=[3 1 4];
4 x1=x(length(x):-1:1)
5 h1=h(length(h):-1:1)
6 rxhn=convol(x,h1)
7 rhxn=convol(x1,h)
8 rhxn1=rhxn(length(rhxn):-1:1)
9 //we observe that rhxn1=rxhn
10 x=[3 1 -4];
11 x1=x(length(x):-1:1)
12 rxxn=convol(x,x1)
13 //we observe that rxxn is even symmetric about
origin
```

Scilab code Exa 3.35 Periodic Autocorrelation and Cross Correlation

```
1 //discrete periodic auto correlation and cross
      correlation
2 x = [2 5 0 4];
3 h = [3 1 - 1 2];
4 x1=x(length(x):-1:1);
5 h1=h(length(h):-1:1);
6 rxhn=convol(x,h1)
7 rhxn=convol(x1,h)
8 rxxn=convol(x,x1)
9 rhhn=convol(h,h1)
10 y1=[rxhn, zeros(8:12)];
11 y2=[y1(1:4);y1(5:8);y1(9:12)];
12 y3=[rhxn, zeros(8:12)];
13 y4 = [y3(1:4); y3(5:8); y3(9:12)];
14 y5=[rxxn, zeros(8:12)];
15 y_6 = [y_5(1:4); y_5(5:8); y_5(9:12)];
16 y7=[rhhn, zeros(8:12)];
17 y8=[y7(1:4); y7(5:8); y7(9:12)];
18 \text{ rxhp} = [0 \ 0 \ 0 \ 0];
19 rhxp=[0 0 0 0];
20 \text{ rxxn} = [0 \ 0 \ 0 \ 0];
21 rhhp=[0 0 0 0];
22 for i=1:4
23
        for j=1:3
            rhxp(i)=rhxp(i)+y4(j,i);
24
            rxhp(i)=rxhp(i)+y2(j,i);
25
            rxxn(i) = rxxn(i) + y6(j,i);
26
27
            rhhp(i)=rhhp(i)+y8(j,i);
28
       end
29 end
30 rxhp
31 rhxp
```

32 rxxn33 rhhp

Chapter 4

z Transform Analysis

Scilab code Exa 4.1b z transform of finite length sequences

```
1 function[za]=ztransfer(sequence,n)
2 z=poly(0, 'z', 'r')
3 za=sequence*(1/z)^n'
4 endfunction
5 x1=[2 1 -5 4];
6 n=-1:length(x1)-2;
7 ztransfer(x1,n)
```

Scilab code Exa 4.4a Pole Zero Plots

```
1 // Pole-Zero plots
2 z=%z;
3 az=2*z*(z+1);
4 bz=(z-1/3)*((z^2)+1/4)*((z^2)+4*z+5);
5 poles=roots(bz)
6 zeroes=roots(az)
7 h=az/bz
```


Figure 4.1: Pole Zero Plots

8 plzr(h)

Scilab code Exa 4.4b Pole Zero plots

```
1 //Pole-Zero plots
2 z=%z;
3 az=z^4+4.25*z^2+1;
4 bz=z^4;
5 poles=roots(bz)
6 zeroes=roots(az)
7 h=az/bz
8 plzr(h)
```

Scilab code Exa 4.8 Stability of Recursive Filters

Figure 4.2: Pole Zero plots

```
1 //stability of recursive filter
2 // for roc:/z/>/a/
3 a=input('enter the value of alpha')
4 z = \% z;
5 H=z/(z-a);
6 if (abs(a)<1)
       disp("system is stable")
7
8
  else
       disp("system is not stable")
9
10
    end
    //for roc:/z/</a/
11
    if (abs(a)>1)
12
       disp("system is stable")
13
14 else
       disp("system is not stable")
15
16
    end
```

Scilab code Exa 4.9 Inverse Systems

```
1 // inverse systems
2 z=%z;
3 H=(1+2*(z^(-1)))/(1+3*(z^(-1)));
4 // inverse of H is
5 H1=1/H
6 H=1+2*(z^(-1))+3*(z^(-2));
7 H1=1/H
```

Scilab code Exa 4.10 Inverse Transform of sequences

```
1 //inverse transform of sequences
2 //(a)X(z)=3z^-1+5z^-3+2z^-4
3 z=%z;
4 X1=[3*z^-1;0;5*z^-3;2*z^-4];
5 n1=1:4;
6 ZI=z^n1';
7 x1=numer(X1.*ZI);
8 disp(x1,"x[n]=");
9 //(b)X(z)=2z^2-5z+5z^-1-2z^-2
10 X2=[2*z^2;-5*z;0;5*z^-1;-2*z^-2];
11 n2=-2:2;
12 ZI=z^n2';
13 x2=numer(X2.*ZI);
14 disp(x2,"x[n]=");
```

Scilab code Exa 4.11 Inverse Transform by Long Division

```
1 //inverse transform by long division
2 z=%z;
3 x=ldiv(z-4,1-z+z^2,5)
```

Scilab code Exa 4.12 Inverse transform of Right sided sequences

```
1 //inverse z transforms from standard transforms
2 z=%z;
3 xz=z/((z-0.5)*(z-0.25));
4 yz=xz/z;
5 pfss(yz)
6 //hence x[n]=-4(0.25)^n*un+4(0.5)^n*un;
7 xz=1/((z-0.5)*(z-0.25));
8 yz=xz/z;
9 pfss(yz)
10 //hence x[n]=-4(0.25)^n-1*u[n-1]+4(0.5)^n-1*u[n-1];
```

Scilab code Exa 4.20 z Transform of Switched periodic Signals

```
1 //z transform of switched periodic signals
2 z = %z;
3 //sol. for 4.20a
4 x1 = [0 1 2];
5 n=0:2;
6 N = 3;
7 x1z=x1*(1/z)^n'
8 xz=x1z/(1-z^-N)
9 //sol.for 4.20b
10 x1 = [0 \ 1 \ 0 \ -1];
11 n=0:3;
12 N = 4;
13 x1z=x1*(1/z)^n'
14 \ xz = x1z/(1-z^{-N})
15 //sol.for 4.20c
16 xz=(2+z^{-1})/(1-z^{-3});
17 x1z=numer(xz)
18 // thus first period of xn is [2 \ 1 \ 0]
19 //sol.for 4.20d
20 xz=(z^{-1}-z^{-4})/(1-z^{-6});
```

- 21 x1z=numer(xz)
- 22 //thus first period of xn is $\begin{bmatrix} 0 & 1 & 0 & 0 & -1 & 0 \end{bmatrix}$

Chapter 5

Frequency Domain Analysis

Scilab code Exa 5.1c DTFT from Defining Relation

```
1 //DTFT of x[n] = (a)^n * u[n]
2 clear;
3 clc;close;
4 //DTS signal
5 a1=0.5;
6 a2 = -0.5;
7 max_limit=10;
8 for n=0:max_limit-1
9
     x1(n+1) = (a1^n);
10
     x2(n+1)=(a2^n);
11 end
12 n=0:max_limit-1;
13 // discrete time fourier transform
14 wmax=2*%pi;
15 K=4;
16 k=0:(K/1000):K;
17 W=k*wmax/K;
18 x 1 = x 1'
19 x2=x2'
20 XW1=x1*exp(%i*n'*W);
21 XW2=x2*exp(%i*n'*W);
```

```
22 XW1_Mag=abs(XW1);
23 XW2_Mag=abs(XW2);
24 W=[-mtlb_fliplr(W), W(2:1001)]; //omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
26 XW2_Mag=[mtlb_fliplr(XW2_Mag),XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
     ];
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
     ];
31
32 //plot for a>0
33 figure
34 subplot(3,1,1);
35 plot2d3('gnn',n,x1)
36 xtitle('Discrete time sequences[n] a>0')
37 subplot(3,1,2);
38 \ a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W,XW1_Mag);
42 title('magnitude Response abs(exp(jw))')
43 subplot(3,1,3);
44 a=gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a < 0
50 figure
51 subplot(3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot(3,1,2);
55 a=gca();
56 a.y_location="origin";
57 a.x_location="origin";
```


Figure 5.1: DTFT from Defining Relation

```
58 plot2d(W,XW2_Mag);
59 title('Magnitude Response abs(X(jw))')
60 subplot(3,1,3);
61 a=gca();
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response<(X(jw))')</pre>
```

Scilab code Exa 5.3a Some DTFT pairs using properties

```
1 //DTFT of x[n]=n*(a)^n*u[n]
2 clear;
3 clc;close;
```


Figure 5.2: DTFT from Defining Relation

```
4 //DTS signal
5 a1=0.5;
6 a2 = -0.5;
7 max_limit=10;
8 for n=0:max_limit-1
9
     x1(n+1)=n*(a1^n);
10
     x2(n+1)=n*(a2^n);
11 end
12 n=0:max_limit-1;
13 //discrete time fourier transform
14 wmax=2*%pi;
15 K=4;
16 k=0:(K/1000):K;
17 W=k*wmax/K;
18 x1=x1';
19 x2=x2';
20 XW1 = x1 * exp(\%i * n' * W);
21 XW2=x2*exp(%i*n'*W);
22 XW1_Mag=abs(XW1);
23 XW2_Mag=abs(XW2);
```

```
24 W=[-mtlb_fliplr(W), W(2:1001)]; //omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
26 XW2_Mag=[mtlb_fliplr(XW2_Mag),XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
     ];
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
     ];
31
32 / plot for a > 0
33 figure
34 subplot(3,1,1);
35 plot2d3('gnn',n,x1)
36 xtitle('Discrete time sequencex[n] a>0')
37 subplot(3,1,2);
38 \ a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W,XW1_Mag);
42 title('magnitude Response abs(exp(jw))')
43 subplot(3,1,3);
44 a=gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a < 0
50 figure
51 subplot(3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot(3,1,2);
55 a=gca();
56 a.y_location="origin";
57 a.x_location="origin";
58 plot2d(W,XW2_Mag);
59 title('Magnitude Response abs(X(jw))')
```


Figure 5.3: Some DTFT pairs using properties

```
60 subplot(3,1,3);
61 a=gca();
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response<(X(jw))')</pre>
```

Scilab code Exa 5.3b Some DTFT pairs using properties

```
1 //DTFT of x[n]=n*(a)^n*u[n]
2 clear;
3 clc;close;
4 //DTS signal
5 a1=0.5;
```


Figure 5.4: Some DTFT pairs using properties

```
6 a2 = -0.5;
7 max_limit=10;
8 for n=0:max_limit-1
     x1(n+1) = (n+1) * (a1^n);
9
     x2(n+1)=(n+1)*(a2^n);
10
11 end
12 n=0:max_limit-1;
13 //discrete time fourier transform
14 wmax=2*%pi;
15 K = 4;
16 k=0:(K/1000):K;
17 W=k*wmax/K;
18 x1=x1';
19 x2=x2';
20 XW1 = x1 * exp((i*n'*W));
21 XW2=x2*exp((i*n',*W));
22 XW1_Mag=abs(XW1);
23 XW2_Mag=abs(XW2);
24 W=[-mtlb_fliplr(W), W(2:1001)]; //omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
```

```
26 XW2_Mag=[mtlb_fliplr(XW2_Mag),XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
     ];
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
     ];
31
32 //plot for a>0
33 figure
34 subplot(3,1,1);
35 plot2d3('gnn',n,x1)
36 xtitle('Discrete time sequences[n] a>0')
37 subplot(3,1,2);
38 a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W,XW1_Mag);
42 title('magnitude Response abs(exp(jw))')
43 subplot(3,1,3);
44 a=gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a < 0
50 figure
51 subplot(3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot(3,1,2);
55 a=gca();
56 a.y_location="origin";
57 a.x_location="origin";
58 plot2d(W,XW2_Mag);
59 title('Magnitude Response abs(X(jw))')
60 subplot(3,1,3);
61 a=gca();
```


Figure 5.5: Some DTFT pairs using properties

```
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response<(X(jw))')</pre>
```

Scilab code Exa 5.3d Some DTFT pairs using properties

```
1 //DTFT of x[n]=a^abs(n)
2 a=0.5;
3 n=-9:9;
4 x=a^abs(n);
5 //Discrete time Fourier Transform
```


Figure 5.6: Some DTFT pairs using properties

Figure 5.7: Some DTFT pairs using properties

```
6 k=0:(4/1000):4;
7 w = (2*\%pi*k)/4;
8 xw=x*exp(%i*n'*w);
9 xw_mag=real(xw);
10 w=[-mtlb_fliplr(xw_mag),w(2:1001)];
11 xw_mag=[mtlb_fliplr(xw_mag), xw_mag(2:1001)];
12 figure
13 subplot(2,1,1);
14 a=gca();
15 a.x_location="origin";
16 a.y_location="origin";
17 plot2d3('gnn',n,x);
18 xtitle('discrete time sequence x[n]');
19 subplot(2,1,2);
20 a = gca();
21 a.x_location="origin";
22 a.y_location="origin";
23 plot2d(w,xw_mag);
24 title('discrete time fourier transform x(exp(jw))');
```

Scilab code Exa 5.3e Some DTFT pairs using properties

```
1 //DTFT of x[n]=n*(a)^n*u[n]
2 clear;
3 clc;close;
4 //DTS signal
5 a1=0.5;
6 a2=-0.5;
7 max_limit=10;
8 for n=0:max_limit-1
9 x1(n+1)=4*(a1^(n+3));
10 x2(n+1)=4*(a2^(n+3));
11 end
12 n=0:max_limit-1;
13 //discrete time fourier transform
```

```
14 wmax=2*%pi;
15 K = 4;
16 k=0:(K/1000):K;
17 W=k*wmax/K;
18 x1=x1';
19 x2=x2';
20 XW1 = x1 * exp(\%i * n' * W);
21 XW2=x2*exp(%i*n'*W);
22 XW1_Mag=abs(XW1);
23 XW2_Mag=abs(XW2);
24 W=[-mtlb_fliplr(W), W(2:1001)]; //omega form
25 XW1_Mag=[mtlb_fliplr(XW1_Mag),XW1_Mag(2:1001)];
26 XW2_Mag=[mtlb_fliplr(XW2_Mag),XW2_Mag(2:1001)];
27 [XW1_phase,db]=phasemag(XW1);
28 [XW2_phase,db]=phasemag(XW2);
29 XW1_phase=[-mtlb_fliplr(XW1_phase),XW1_phase(2:1001)
     ];
30 XW2_phase=[-mtlb_fliplr(XW2_phase),XW2_phase(2:1001)
     ];
31
32 //plot for a>0
33 figure
34 subplot(3,1,1);
35 plot2d3('gnn',n,x1)
36 xtitle('Discrete time sequences[n] a>0')
37 subplot(3,1,2);
38 \ a = gca();
39 a.y_location="origin";
40 a.x_location="origin";
41 plot2d3(W,XW1_Mag);
42 title('magnitude Response abs(exp(jw))')
43 subplot(3,1,3);
44 a=gca();
45 a.y_location="origin";
46 a.x_location="origin";
47 plot2d(W,XW1_phase);
48 title('magnitude Response abs(exp(jw))')
49 //plot for a < 0
```


Figure 5.8: Some DTFT pairs using properties

```
50 figure
51 subplot(3,1,1);
52 plot2d3('gnn',n,x2);
53 xtitle('Discrete Time sequence x[n] for a>0')
54 subplot(3,1,2);
55 a = gca();
56 a.y_location="origin";
57 a.x_location="origin";
58 plot2d(W,XW2_Mag);
59 title('Magnitude Response abs(X(jw))')
60 subplot(3,1,3);
61 a=gca();
62 a.y_location="origin";
63 a.x_location="origin";
64 plot2d(W,XW2_phase);
65 title('phase Response < (X(jw))')
```


Figure 5.9: Some DTFT pairs using properties

Scilab code Exa 5.4 DTFT of periodic Signals

```
1 //DTfT of periodic signals
2 x=[3 2 1 2];//one period of signal
3 n=0:3;
4 k=0:3;
5 x1=x*exp(%i*n'*2*k*%pi/4)
6 dtftx=abs(x1)
7 x=[3 2 1 2 3 2 1 2 3];
8 n=-4:4;
9 a=gca();
10 a.y_location="origin";
11 a.x_location="origin";
12 plot2d3('gnn',n,x);
13 xtitle('discrete periodic time signal');
```


Figure 5.10: DTFT of periodic Signals

```
14 x2=[dtftx dtftx 8];
15 a=gca();
16 xset('window',1);
17 a.x_location="origin";
18 a.y_location="origin";
19 plot2d3('gnn',n,x2);
20 xtitle('DTFT of discrete periodic signal');
```

Scilab code Exa 5.5 The DFT, DFS and DTFT

```
1 x=[1 0 2 0 3];//one period of signal
2 n=0:4;
3 k=0:4;
4 x1=x*exp(%i*n'*2*k*%pi/4)
```


Figure 5.11: DTFT of periodic Signals

5 DTFTx=abs(x1)
6 DFT=dft(x,-1)
7 DFS=DFT/5

Scilab code Exa 5.7 Frequency Response of Recursive Filter

```
1 a=0.5;b=1;
2 n=0:50;
3 h=b*(a^n);
4 //Discrete-Time Fourier transform
5 K=500;
6 k=-250:1:250;
7 w=%pi*k/K;
8 H=h*exp(-%i*n'*w);
9 //caluculation of phase and magnitude of h(z)
10 [phase_H,m]=phasemag(H);
```


Figure 5.12: Frequency Response of Recursive Filter

```
11 H=abs(H);
12 a=gca();
13 subplot(2,1,1);
14 a.y_location="origin";
15 plot2d(w/%pi,H);
16 xlabel('Frequency in radians')
17 ylabel('abs(H)')
18 title('magnitude Response')
19 subplot(2,1,2);
20 \ a = gca();
21 a.x_location="origin";
22 a.y_location="origin";
23 plot2d(w/(2*%pi),phase_H)
24 xlabel('Frequency in Radians');
25 ylabel( \rm '<(H) ')
26 title('Phase Response'))
```


Figure 5.13: The DTFT in System Analysis

Scilab code Exa 5.8a The DTFT in System Analysis

```
1 //DTFT in system analysis
2 a=0.5;b=1;
3 n=0:50;
4 h=b*(a^n);
5 // Discrete-Time Fourier transform
6 K=500;
7 k=0:1:K;
8 w = \% pi * k/K;
9 H=h*exp(-\%i*n'*w);
10 //x[n] is given as (a)^n * u[n]
11 xw=h*exp(-\%i*n'*w);
12 for i=1:501
       y(i)=H(i)*xw(i);
13
14 end
15 [phase_y,m]=phasemag(y);
```


Figure 5.14: The DTFT in System Analysis

```
16 y=real(y);
17 subplot(2,1,1)
18 plot2d(w/%pi,y);
19 xlabel('Frequency in radians')
20 ylabel('abs(y)')
21 title('magnitude Response')
22 subplot(2,1,2)
23 plot2d(w/%pi,phase_y)
24 xlabel('Frequency in Radians');
25 ylabel('<(y)')
26 title('Phase Response')
```

Scilab code Exa 5.8b The DTFT in System Analysis

```
1 a=0.5;b=1;
2 n=0:50;
```

```
3 h=4*(a^n);
4 // Discrete-Time Fourier transform
5 K = 500;
6 k = 0:1:K;
7 w = %pi * k/K;
8 H=h*exp(-\%i*n'*w);
9 //x[n] is given as (a) n*u[n]
10 x=4*[ones(1:51)];
11 xw=x*exp(%i*n'*w);
12 for i=1:501
       y(i)=H(i)*xw(i);
13
14 end
15 [phase_y,m]=phasemag(y);
16 y=real(y);
17 subplot(2,1,1);
18 plot2d(w/%pi,y);
19 xlabel('Frequency in radians')
20 ylabel('abs(y)')
21 title('magnitude Response')
22 subplot(2,1,2)
23 plot2d(w/%pi,phase_y)
24 xlabel('Frequency in Radians');
25 ylabel('<(y)')
26 title('Phase Response')
```

Scilab code Exa 5.9a DTFT and steady state response

```
1 //DTFT and steady state response
2 a=0.5, b=1; F=0.25;
3 n=0:(5/1000):5;
4 h=(a^n);
5 x=10*cos(0.5*%pi*n'+%pi/3);
6 H=h*exp(-%i*n'*F);
```


Figure 5.15: DTFT and steady state response

```
7 Yss=H*x;
8 [phase_Yss,m]=phasemag(Yss);
9 Yss=real(Yss);
10 subplot(2,1,1)
11 plot2d(n,Yss);
12 xlabel('Frequency in radians')
13 ylabel('abs(Yss)')
14 title('magnitude Response')
15 subplot(2,1,2)
16 plot2d(n,phase_Yss)
17 xlabel('Frequency in Radians');
18 ylabel('<(y)')
19 title('Phase Response')
```

Scilab code Exa 5.9b DTFT and steady state response

```
1 //DTFT and steady state response
2 a=0.8,b=1;F=0;
```

```
3 n=0:50;
4 h=(a^n);
5 x=4*[ones(1:10)];
6 H=h*exp(-%i*n'*F)
7 Yss=H*x
```

Scilab code Exa 5.10a System Representation in various forms

```
1 //System Representation in various forms
2 a=0.8;b=2;
3 n=0:50;
4 h=b*(a^n);
5 // Discrete-Time Fourier transform
6 \quad K = 500;
7 k = 0:1:K;
8 w = \% pi * k/K;
9 H=h*exp(-\%i*n'*w);
10 // caluculation of phase and magnitude of h(z)
11 [phase_H,m]=phasemag(H);
12 H=abs(H);
13 subplot(2,1,1);
14 plot2d(w/%pi,H);
15 xlabel('Frequency in radians')
16 ylabel('abs(H)')
17 title('magnitude Response')
18 subplot(2,1,2)
19 plot2d(w/%pi,phase_H)
20 xlabel('Frequency in Radians');
21 ylabel('<(H)')
22 title('Phase Response')
```


Figure 5.16: System Representation in various forms

Scilab code Exa 5.10b System Representation in various forms

```
1 //System Representation in various forms
2 a=0.6;b=1;
3 n=0:50;
4 h=b*(a^n);
5 // Discrete-Time Fourier transform
6 K=500;
7 k=0:1:K;
8 w = \% pi * k/K;
9 H=h*exp(-\%i*n'*w);
10 //caluculation of phase and magnitude of h(z)
11 [phase_H,m]=phasemag(H);
12 H=abs(H);
13 subplot(2,1,1);
14 plot2d(w/%pi,H);
15 xlabel('Frequency in radians')
16 ylabel('abs(H)')
17 title('magnitude Response')
18 subplot(2,1,2)
```


Figure 5.17: System Representation in various forms

- 19 plot2d(w/%pi,phase_H)
 20 xlabel('Frequency in Radians');
- 21 ylabel($^{\prime}\left(\mathrm{H}\right)$ $^{\prime}$)
- 22 title('Phase Response')

Chapter 6

Filter Concepts

Scilab code Exa 6.1 The Minimum Phase Concept

```
1 //The minimum phase concept
2 z = %z;
3 F=0:(0.5/400):0.5;
4 z=exp(%i*2*%pi*F);
5 for i=1:401
6 H1Z(i)=((z(i)-1/2)*(z(i)-1/4))/((z(i)-1/3)*(z(i)
      -1/5));
7 end
8 for i=1:401
9 H2Z(i) = (((-1/2) * z(i) + 1) * (z(i) - 1/4)) / ((z(i) - 1/3) * (z(i) + 1)) 
      )-1/5));
10 end
11 for i=1:401
12 H3Z(i) = (((-1/2) z(i)+1) ((-1/4) z(i)+1))/((z(i)-1/3)
      *(z(i)-1/5));
13 end
14 [phase_H1Z,m]=phasemag(H1Z);
15 [phase_H2Z,m]=phasemag(H2Z);
16 [phase_H3Z,m]=phasemag(H3Z);
```


Figure 6.1: The Minimum Phase Concept

```
17 a=gca();
18 a.x_location="origin";
19 xlabel('Digital Frequency F');
20 ylabel('phase[degrees]');
21 xtitle('phase of three filters');
22 plot2d(F,phase_H1Z,rect=[0,-200,0.5,200]);
23 plot2d(F,phase_H2Z,rect=[0,-200,0.5,200]);
24 plot2d(F,phase_H3Z,rect=[0,-200,0.5,200]);
```

Scilab code Exa 6.4 Linear Phase Filters

```
1 //linear phase filters
2 z=%z
3 H1Z=((z^3)+2*(z^2)+2*z+1)/(z^3);
4 //from pole zero diagram its not a linear phase
    filter
5 H2Z=(z^4+4.25*z^2+1)/(z^4);
6 xset('window',1);
```


Figure 6.2: Linear Phase Filters

```
7 plzr(H2Z);
8 //from pole zero diagram and LPF
9 // characteristics its a linear phase filter
10 H3Z=((z^4+2.5*z^3-2.5*z-1)/(z^4));
11 xset('window',2);
12 plzr(H3Z);
13 //from pole zero diagram and LPF
14 // characteristics its a linear phase filter
```

Scilab code Exa 6.6 Frequency Response and Filter characteristics

1 //Frequency Response and filter characteristics

Figure 6.3: Linear Phase Filters

Figure 6.4: Frequency Response and Filter characteristics

```
2 z = \% z;
3 F=0:(0.5/200):0.5;
4 z=exp(%i*2*%pi*F);
5 H1 = (1/3) * (z+1+z^{-1});
6 H_2=(z/4)+(1/2)+(1/4)*(z^{-1});
7 H1 = abs(H1);
8 H2 = abs(H2);
9 a=gca();
10 a.x_location="origin";
11 subplot(211);
12 plot2d(F,H1);
13 xlabel('Digital frequency F');
14 ylabel('impuse function H1(f)');
15 subplot(212);
16 plot2d(F,H2);
17 xlabel('Digital frequency F');
18 ylabel('impuse function H1(f)');
```

Scilab code Exa 6.7a Filters and Pole Zero Plots

```
1 z = %z;
2 s = %s;
3 F=0:(0.5/400):0.5;
4 s=exp(%i*2*%pi*F);
5 H1Z=(z^{4+1})/(z^{4+1}.6982*z^{2+0}.7210);
6 for i=1:401
7
       H1(i) = (s(i)^{4+1}) / (s(i)^{4+1}.6982 * s(i)^{2+0}.7210);
8 end
9 H1=abs(H1);
10 plzr(H1Z);
11 a=gca();
12 xset('window',1);
13 a.x_location="origin";
14 a.y_location="origin";
15 plot2d(F,H1)
```


Figure 6.5: Filters and Pole Zero Plots

```
16 xlabel('Digital frequency F');
17 ylabel('magnitude');
18 xtitle('Magnitude spectrum of bandpass filter');
```

Scilab code Exa 6.7b Filters and Pole Zero Plots

```
1 z=%z;
2 s=%s;
3 F=0:(0.5/400):0.5;
4 s=exp(%i*2*%pi*F);
5 H1Z=(z^2+1-0.618*z)/(z^2-0.5857*z+0.898);
6 for i=1:401
7 H1(i)=(s(i)^2+1-0.618*s(i))/(s(i)^2-0.5857*s(i)
+0.898);
```


Figure 6.6: Filters and Pole Zero Plots

```
8 end
9 H1=abs(H1);
10 plzr(H1Z);
11 a=gca();
12 xset('window',1);
13 a.x_location="origin";
14 a.y_location="origin";
15 plot2d(F,H1)
16 xlabel('Digital frequency F');
17 ylabel('magnitude');
18 xtitle('Magnitude spectrum of bandpass filter');
```

Scilab code Exa 6.8 Digital resonator Design

Figure 6.7: Filters and Pole Zero Plots

Figure 6.8: Filters and Pole Zero Plots

```
1 // Digital Resonator design with peak gain 50 HZ
2 //and 3 db bandwidth of 6HZ at sampling of 300 HZ
3 clf();
4 s=%s;
5 F = 0: 150;
6 f=F/300;
7 s=exp(%i*2*%pi*f);
8 for i=1:151
9
       H1(i) = (0.1054*(s(i)^2))/(s(i)^2-0.9372*s(i))
          +0.8783);
10 end
11 H1=abs(H1);
12 H2=H1(40:60);
13 F1 = 40:60;
14 f1=F1/300;
15 a=gca();
16 a.x_location="origin";
17 a.y_location="origin";
18 plot2d(F,H1)
19 xlabel('Analog frequency F');
20 ylabel('magnitude');
21 xtitle('Magnitude spectrum of digital resonator with
      peak 50HZ');
22 xset('window',1);
23 a.x_location="origin";
24 a.y_location="origin";
25 plot2d(F1,H2)
26 xlabel('Analog frequency F');
27 ylabel('magnitude');
28 xtitle('passband detail');
```


Figure 6.9: Digital resonator Design

Figure 6.10: Digital resonator Design

Scilab code Exa 6.9 Periodic Notch Filter Design

```
1 // Periodic notch filter design at 60 HZ and sampling
       frequency 300HZ
2 z = %z;
3 f=0:(0.5/400):0.5;
4 z1=exp(%i*2*%pi*f);
5 for i=1:401
       H1Z(i) = (z1(i)^{5}-1)/((z1(i)^{5})-(0.9^{5}));
6
7
       H2Z(i) = (z1(i)^{5}-1)/((z1(i)^{5}) - (0.99^{5}));
8 end
9 H1Z=abs(H1Z);
10 H2Z=abs(H2Z);
11 N1z=(1-z^{-5})/(1-z^{-1});
12 H3z=(N1z)/(horner(N1z,z/0.9));
13 H4z=(N1z)/(horner(N1z,z/0.99));
14 H3z=horner(H3z,z1);
15 H4z=horner(H4z,z1);
16 a=gca();
17 a.x_location="origin";
18 a.y_location="origin";
19 plot2d(f,H1Z);
20 plot2d(f,H2Z);
21 xlabel('Digital frequency f');
22 ylabel('magnitude');
23 xtitle('Periodic Notch Filter N=5,R=0.9,0.99');
24 xset('window',1);
25 plot2d(f,H3z);
26 plot2d(f,H4z);
27 xlabel('Digital frequency f');
28 ylabel('magnitude');
29 xtitle('Notch Filter that also passes DC N=5,R
      =0.9, 0.99');
```


Figure 6.11: Periodic Notch Filter Design

Figure 6.12: Periodic Notch Filter Design

Chapter 7

Digital Processing of Analog Signals

Scilab code Exa 7.3 Sampling oscilloscope

```
1 //Sampling Oscilloscope Concepts
2 fo=100;a=50;
3 s=(a-1)*fo/a;
4 B=100-s;
5 i=s/(2*B);
6 \quad i=ceil(i);
7 disp(i, 'The sampling frequency can at max divided by
       i');
8 disp(s,2*B, 'range of sampling rate is between s and
      2*B');
9 fo1=100;
10 a=50;
11 s1=(a-1)*fo1/a;
12 B1 = 400 - 4 * s1;
13 j=s1/(2*B1);
14 j=ceil(j);
15 disp(j,'The sampling frequency can at max divided by
       j');
16 disp(s1,2*B1, 'range of sampling rate is between s1
```

and 2*B1');

Scilab code Exa 7.4 Sampling of Band pass signals

```
1 //sampling of bandpass signals
2 fc=4;fl=6;
3 \text{ B=fl-fc};
4 \text{ xt} = [0 \ 1 \ 2 \ 1];
5 \text{ xtt} = [0 \ 1 \ 2];
6 a=0;b=1;c=2;
7 xta=[xt];
8 \text{ xtb} = [0 \ 0 \ 2 \ 1 \ 0];
9 \text{ xtc} = [0 \ 0 \ 0 \ 2 \ 1 \ 0];
10 xt1=[xta xta xta];
11 xt2=[xtb xtb(length(xtb):-1:2) xtb(2:length(xtb))
      xtb(length(xtb):-1:2)];
12 xt3=[xtc(length(xtc):-1:2) xtc(3:length(xtc)) zeros
      (1:7) xtc(length(xtc):-1:2) xtc(3:length(xtc))];
13 f1=0:length(xt1)-1;
14 f_{2}=[0 \ 1 \ 1.001 \ 2:6 \ 6.001 \ 7 \ 7.001 \ 8:12 \ 12.001];
15 f3=[-10:-8 -7.99 -7:-6 -5.99 -5:6 6.01 7:8 8.01
      9:10];
16 subplot(211);
17 plot2d(f1,xt1);
18 xtitle("spectrum of signal sampled at 4KHZ");
19 subplot(212);
20 plot2d(f2,xt2);
21 xtitle("spectrum of signal sampled at 7KHZ");
22 xset('window',1);
23 b=gca();
24 b.y_location="origin"
25 plot2d(f3,xt3);
26 xtitle("spectrum of signal sampled at 14KHZ");
```


Figure 7.1: Sampling of Band pass signals

Scilab code Exa 7.6 Signal Reconstruction from Samples

```
1 // signal reconstruction from samples
2 // (a) By step interpolation method
3 x=[-1 2 3 2];
4 t=2.5;
5 ts=1;
6 t1=ceil(t);
7 t2=floor(t);
8 x1t=x(t2)
9 // (b) By linear interpolation method
10 x2t=(x(t1)+x(t2))/2
11 // (c) By sinc interpolation method
```


Figure 7.2: Sampling of Band pass signals

```
12 x3t=0; x1=[1 \ 2 \ 3 \ 4];
13 for k=1:4
       x3t=x3t+(x1(k)*sinc(%pi*(t-(k-1))));
14
15 \text{ end}
16 x3t//sinc interpolated value of x(2.5)
17 //(d) raised cosine interpolation method
18 x4t=0;
19 for k=1:4
       p=(\cos(0.5*\%pi*(t-k+1))/(1-(t-k+1)^2));
20
       xt=x1(k)*sinc(%pi*(t-k+1))*p;
21
22
        x4t = x4t + xt;
23 \text{ end}
24 x4t//raised cosine interpolated value of x(2.5)
```

Scilab code Exa 7.7 Zero Interpolation and Spectrum Replication

```
1 //Zero interpolation and spectrum replication
2 XF=[0 1 2 1];
```

```
3 X1F = [XF XF XF 0];
4 YF = [X1F X1F];
5 DF=0.5*[XF XF 0];
6 \text{ GF}=0.5*[XF \ 0 \ XF \ 0 \ XF \ 0];
7 f = -0.2:0.1:1;
8 f1 = -0.1:0.05:1.15;
9 f2 = -0.4:0.2:1.2;
10 f3 = -0.2:0.1:1.2;
11 length(f3),length(GF)
12 a=gca();
13 a.y_location="origin";
14 subplot(211);
15 plot2d(f,X1F);
16 ylabel('X1F');
17 subplot(212);
18 a.y_location="origin";
19 plot2d(f1,YF);
20\, ylabel('{\rm YF}\,');
21 xset('window',1);
22 b=gca();
23 b.y_location="origin";
24 subplot(211);
25 plot2d(f2,DF);
26 ylabel('DF');
27 subplot(212);
28 b.y_location="origin";
29 plot2d(f3,GF);
30 ylabel('GF');
```

Scilab code Exa 7.8 Up Sampling and Filtering

Figure 7.3: Zero Interpolation and Spectrum Replication

Figure 7.4: Zero Interpolation and Spectrum Replication

```
1 clf();
2 X = [0 0.5 1 0.5];
3 XF = [X 0];
4 WF = [X X X O];
5 f = -0.5:0.25:0.5;
6 f1 = -0.75: 0.125: 0.75;
7 HF = [0 \ 1 \ 1 \ 1 \ 0];
8 f2=[-0.126,-0.125:0.125:0.125,0.126];
9 for i=1:5
       YF(i) = WF(i) * HF(i);
10
11 end
12 f3=[-0.126 -0.125 0 0.125 0.126];
13 a=gca();
14 a.y_location="origin";
15 subplot(211);
16 plot2d(f,XF);
17 xtitle('spectrum of XF');
18 a.y_location="origin";
19 subplot(212);
20 plot2d(f1,WF);
21 xtitle('spectrum of WF');
22 xset('window',1);
23 b=gca();
24 b.y_location="origin";
25 subplot(211);
26 plot2d(f2,HF);
27 xtitle('spectrum of HF');
28 b.y_location="origin";
29 subplot(212);
30 plot2d(f3,YF);
31 xtitle('spectrum of YF');
```


Figure 7.5: Up Sampling and Filtering

Figure 7.6: Up Sampling and Filtering

Scilab code Exa 7.9 Quantisation Effects

```
1 //(a) Quantisation effects
2 sig=0.005;
3 D=4;
4 B=\log^2(D/(sig*sqrt(12)));//no.of samples
5 //value of B to ensure quantisation error to 5mv
6 //(b) Quantisation error and noise
7 \text{ xn} = 0:0.2:2.0;
8 xqn=[0 0 0.5 0.5 1 1 1 1.5 1.5 2 2];
9 en=xn-xqn;//quantization error
10 //Quantisation signal top noise ratio
11 x=0; e=0;
12 for i=1:length(xn)
       x=x+xn(i)^2;
13
       e=e+en(i)^2;
14
15 end
16 / \text{method} 1
17 SNRQ = 10 * log 10 (x/e)
18 / \text{method} 2
19 SNRQ=10*log10(x/length(xn))+10.8+20*log10(4)-20*
      log10(2)
20 SNRS=10*log10(1.33)+10*log10(12)+20*log10(4)-20*
      log10(2)
21 //from results we see that SNRS is statistical
```

```
estimate
```

Scilab code Exa 7.10 ADC considerations

```
1~//{\rm ADC} considerations
```

```
2 //(a) Aperture time TA
```

```
3 B=12;
```

```
4 fo=15000;//band limited frquency
```

```
5 TAm=(1/((2^B)))/(%pi*fo);
```

```
6 \text{ TAm} = \text{TAm} * 10^9
```

```
7 //Hence TA must satisfy TA<=TAm nano sec
8 //(b) conversion time of quantizer
9 TA = 4 * 10^{-9};
10 TH=10*10^-6; //hold time
11 S=30*10^3;
12 TCm = 1/S - TA - TH;
13 TCm = TCm * 10^6
14 //Hence TC must satisfy TC<=TCm micro sec
15 //(c)Holding capacitance C
16 Vo = 10;
17 TH = 10 * 10^{-6};
18 B=12;
19 R=10<sup>6</sup>;//input resistance
20 delv=Vo/(2^(B+1));
21 Cm=(Vo*TH)/(R*delv);
22 \quad Cm = Cm * 10^9
23 //Hence C must satisfy C>=Cm nano farad
```

Scilab code Exa 7.11 Anti Aliasing Filter Considerations

```
1 // Anti Aliasing filter considerations
2 //minimum stop band attenuation As
3 B=input('enter no. of bits');//no. of samples
4 n=input('enter band width in KHZ');
5 As=20*log10(2^B*sqrt(6))
6 //nomalised frequency
7 Vs=(10^(0.1*As)-1)^(1/(2*n))
8 fp=4;//pass edge frequency
9 fs=Vs*fp//stop band frquency
10 S=2*fs//sampling frequency
11 fa=S-fp//aliaed frequency
12 Va=fa/fp;
13 //Attenuation at aliased frequency
14 Aa=10*log10(1+Va^(2*n))
```


Figure 7.7: Anti Imaging Filter Considerations

Scilab code Exa 7.12 Anti Imaging Filter Considerations

```
1 // Anti Imaging Filter considerations
2 Ap=0.5; // passband attenuation
3 fp=20; // passband edge frequency
4 As=60; // stopband attenuation
5 S=42.1;
6 fs=S-fp; // stopband edge frequency
7 e=sqrt(10^(0.1*Ap)-1);
8 e1=sqrt(10^(0.1*As)-1);
9 n=(log10(e1/e))/(log10(fs/fp));
10 n=ceil(n)// design of nth order butworth filter
11 //(b) Assuming Zero-order hold sampling
12 S1=176.4;
```

```
13 fs1=S1-fp;
```

```
14 Ap=0.316;
15 e2=sqrt (10<sup>(0.1*Ap)-1</sup>);
16 n1=(log10(e1/e2))/(log(fs1/fp));//new order of
      butworth filter
17 n1=ceil(n1)
18 f=0:100;
19 x=abs(sinc(f*%pi/S));
20 f1=0:500;
21 x1=abs(sinc(f1*\%pi/S1));
22 \ a = gca();
23 subplot(211);
24 plot2d(f,x);
25 xtitle("spectra under normal sampling condition","f(
      kHZ)","sinc(f/s1)");
26 subplot(212);
27 plot2d(f1,x1);
28 xtitle("spectra under over sampling condition","f(
     kHZ)","sinc(f/s1)");
```

Chapter 8

The Discrete Fourier Transform and its Applications

Scilab code Exa 8.1 DFT from Defining Relation

```
1 //DFT from defining relation
2 //N-point DFT
3 x=[1 2 1 0];
4 XDFT=dft(x,-1);
5 disp(XDFT, 'The DFT of x[n] is ');
6 //DFT of periodic signal x with period N=4
```

Scilab code Exa 8.2 The DFT and conjugate Symmetry

```
1 //The DTFT and conjugate symmetry
2 //8-point DFT
3 x=[1 1 0 0 0 0 0];
4 XDFT=dft(x,-1);
5 disp(XDFT, 'The DFT of x is ');
6 disp('from conjugate symmetry we see XDFT[k]=XDFT[8-k]');
```

Scilab code Exa 8.3 Circular Shift and Flipping

```
1 // Circular shift and flipping
2 //(a) right circular shift
3 y=[1 2 3 4 5 0 0 6];
4 f=y;g=y;h=y;
5 for i=1:2
       b=f(length(f));
6
7
       for j=length(f):-1:2
8
           f(j)=f(j-1);
9
        end
10
        f(1) = b;
11 end
12 disp(f, 'By right circular shift y[n-2] is ');
13 //(b) left circular shift
14 for i=1:2
15
       a=g(1);
       for j=1:length(g)-1
16
17
           g(j) = g(j+1);
18
        end
        g(length(g))=a;
19
20 end
21 disp(g, 'By left circular shift y[n+2] is ');
22 //(c)flipping property
23 h=[h(1) h(length(h):-1:2)];
24 disp(h, 'By flipping property y[-n] is ');
```

Scilab code Exa 8.4 Properties of DFT

```
1 x=[1 2 1 0];
2 XDFT=dft(x,-1)
3 //(a)time shift property
```

```
4 y=x;
5 for i=1:2
       a=y(1);
6
7
       for j=1:length(y)-1
8
            y(j) = y(j+1);
9
        end
10
        y(length(y))=a;
11 end
12 YDFT = dft(y, -1)
13 disp(YDFT, 'By Time-Shift property DFT of x[n-2] is ')
      ;
14 //(b) flipping property
15 g=[x(1) x(length(x):-1:2)]
16 GDFT = dft(g, -1)
17 disp(GDFT, 'By Time reversal property DFT of x[-n] is
      '):
18 //(c) conjugation property
19 p=XDFT;
20 PDFT = [p(1); p(4:-1:2)];
21 disp(YDFT, 'BY conjugation property DFT of x * [n] is ')
      ;
```

Scilab code Exa 8.5a Properties of DFT

```
1 // properties of DFT
2 //al)product
3 xn=[1 2 1 0];
4 XDFT=dft(xn,-1)
5 hn=xn.*xn
6 HDFT=dft(hn,-1)
7 HDFT1=1/4*(convol(XDFT,XDFT))
8 HDFT1=[HDFT1,zeros(8:12)];
9 HDFT2=[HDFT1(1:4);HDFT1(5:8);HDFT1(9:12)];
10 HDFT3=[0 0 0 0];
11 for i=1:4
```

```
12
       for j=1:3
13
            HDFT3(i) = HDFT3(i) + HDFT2(j,i);
14
        end
15 \text{ end}
16 disp(HDFT3, 'DFT of x[n]^2 is ');
17 / (a2) periodic convolution
18 vn=convol(xn,xn);
19 vn=[vn, zeros(8:12)];
20 vn = [vn(1:4); vn(5:8); vn(9:12)];
21 \text{ vn1} = [0 \ 0 \ 0 \ 0];
22 for i=1:4
23
       for j=1:3
24
            vn1(i)=vn1(i)+vn(j,i);
25
        end
26 end
27 VDFT = dft(vn1, -1);
28 VDFT1=XDFT.*XDFT;
29 disp(VDFT1, 'DFT of x[n] * x[n] is ');
30 //a3) signal energy (parcewell's theorem)
31 \ xn2=xn^2;
32 E=0;
33 for i=1:length(xn2)
       E=E+abs(xn2(i));
34
35 end
36 \quad XDFT2 = XDFT^2
37 E1=0;
38 for i=1:length(XDFT2)
39
       E1=E1+abs(XDFT2(i));
40 end
41 E,(1/4)*E1;
42 disp(1/4*E1, 'The energy of the signal is');
```

Scilab code Exa 8.5b Properties of DFT

1 / b1) modulation

```
2 XDFT = [4 - 2*\%i \ 0 \ 2*\%i];
3 xn=dft(XDFT,1)
4 for i=1:length(xn)
        zn(i)=xn(i)*%e^((%i*%pi*(i-1))/2);
5
6 end
7 disp(zn, 'The IDFT of XDFT[k-1] is ');
8 ZDFT = [2*\%i 4 - 2*\%i 0];
9 zn1=dft(ZDFT,1)
10 //b2) periodic convolution
11 HDFT=(convol(XDFT,XDFT))
12 HDFT = [HDFT, zeros (8:12)];
13 HDFT = [HDFT (1:4); HDFT (5:8); HDFT (9:12)];
14 HDFT1 = [0 \ 0 \ 0];
15 for i=1:4
16
       for j=1:3
17
            HDFT1(i) = HDFT1(i) + HDFT(j,i);
18
        end
19 end
20 HDFT1;
21 hn=dft(HDFT1,1)
22 hn1=4*(xn.*xn);
23 disp(hn1, 'The IDFT of XDFT*XDFT is ');
24 / b3) product
25 WDFT=XDFT.*XDFT;
26 \text{ wn} = dft(WDFT, 1)
27 wn1 = convol(xn, xn);
28 wn1=[wn1, zeros(8:12)];
29 wn1=[wn1(1:4);wn1(5:8);wn1(9:12)];
30 WN = [0 0 0 0];
31 for i=1:4
32
       for j=1:3
33
            WN(i) = WN(i) + wn1(j,i);
34
        end
35 \text{ end}
36 disp(WN, 'The IDFT of XDFT.XDFT is ');
37 //b4) Central ordinates and signal Energy
38 E=0;
39 for i=1:length(xn)
```

Scilab code Exa 8.5c Properties of DFT

```
1 // Regular convolution
2 xn=[1 2 1 0];
3 yn=[1 2 1 0 0 0 0];
4 YDFT=dft(yn,-1)
5 SDFT=YDFT.*YDFT
6 sn=dft(SDFT,1)
7 sn1=convol(xn,xn)
```

Scilab code Exa 8.6 Signal and Spectrum Replication

```
1 // Signal and spectrum replication
2 \text{ xn} = [2 \ 3 \ 2 \ 1];
3 XDFT = dft(xn, -1)
4 yn=[xn xn xn];
5 YDFT = dft(yn, -1)
6 YDFT1=3*[XDFT(1:1/3:length(XDFT))];
7 for i=2:3
8
        YDFT1(i:3:length(YDFT1))=0;
9 \text{ end}
10 YDFT1(12:-1:11)=0;
11 disp(YDFT1, 'the DFT of x[n/3] is ');
12 hn = [xn(1:1/3:length(xn))]
13 for i=2:3
       hn(i:3:length(hn))=0;
14
15 \text{ end}
16 hn(12:-1:11)=0;
17 hn
```

```
18 HDFT=dft(hn,-1)
19 HDFT1=[XDFT;XDFT;XDFT];
20 disp(HDFT1, 'the DFT of y[n]=[x[n],x[n],x[n]] is ');
```

Scilab code Exa 8.7 Relating DFT and DTFT

Scilab code Exa 8.8 Relating DFT and DTFT

```
1 // Relating DFT and DTFT

2 xn=[1 2 1 0];

3 XDFT=dft(xn,-1);

4 // for F=k/4,k=0,1,2,3

5 for k=1:4

6      XF(k)=1+2*%e^(-%i*%pi*(k-1)/2)+%e^(-%i*%pi*(k-1));

7 end

8 XF,XDFT

9 disp(XF, 'The DFT of x[n] is ');
```

Scilab code Exa 8.9a The DFT and DFS of sinusoids

Figure 8.1: The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:0.5/1000:5.5/100;
3 xt=4*cos(100*%pi*n2');
4 n=0:(0.5)/100:(5.5)/100;//F=3/12 hence N=12
5 xn=4*cos(100*%pi*n');
6 XDFT=dft(xn,-1);
7 n1=0:11;
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
12 xset('window',1);
13 b=gca();
14 b.x_location="origin";
15 plot2d3('gnn',n1,XDFT);
```


Figure 8.2: The DFT and DFS of sinusoids

Scilab code Exa 8.9b The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:1/1280:31/128;
3 xt=4*sin(72*%pi*n2');
4 n=0:1/128:31/128;//F=9/32 hence N=32
5 xn=4*sin(72*%pi*n');
6 XDFT=abs(dft(xn,-1));
7 n1=0:31;
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
12 xset('window',1);
13 b=gca();
14 b.x_location="origin";
15 plot2d3('gnn',n1,XDFT);
```


Figure 8.3: The DFT and DFS of sinusoids

Scilab code Exa 8.9c The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:1/840:6/21;
3 xt=4*sin(72*%pi*n2')-6*cos(12*%pi*n2');
4 n=0:1/21:6/21;//F=3/12 hence N=12
5 xn=4*sin(72*%pi*n')-6*cos(12*%pi*n');
6 XDFT=abs(dft(xn,-1));
7 n1=0:6;
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
```


Figure 8.4: The DFT and DFS of sinusoids

```
12 xset('window',1);
13 b=gca();
14 b.x_location="origin";
15 plot2d3('gnn',n1,XDFT);
```

Scilab code Exa 8.9d The DFT and DFS of sinusoids

```
1 //DFT and DFS of sinusoids
2 n2=0:1/2400:23/240;
3 xt=1+4*sin(120*%pi*n2')+4*sin(40*%pi*n2');
4 n=0:1/240:23/240;//F=9/32 hence N=32
5 xn=1+4*sin(120*%pi*n')+4*sin(40*%pi*n');
6 XDFT=abs(dft(xn,-1));
7 n1=0:23;
```


Figure 8.5: The DFT and DFS of sinusoids

Figure 8.6: The DFT and DFS of sinusoids

Figure 8.7: The DFT and DFS of sinusoids

```
8 a=gca();
9 a.x_location="origin";
10 plot2d(n2,xt);
11 plot2d3('gnn',n,xn);
12 xset('window',1);
13 b=gca();
14 b.x_location="origin";
15 plot2d3('gnn',n1,XDFT);
```

Scilab code Exa 8.10 DFS of sampled Periodic Signals

```
1 //DFS of sampled periodic signals
2 xn=[0 ones(2:16) 0 -ones(18:32)];
3 XDFS=0.032*dft(xn,-1);
```


Figure 8.8: The DFT and DFS of sinusoids

Scilab code Exa 8.11 The effects of leakage

```
1 // Effects of leakage
2 n1=0:0.005:0.1;
3 n2=0:0.005:0.125;
4 n3=0:0.005:1.125;
5 xt1=(2*cos(20*%pi*n1')+5*cos(100*%pi*n1'));
6 xt2=(2*cos(20*%pi*n2')+5*cos(100*%pi*n2'));
7 xt3=(2*cos(20*%pi*n3')+5*cos(100*%pi*n3'));
8 XDFS1=abs(dft(xt1,-1))/20;
9 XDFS2=abs(dft(xt2,-1))/25;
```

```
10 XDFS3=abs(dft(xt3,-1))/225;
11 f1=0:5:100;
12 f2=0:4:100;
13 f3=0:100/225:100;
14 a=gca();
15 a.x_location="origin";
16 plot2d3('gnn',f1,XDFS1);
17 xlabel('analog frequency');
18 ylabel('Magnitude');
19 xset('window',1);
20 subplot(211);
21 plot2d3('gnn',f2,XDFS2);
22 xlabel('analog frequency');
23 ylabel('Magnitude');
24 subplot(212);
25 plot2d3('gnn',f3,XDFS3);
26 xlabel('analog frequency');
27 ylabel('Magnitude');
```

Scilab code Exa 8.15a Methods to find convolution

Figure 8.9: The effects of leakage

Figure 8.10: The effects of leakage

```
10 y1n=[0,0,0,y1n];
11 yn=yon+y1n
12 yn1=convol(xn,hn)
```

Scilab code Exa 8.15b Methods to find convolution

```
1 //(b) overlap -save method
2 xn=[1 2 3 3 4 5];
3 hn=[1 1 1];
4 xon=[0 0 1 2 3];
5 x1n=[2 3 3 4 5];
6 x2n=[4 5 0 0 0];
7 yon=convol(xon,hn);
8 y1n=convol(x1n,hn);
9 y2n=convol(x2n,hn);
10 yno=yon(3:5);
11 yn1=y1n(3:5);
12 yn2=y2n(3:5);
13 yn=[yno yn1 yn2]
14 YN=convol(xn,hn)
```

Scilab code Exa 8.16 Signal Interpolation using FFT

```
1 // signal interpolation using FFT
2 xn=[0 1 0 -1];
3 XDFT=dft(xn,-1)
4 ZT=[0 -2*%i 0 zeros(1:27) 0 2*%i];
5 xn1=dft(ZT,1);
6 t=0:1/length(xn1):1-(1/length(xn1));
7 a=gca();
8 a.x_location="origin";
```


Figure 8.11: Signal Interpolation using FFT

Scilab code Exa 8.17 The Concept of Periodogram

```
1 //concept of periodogram
2 xn=[0 1 0 -1];
3 N=4;
4 XDFT=dft(xn,-1);
5 for i=1:length(XDFT)
6     p(i)=(1/N)*abs(XDFT(i)^2);
7 end
8 p//periodogram
```

Scilab code Exa 8.18 DFT from matrix formulation

```
1 //The DFT from the matrix formulation
2 xn=[1;2;1;0];
3 w=exp(-%i*%pi/2);
4 for i=1:4
5 for j=1:4
6 WN(i,j)=w^((i-1)*(j-1));
7 end
8 end
9 XDFT=WN*xn
```

Scilab code Exa 8.19 Using DFT to find IDFT

```
1 // using DFT to find IDFT

2 XDFT=[4;-2*%i;0;2*%i];

3 XDFTc=[4;2*%i;0;-2*%i];

4 w=exp(-%i*%pi/2);

5 for i=1:4

6 for j=1:4

7 WN(i,j)=w^((i-1)*(j-1));

8 end

9 end

10 xn=1/4*(WN*XDFTc)
```

Scilab code Exa 8.20 Decimation in Frequency FFT algorithm

```
1 //A four point decimation—in—frequency FFT algorithm 2 x=[1 \ 2 \ 1 \ 0];
```

```
3 w=-%i;
4 xdft(1)=x(1)+x(3)+x(2)+x(4);
5 xdft(2)=x(1)-x(3)+w*(x(2)-x(4));
6 xdft(3)=x(1)+x(3)-x(2)-x(4);
7 xdft(4)=x(1)-x(3)-w*(x(2)-x(4));
8 XDFT=dft(x,-1);
9 xdft,XDFT
```

Scilab code Exa 8.21 Decimation in time FFT algorithm

```
1 //A four point decimation-in-time FFT algorithm
2 x=[1 2 1 0];
3 w=-%i;
4 xdft=[0 0 0 0];
5 for i=1:4
6    for j=1:4
7        xdft(i)=xdft(i)+x(j)*w^((i-1)*(j-1));
8    end
9 end
10 XDFT=dft(x,-1);
11 xdft,XDFT
```

Scilab code Exa 8.22 4 point DFT from 3 point sequence

```
1 //A 4-point DFT from a 3-point sequence
2 xn=[1;2;1];
3 w=exp(-%i*%pi/2);
4 for i=1:4
5 for j=1:3
6 WN(i,j)=w^((i-1)*(j-1));
7 end
8 end
9 XDFT=WN*xn
```

Scilab code Exa 8.23 3 point IDFT from 4 point DFT

```
1 //A 3-point IDFT from 4-point DFT
2 XDFT=[4;-2*%i;0;2*%i];
3 w=exp(-%i*%pi/2);
4 for i=1:4
5 for j=1:3
6 WN(i,j)=w^((i-1)*(j-1));
7 end
8 end
9 WI=WN';
10 xn=1/4*(WI*XDFT)
```

Scilab code Exa 8.24 The importance of Periodic Extension

```
1 //The importance of Periodic extension
2 / (a) For M=3
3 x = [1 2 1];
4 XDFT = dft(x, -1)
5 w = \exp(-\%i * 2 * \% pi/3);
6 for i=1:3
7
        for j=1:3
            WN(i,j) = w^{((i-1)*(j-1))};
8
9
        end
10 \text{ end}
11 WI=WN';
12 xn=1/3*WI*XDFT
13 //The result is periodic with M=3 & 1 period equals
      x [n]
14 //(b) For M=4
15 y = [1 \ 2 \ 1 \ 0];
```

```
16 YDFT=dft(y,-1)
17 w=exp(-%i*%pi/2);
18 for i=1:4
19 for j=1:4
20 WN(i,j)=w^((i-1)*(j-1));
21 end
22 end
23 WI=WN';
24 yn=1/4*WI*YDFT
```

Chapter 9

Design of IIR Filters

Scilab code Exa 9.1 Response Invariant Mappings

```
1 //Response in variant mappings
2 s = \% s; z = \% z;
3 HS=1/(s+1);
4 f = 0:0.05:0.5;
5 HS1=horner(HS,(%i*%pi*2*f'));
6 \text{ ts=1};
7 HZ=z/(z-0.3679);
8 HZ1=horner(HZ, exp(%i*%pi*2*f'));
9 a=gca();
10 a.x_location="origin";
11 subplot(211)
12 plot2d(f, HS1);
13 plot2d(f,HZ1);
14 xlabel('Analog frequency f(Hz)');
15 ylabel('Magnitude');
16 xtitle('magnitude of H(s) and H(z)');
17 HZ1=HZ1-0.582; // magnitude after gain matching at dc
18 b=gca();
19 b.x_location="origin";
20 subplot(212);
21 plot2d(f,HS1);
```

```
22 plot2d(f,HZ1);
23 xlabel('Analog frequency f(Hz)');
24 ylabel('Magnitude');
25 xtitle('magnitude after gain matching at DC');
26 //Impulse response of analog and digital filter
27 t=0:0.01:6;
28 ht = \exp(-t');
29 n=0:6;
30 \quad hn = exp(-n');
31 xset('window',1)
32 \ c = gca();
33 subplot(211);
34 plot2d(t,ht);
35 plot2d3('gnn',n,hn);
36 xlabel('DT index n and time t=nts');
37 ylabel('Amplitude');
38 xtitle('Impulse response of analog and digital
      filter ');
39 //Step response of analog and digital filter
40 t=0:0.01:6;
41 st=1 - \exp(-t');
42 n=0:6;
43 sn = (\%e - \%e^{(-n')}) / (\%e^{-1});
44 c=gca();
45 subplot(212);
46 plot2d(t,st);
47 plot2d3('gnn',n,sn);
48 xlabel('DT index n and time t=nts');
49 ylabel('Amplitude');
50 xtitle('Step response of analog and digital filter')
      ;
```


Figure 9.1: Response Invariant Mappings

Figure 9.2: Response Invariant Mappings

Scilab code Exa 9.2 Impulse Invariant Mappings

```
1 //Impulse invariant mappings
2 //(a) converting H(s)=4s+7/s^2+5s+4 to H(z) using
      impulse invariance
3 s = \% s;
4 z = \% z;
5 HS = (4 * s + 7) / (s^{2} + 5 * s + 4);
6 pfss(HS)
7 \text{ ts}=0.5;
8 HZ=3*z/(z-%e^(-4*ts))+z/(z-%e^(-ts))
9 //(b) converting H(s)=4s+7/s^2+5s+4 to H(z) using
      impulse invariance
10 HS1=4/((s+1)*(s^2+4*s+5))
11 pfss(HS1);
12 HZ1=2*z/(z-%e^-ts)+(2*1.414*z^2*cos(-0.75*%pi)
      -2*1.414*(z/%e)*cos(0.5-0.75*%pi))/(z^2-2*(z/%e)*
      \cos(0.5) + \%e^{-2}
```

Scilab code Exa 9.3ab Modified Impulse Invariant Design

```
1 //(a)Impulse invariant design
2 s=%s;z=%z;
3 HS=1/(s+1);
4 H1s=horner(HS,3*s/%pi)
5 H1z=%pi/3*z/(z-%e^(-%pi/3))
6 //Modified inmpulse invariant design
7 HZ=z/(z-1/%e);
8 HMZ=0.5*(z+1/%e)/(z-1/%e);//modified transfer
function
9 H1Z=HZ/horner(HZ,1)
10 HM1Z=HMZ/horner(HMZ,1)
```

```
11 f=0:0.05:0.5;
```


Figure 9.3: Modified Impulse Invariant Design

Scilab code Exa 9.3cd Modified Impulse Invariant Design

1 //modified Impulse invariant Design

```
2 //(c)H(s)=4s+7/s^{2}+5s+4
3 \ s = \% s; z = \% z;
4 HS = (4 * s + 7) / (s^{2} + 5 * s + 4);
5 [d1]=degree(numer(HS));
6 [d2]=degree(denom(HS));
7 HZ = ((3*z)/(z-%e^{-2})) + (z/(z-%e^{-0.5}))
8 \text{ if } (d2-d1==1) \text{ then}
9
        h = (4+7/\%inf)/(1+5/\%inf+4/\%inf)
        HMZ = HZ - 0.5 * h
10
11 else
12
        HMZ = HZ
13 end
14 HS1=4/((s+1)*(s^2+4*s+5))
15 HZ1=(0.2146*z<sup>2</sup>+0.093*z)/(z<sup>3</sup>-1.2522*z<sup>2</sup>+0.527*z
       -0.0821);
16 [d1]=degree(numer(HS1));
17 [d2]=degree(denom(HS1));
18 if (d2-d1==1) then
        HMZ1 = HZ1 - 0.5 * h
19
20 else
21
        HMZ1 = HZ1
22 end
```

Scilab code Exa 9.5 Mappings from Difference Algorithms

```
1 //Mappings from difference algorithms
2 //Backward difference mappings
3 s=%s;z=%z;
4 ts=1;a=1;
5 HS=1/(s+a);
6 HZa=horner(HS,(z-1)/(z*ts))
7 z1=roots(denom(HZa))//for ts >0 HZa always stable
8 HZb=horner(HS,(z-1)/ts)
9 z2=roots(denom(HZb))//stable only for 0<ats<2
10 HZc=horner(HS,(z^2-1)/(2*z*ts))
```

11 z3=roots(denom(HZc))//magnitude of 1 pole is always >1 hence unstable

Scilab code Exa 9.6 Mappings From Integration Algorithms

```
1 //Mappings from integration algorithm
2 //(a) Trapezoidal integration algorithm
3 s=%s;z=%z;
4 a=input('enter the value of a')
5 ts=input('enter the value of sampling time')
6 HS=1/(s+1);
7 HZa=horner(HS,2*(z-1)/(ts*(z+1)))
8 za=roots(denom(HZa))//pole always less than 1 ,hence
HZ is stable
9 //(b)simphson's algorithm
10 HZb=horner(HS,3*(z^2-1)/(ts*(z^2+4*z+1)))
11 zb=roots(denom(HZb))
12 //magnitude of 1 pole always greater than 1 ,hence
HZ is unstable
```

Scilab code Exa 9.7 DTFT of Numerical Algorithms

```
1 //DTFT of numerical algorithms
2 //(a)For trapezoidal numerical integrator
3 ieee(2)
4 F=0:0.01:0.2;
5 HTF=1/(%i*2*tan(%pi*F'));
6 HIF=1/(%i*2*%pi*F');
7 Ha=1-((%pi*F')^2)/3-((%pi*F')^4/45);
8 //(b)For simphson's numerical integrator
9 Hb=((2*%pi*F')).*((2+cos(2*%pi*F'))./(3*sin(2*%pi*F')));
10 //For forward difference operator
```

```
11 HFF=(%e^(%i*2*%pi*F'))-1;
12 HDF=1/(%i*2*%pi*F');
13 Hc=1+(%i*2*%pi*F')/2-(2*%pi*F')^2/6;
14 Hc=abs(Hc);
15 //for central difference operator
16 HCF=sin(2*%pi*F')./(%i*4*%pi*%pi*F'^2);
17 Hd=abs(sin(2*%pi*F')./(2*%pi*F'));
18 length(F),length(Ha)
19 a=gca();
20 a.x_location="origin";
21 plot2d(F,Ha,rect=[0,0.8,0.2,1.1]);
22 plot2d(F,Hb);
23 xtitle("Magnitude spectrum of Integration algorithms
     "," Digital Frequency F", "Magnitude");
24 xset('window',1);
25 plot2d(F,Hc,rect=[0,0.8,0.2,1.1]);
26 plot2d(F,Hd);
27 xtitle("Magnitude spectrum of difference algorithms"
     ," Digital Frequency F", "Magnitude");
```

Scilab code Exa 9.8a Bilinear Transformation

```
1 //Bilinear transformation
2 //To convert bessel analog filter to digital filter
3 s=%s;
4 z=%z;
5 HS=3/(s^2+3*s+3);
6 Wa=4;//analog omega
7 Wd=%pi/2;//digital omega
```


Figure 9.4: DTFT of Numerical Algorithms

Figure 9.5: DTFT of Numerical Algorithms

Figure 9.6: Bilinear Transformation

```
8 T=(2/Wa)*(tan(Wd/2));
9 HZ=horner(HS,(2/T)*(z-1)/(z+1))
10 f=0:0.1:6;
11 HS1=horner(HS,(%i*4*f'/3));
12 HS1=abs(HS1);
13 HZ1=horner(HZ,exp(-%i*%pi*f'/6));
14 HZ1=abs(HZ1);
15 a=gca();
16 a.x_location="origin";
17 plot2d(f,HS1);
18 plot2d(f,HS1);
19 xlabel('Analog Frequency f[kHZ)');
20 ylabel('Magnitude');
21 xtitle('Bessel filter H(s) and digital filter H(z)');
;
```


Figure 9.7: Bilinear Transformation

Scilab code Exa 9.8b Bilinear Transformation

```
1 // Bilinear transformation
2\ // {\rm To} convert twin-T notch analog filter to digital
      filter
3 s = \% s;
4 z = %z;
5 HS=(s^2+1)/(s^2+4*s+1);
6 Wo = 1;
7 S=240;f=60;//sampling and analog frequencies
8 W=0.5*%pi;//digital frequency
9 C=Wo/tan(0.5*W)
10 HZ=horner(HS, C*(z-1)/(z+1))
11 f=0:120;
12 HZ1=abs(horner(HZ, exp(-%i*%pi*f'/120)));
13 HS1=abs(horner(HS,(%i*f',60)));
14 a=gca();
15 a.x_location="origin";
16 plot2d(f,HZ1);
17 plot2d(f,HS1);
```


Figure 9.8: D2D transformations

```
18 xlabel('Analog Frequency f[kHZ]');
```

```
19 ylabel('Magnitude');
```

```
20 xtitle('Notch filter H(S) and digital filter H(z)');
```

Scilab code Exa 9.9 D2D transformations

```
1 //D2D transformations
2 //(a)LP 2 HP transformation
3 z=%z;
4 HZ=(3*(z+1)^2)/(31*z^2-26*z+7);
5 WD=0.5*%pi;WC=0.25*%pi;//Band edges
6 a=-cos(0.5*(WD+WC))/cos(0.5*(WD-WC))//Mapping
parameter
7 HHPZ=horner(HZ,-(z+a)/(1+a*z))
8 //(b)LP 2 BP transformation
9 W1=0.25*%pi;
```

```
10 W2=0.75*%pi;
11 K=tan(0.5*WD)/tan(0.5*(W2-W1))
12 a = -\cos(0.5*(W1+W2))/\cos(0.5*(W1-W2))//Mapping
      parameters k, a, A1, A2
13 A1=2*K*a/(K+1), A2=(K-1)/(K+1)
14 HBPZ=horner(HZ,-(z^2+A1*z+A2)/(A2*z^2+A1*z+1))
15 //(c)Lp 2 BS transformation
16 w1=3/8*%pi;w2=5/8*%pi;//band edges
17 K1 = tan(0.5 * WD) * tan(0.5 * (w2 - w1))
18 a1 = -\cos(0.5*(w1+w2))/\cos(0.5*(w2-w1))//Mapping
      parameters k1, a1, A1c, A2c
19 A1c=2*a1/(K1+1),A2c=-(K1-1)/(K1+1)
20 HBSZ=horner(HZ, (z^2+A1c*z+A2c)/(A2c*z^2+A1c*z+1))
21 f=0:1/256:4;
22 for i=1:length(f)
23 HZ1(i)=horner(HZ, exp(-%i*%pi*f(i)/4));
24 end
25 HZ1 = abs(HZ1);
26 HHPZ1=abs(horner(HHPZ,exp(-%i*%pi*f'/4)));
27 HBPZ1=abs(horner(HBPZ, exp(-%i*%pi*f',4)));
28 HBSZ1=abs(horner(HBSZ, exp(-%i*%pi*f',4)));
29 a = gca();
30 a.x_location="origin";
31 plot2d(f,HZ1);
32 plot2d(f, HHPZ1);
33 plot2d(f,HBPZ1);
34 plot2d(f,HBSZ1);
35 xlabel('Analog Frequency');
36 ylabel('Magnitude');
37 xtitle('Digital-to-digital transformations of a low
      pass filter');
```

Scilab code Exa 9.10a Bilinear Design of Second Order Filters

Figure 9.9: Bilinear Design of Second Order Filters

```
1 // Bilinear design of second order filters
2 s=%s;z=%z;
3 fo=6;Wo=2*%pi*fo/25;
4 delf=5;S=25;
5 B = \cos(2*\% pi * fo/25)
6 C=tan(%pi*delf/25)
7 HS=1/(s+1);
8 HZ=horner(HS,(z<sup>2</sup>-(2*B*z)+1)/(C*(z<sup>2</sup>)-C))
9 f=0:0.5:12.5;
10 HZ1=horner(HZ, exp(%i*2*%pi*f'/25));
11 HZ1 = abs(HZ1);
12 W2=(%pi*delf/25)+acos(cos(Wo)*cos(%pi*delf/25))
13 W1=W2-(2*%pi*delf/25)
14 f1=S*W1/(2*%pi),f2=S*W2/(2*%pi)
15 f3=[f1;fo;f2];
16 HZf=abs(horner(HZ, exp(%i*2*%pi*f3'/25)));
17 a=gca();
18 a.x_location="origin";
19 plot2d(f,HZ1,rect=[0 0 13 1]);
20 plot2d3('gnn',f3,HZf);
```


Figure 9.10: Bilinear Design of Second Order Filters

```
21 xlabel('Analog Frequency f[kHZ]');
22 ylabel('Magnitude');
23 xtitle('Band pass filter fo=6kHZ,delf=5kHZ');
```

Scilab code Exa 9.10b Bilinear Design of Second Order Filters

```
1 // Bilinear design of second order filters
2 s=%s;z=%z;
3 f1=4;f2=9;
4 delf=f2-f1;S=25;
5 B=cos(%pi*(f1+f2)/25)/cos(%pi*(f2-f1)/25)
6 C=tan(%pi*delf/25)
7 HS=1/(s+1);
8 HZ=horner(HS,(z^2-(2*B*z)+1)/(C*(z^2)-C))
9 f=0:0.5:12.5;
10 HZ1=horner(HZ,exp(%i*2*%pi*f'/25));
```


Figure 9.11: Bilinear Design of Second Order Filters

```
11 HZ1=abs(HZ1);
12 fo=S*acos(B)/(2*%pi)
13 f3=[f1 fo f2];
14 HZf=abs(horner(HZ,exp(-%i*2*%pi*f3'/25)));
15 a=gca();
16 a.x_location="origin";
17 plot2d(f,HZ1);
18 plot2d3('gnn',f3,HZf);
19 xlabel('Analog Frequency f[kHZ]');
20 ylabel('Magnitude');
21 xtitle('Band pass filter f1=4kHZ,f2=9kHZ');
```

Scilab code Exa 9.10c Bilinear Design of Second Order Filters

```
1 //Bilinear design of second order filters
2 s=%s;z=%z;
```

```
3 fo=40; Wo=2*%pi*fo/200;
4 delf=2;S=25;
5 delW=2*%pi*delf/200;
6 B=cos(2*%pi*fo/200)
7 K = 0.557;
8 C=K*tan(0.5*delW)
9 HS = 1/(s+1);
10 HZ=horner(HS, (z^2-(2*B*z)+1)/(C*(z^2)-C))
11 f = 0:2:100;
12 f1=35:0.5:45;
13 HZ1=horner(HZ, exp(%i*2*%pi*f'/200));
14 HZ2=horner(HZ, exp(%i*2*%pi*f1'/200));
15 HZ1 = abs(HZ1);
16 HZ2=abs(HZ2);
17 a=gca();
18 a.x_location="origin";
19 subplot(211);
20 plot2d(f,HZ1);
21 xlabel('Analog Frequency f[kHZ]');
22 ylabel('Magnitude');
23 xtitle('peaking filter fo=40HZ, delf=2HZ');
24 subplot(212);
25 plot2d(f1,HZ2);
26 xtitle('Blowup of response 35HZ to 45HZ');
```

Scilab code Exa 9.11 Interference Rejection

```
1 //interference Rejection
2 //design oh high-Q and low-Q notch filters
3 s=%s;z=%z;
4 Q=50;
5 fo=60;S=300;
6 delf=fo/Q;
```


Figure 9.12: Interference Rejection

```
7 Wo=2*\%pi*fo/S;
8 delW=2*%pi*delf/S;
9 C=tan(0.5*delW), B=cos(Wo)
10 HS=(s)/(s+1);
11 H1Z=horner(HS,(z^2-(2*B*z)+1)/(C*(z^2)-C))
12 Q1=5;delf1=fo/Q1;
13 delW1=2*%pi*delf1/S;
14 C1 = tan(0.5 * delW1), B1 = cos(Wo)
15 H2Z=horner(HS,(z^2-(2*B1*z)+1)/(C1*(z^2)-C1))
16 f = 0:0.5:150;
17 H1Z1=horner(H1Z, exp(%i*2*%pi*f'/S));
18 H2Z1=horner(H2Z, exp(%i*2*%pi*f'/S));
19 a=gca();
20 subplot(211);
21 plot2d(f,H1Z1);
22 xlabel('Analog Frequency f[Hz]');
23 ylabel('Magnitude');
24 xtitle('60 HZ notch filter with Q=50');
25 subplot(212);
26 plot2d(f,H2Z1);
```


Figure 9.13: IIR Filter Design

```
27 xlabel('Analog Frequency f[Hz]');
```

```
28 ylabel('Magnitude');
```

29 xtitle('60 HZ notch filter with Q=5');

Scilab code Exa 9.12 IIR Filter Design

```
1 // IIR filter design
2 // Design of chebyshev IIR filter with following
    specifications
3 fp1=1.6; fp2=1.8; fs1=3.2; fs2=4.8; // pass band edges
4 Ap=2; As=20; S=12;
5 s=%s; z=%z;
6 // (a) Indirect Bilinear design
7 W=2*%pi*[fp1 fp2 fs1 fs2]/S
8 C=2;
```

```
9 omega=2*tan(0.5*W');//prewarping each band edge
      frequency
10 epsilon=sqrt(10^(0.1*Ap)-1);
11 n=acosh(((10^(0.1*As)-1)/epsilon^2)^1/2)/(acosh(fs1/
      fp1));
12 n=ceil(n)
13 alpha=(1/n)*asinh(1/epsilon);
14 for i=1:n
       B(i)=(2*i-1)*%pi/(2*n);
15
16 end
17 for i=1:n
       p(i) = -\sinh(alpha) * \sin(B(i)) + \%i * \cosh(alpha) * \cos(B)
18
          (i));
19 end
20 Qs=1;
21 for i=1:n
       Qs=Qs*(s-p(i))
22
23 end
24 \quad Qo = 0.1634;
25 \text{ HPS}=Qo/Qs
26 HBPS=horner(HPS,(s<sup>2</sup>+1.5045<sup>2</sup>)/(s*1.202))
27 HZ=horner(HBPS, 2*(z-1)/(z+1))
28 f = 0:0.001:0.5;
29 HZF=abs(horner(HZ,exp(%i*2*%pi*f')));
30 HBPF=abs(horner(HBPS,%i*2*%pi*f'));
31 a=gca();
32 plot2d(f,HZF);
33 plot2d(f,HBPF);
34 xlabel('Analog Frequency');
35 ylabel('magnitude');
36 xtitle('band pass filter designed by the bilinear
      transformation ');
```

Chapter 10 Design of FIR filters

Scilab code Exa 10.2 Truncation and Windowing

```
1 //Truncation and Windowing
2 //(a)N=9, Barlett Window.
3 z = %z;
4 Fc = 0.25;
5 n = -4:4;
6 hn=2*Fc*(sinc(0.5*n'*%pi))
7 Wn=1-(2*abs(n'))/8//Barlett window
8 hwn=hn.*Wn
9 Hcz=0;
10 for i=1:length(hwn)
        Hcz=Hcz+hwn(i)*(z^{((2-i))});
11
12 end
13 Hcz//indicates delay of 0.15 ms
14 //(b)N=6, vonhann Window
15 n1 = -2.5:2.5;
16 hn1=2*Fc*(sinc(0.5*n1'*%pi))
17 Wn1=0.5+0.5*(cos(0.4*%pi*n1'))//Vonhann window
18 hwn1=hn1.*Wn1
19 Hcz1=0;
20 for i=1:length(hwn1)
        Hcz1=Hcz1+hwn1(i)*(z^{((2-i))});
21
```

```
22 end
23 Hcz1//1st sample of hwn is 0 hence delay is 1.5ms
```

Scilab code Exa 10.3ab FIR lowpass Filter design

```
1 //FIR filter design using windows
2 //(a) Design of FIR filter to meet following
      specifications
3 fp=2;fs=4;Ap=2;As=40;S=20;
4 Fp=fp/S;Fs=fs/S;
5 Fc=0.15;
6 z = %z;
7 N1=3.21/(Fs-Fp);
8 N1 = ceil(N1)
9 N2=5.71/(Fs-Fp);
10 N2=ceil(N2)
11 n1 = -16:16;
12 n2 = -28.5:1:28.5;
13 hn1=2*Fc*(sinc(2*Fc*n1'));
14 hn2=2*Fc*(sinc(2*Fc*n2'));
15 Wn1=0.5+0.5*(cos(2*%pi*n1'/(N1-1)));//Vonhann window
16 Wn2=0.42+0.5*(cos(2*%pi*n2'/(N2-1)))+0.08*(cos(4*%pi
      *n2'/(N2-1));//Blackman window
17 hwn1 = abs(hn1.*Wn1);
18 hwn2=abs(hn2.*Wn2);
19 [hwn1F,fr1]=frmag(hwn1,256);
20 [hwn2F,fr2]=frmag(hwn2,256);
21 hwn1F1=20*log10(hwn1F);
22 hwn2F1 = 20 * log10 (hwn2F);
23 plot2d(fr1,hwn1F1);
24 plot2d(fr2(1:length(fr2)-2),hwn2F1(1:length(fr2)-2))
25 xlabel('Digital frequency');
26 ylabel('Magnitude [dB]');
27 title('Low pass filter using vonhann and Blackmann
```

```
windows Fc=0.15, vonhann N=33, Blackman N=58');
28 //(b)Minimum length design
29 Fcv = 0.1313;
30 \quad \text{Fcb} = 0.1278;
31 \text{ Nv} = 23; \text{Nb} = 29;
32 \text{ nv} = -11:11;
33 \text{ nb} = -14:14;
34 hnv=2*Fcv*(sinc(2*Fcv*nv'));
35 hnb=2*Fcb*(sinc(2*Fcb*nb'));
36 Wnv=0.5+0.5*(cos(2*%pi*nv'/(Nv-1)));//Vonhann window
37 Wnb=0.42+0.5*(cos(2*%pi*nb'/(Nb-1)))+0.08*(cos(4*%pi
      *nb'/(Nb-1));//Blackman window
38 hwnv=abs(hnv.*Wnv);
39 hwnb=abs(hnb.*Wnb);
40 [hwnvF,frv]=frmag(hwnv,256);
41 [hwnbF,frb]=frmag(hwnb,256);
42 hwnvF=20 \times \log 10 (hwnvF);
43 hwnbF=20 \times \log 10 (hwnbF);
44 b=gca();
45 xset('window',2);
46 plot(frv,hwnvF);
47 plot(frb,hwnbF);
48 xlabel('Digital frequency');
49 ylabel('Magnitude [dB]');
50 title('Vonhann Fc=0.1313, Minimum N=23, Blackmann Fc
      =0.1278, Minimum N=29');
```

Scilab code Exa 10.3cd FIR filter Design

```
1 //Design of high pass FIR filter with specifications
2 //fp=4kHZ;fs=2kHZ;Ap=2dB;As=40dB
```


Figure 10.1: FIR lowpass Filter design

Figure 10.2: FIR lowpass Filter design
```
3 fp=2;fs=4;Ap=2;As=40;S=20;
4 Fp=fp/S;Fs=fs/S;
5 Ft=0.1;
6 Fc = 0.15
7 N1=3.47/(Fs-Fp);//hamming
8 N1=int(N1)+1
9 N2=5.71/(Fs-Fp);//blackman
10 \ \text{N2=int}(\text{N2}) + 1
11 [hn1]=eqfir(N1,[0 0.1;0.2 0.5],[0 1],[1 1]);
12 [HF1, fr1] = frmag(hn1, 512);
13 Hf1=20*log10(HF1);
14 [hn2]=eqfir(58,[0 0.1;0.2 0.43],[0 1],[1 1]);
15 [HF2, fr2] = frmag(hn2, 512);
16 Hf2=20*log10(HF2);
17 a=gca();
18 plot2d(fr1,Hf1,rect=[0 -120 0.5 4]);
19 plot2d(fr2(1:length(fr2)-5), Hf2(1:length(fr2)-5),
      rect=[0 -120 0.5 4]);
20 xlabel('Digital Frequency F');
21 ylabel('Magnitude [dB]');
22 xtitle('High pass filter using Hamming and Blackmann
       windows LPP Fc = 0.35');
23 //Minimum Length Design
24 [hn3]=eqfir(22,[0 0.1;0.2 0.43],[0 1],[1 1]);
25 [HF3,fr3]=frmag(hn3,512);
26 \text{ Hf3}=20*\log 10 (\text{HF3});
27 [hn4]=eqfir(29,[0 0.1;0.2 0.5],[0 1],[1 1]);
28 [HF4, fr4] = frmag(hn4, 512);
29 Hf4=20*log10(HF4);
30 xset('window',1);
31 a = gca();
32 plot2d(fr3(1:length(fr3)-5),Hf3(1:length(fr3)-5),
      rect=[0 -120 0.5 4]);
33 plot2d(fr4,Hf4,rect=[0 -120 0.5 4]);
34 xlabel('Digital Frequency F');
35 ylabel('Magnitude [dB]');
36 xtitle('Hamming LPP Fc=0.3293 N=22;Blackmann LPP Fc
      =0.3277 N=29');
```


Figure 10.3: FIR filter Design

Scilab code Exa 10.4a Half Band lowpass FIR filter Design

```
1 // Half band FIR Filter Design
2 //(a)lowpass Half band Filter
3 s=%s;z=%z;
4 fp=8;fs=16;Ap=1;As=50;
5 S=2*(fs+fp);
6 Fp=fp/S;Fs=fs/S;Fc=0.25;
7 delp=(10^(Ap/20)-1)/(10^(Ap/20)+1);
8 dels=10^(-As/20);
9 del=min(delp,dels);
10 As0=-20*log10(del)
11 N1=(As0-7.95)/(14.36*(Fs-Fp))+1;
```


Figure 10.4: FIR filter Design

```
12 N1=int(N1)+1;
13 B=0.0351*(As0-8.7)
14 [hn1]=eqfir(19,[0 1/6;1/3 0.5],[1 0],[1 1]);
15 [HLPF1,fr1]=frmag(hn1,512);
16 HLPf1=20*log10(HLPF1);
17 a=gca();
18 plot2d(fr1,HLPf1);
19 xlabel('Digital Frequency');
20 ylabel('Magnitude in dB');
21 xtitle('Kaiser half band LPF:B=1.44;Fc=0.25');
22 [hn2]=eqfir(21,[0 1/6;1/3 0.5],[1 0],[1 1]);
23 [HLPF2,fr2]=frmag(hn2,512);
24 HLPf2=20*log10(HLPF2);
25 xset('window',1);
26 plot2d(fr2,HLPf2);
27 xlabel('Digital Frequency');
28 ylabel('Magnitude in dB');
29 xtitle('Hamming half-band LPF:N=21;Fc=0.25');
```


Figure 10.5: Half Band lowpass FIR filter Design

Scilab code Exa 10.4b Half Band bandstop FIR filter Design

```
1 // Half band FIR Filter Design
2 //(a)band-stop Half band Filter
3 s=%s;z=%z;
4 fp1=1;fs1=2;fp2=4;fs2=3;Ap=1;As=50;
5 S=2*(fs1+fs2);
6 Fp=0.5*(fs2/S-fs1/S);Fs=0.5*(fp2/S-fp1/S);
7 Fc=0.5*(Fp+Fs);Fo=0.25;
8 delp=(10^(Ap/20)-1)/(10^(Ap/20)+1);
9 dels=10^(-As/20);
10 del=min(delp,dels);
11 As0=-20*log10(del)
```



```
12 N1=(As0-7.95)/(14.36*(Fs-Fp))+1;
13 N1=ceil(N1);
14 B=0.0351*(As0-8.7)
   [hn1]=eqfir(31,[0 0.1;0.2 0.3;0.4 0.5],[1 0 1],[1 1
15
      1]);
16 [HBSF1,fr1]=frmag(hn1,400);
17 HBSf1=20*log10(HBSF1);
18 a=gca();
19 plot2d(fr1,HBSf1);
20 xlabel('Digital Frequency');
21 ylabel('Magnitude in dB');
22 xtitle('Kaiser half band LPF:B=1.44; Fc=0.25');
23 [hn2]=eqfir(35,[0 0.1;0.2 0.3;0.4 0.5],[1 0 1],[1 1
      1]);
24 [HF2,fr2]=frmag(hn2,200);
25 \text{ HBSf2}=20*\log 10(\text{HF2});
26 xset('window',1);
27 plot2d(fr2,HBSf2);
28 xlabel('Digital Frequency');
29 ylabel('Magnitude in dB');
```


Figure 10.7: Half Band bandstop FIR filter Design

30 xtitle('Hamming half-band LPF:N=21;Fc=0.25');

Scilab code Exa 10.5a Design by Frequency Sampling

```
1 //Fir low pass filter design by frequency sampling
2 z=%z;
3 N=10;
4 magHk=[1 1 1 0 0 0 0 0 1 1];
5 k=[0:7 -1 -2];
6 fik=-%pi*k'*(N-1)/N;
7 for i=1:length(fik)
8 H1k(i)=magHk(i)*exp(%i*fik(i));
```


Figure 10.8: Half Band bandstop FIR filter Design

Figure 10.9: Design by Frequency Sampling

```
9 \text{ end}
10 H1n=(dft(H1k,1));
11 H2k=H1k;
12 H2k(3)=0.5*%e^(-%i*1.8*%pi);
13 H2k(9)=0.5*%e^(%i*1.8*%pi);
14 H2n=(dft(H2k,1));
15 H1Z=0; H2Z=0;
16 for i=1:length(H1n)
       H1Z=H1Z+H1n(i)*z^{(-i)};
17
18 end
19 for i=1:length(H2n)
       H2Z=H2Z+H2n(i)*z^{(-i)};
20
21 end
22 F=0:0.01:1;
23 F1 = 0:0.1:0.9;
24 H1F=abs(horner(H1Z, exp(\%i*2*\%pi*F')));
25 H2F=abs(horner(H2Z, exp(%i*2*%pi*F')));
26 a = gca();
27 plot2d(F1,magHk);
28 plot2d(F,H2F);
29 plot2d(F,H1F);
30 xlabel('Digital Frequency F');
31 ylabel('magnitude');
32 xtitle('Low pass filter using frequency sampling');
```

Scilab code Exa 10.5b Design by Frequency Sampling

```
1 //Fir high pass filter design by frequency sampling
2 z=%z;
3 N=10;
4 magHk=[0 0 0 1 1 1 1 1 0 0];
5 k=[0:5 -4:-1:-1];
6 fik=(-%pi*k'*(N-1)/N)+(0.5*%pi);
```


Figure 10.10: Design by Frequency Sampling

```
7 for i=1:length(fik)
       H1k(i) = magHk(i) * exp(%i*fik(i));
8
9 \text{ end}
10 H1n=(dft(H1k,1));
11 H2k=H1k;
12 H2k(3)=0.5*%e^(-%i*1.3*%pi);
13 H2k(9)=0.5*%e^(%i*1.3*%pi);
14 H2n=(dft(H2k,1));
15 H1Z=0;H2Z=0;
16 for i=1:length(H1n)
17
       H1Z=H1Z+H1n(i)*z^{(-i)};
18 end
19 for i=1:length(H2n)
       H2Z=H2Z+H2n(i)*z^{(-i)};
20
21 end
22 F = 0: 0.01: 1;
23 F1 = 0: 0.1: 0.9;
24 H1F=abs(horner(H1Z, exp(%i*2*%pi*F')));
25 H2F=abs(horner(H2Z, exp(%i*2*%pi*F')));
26 \ a = gca();
```


Figure 10.11: Optimal FIR Bandstop Filter Design

```
27 plot2d(F1,magHk);
28 plot2d(F,H2F);
29 plot2d(F,H1F);
30 xlabel('Digital Frequency F');
31 ylabel('magnitude');
32 xtitle('Low pass filter using frequency sampling');
```

Scilab code Exa 10.6a Optimal FIR Bandstop Filter Design

```
1 // optimal Fir band stop filter design
2 fp1=1; fp2=4; fs1=2; fs2=3;
3 Ap=1; As=50; S=10;
4 Fp1=fp1/S; Fp2=fp2/S; Fs1=fs1/S; Fs2=fs2/S;
5 FT=0.1; FC=0.25
6 // calculation of filter length
7 delp=(10^(Ap/20)-1)/(10^(Ap/20)+1);
```


Figure 10.12: Optimal Half Band Filter Design

```
8 dels=10^(-As/20);
9 N=1+((-10*log10(delp*dels)-13)/(14.6*FT))
10 N1=21;
11 [hn]=eqfir(N1,[0 0.1;0.2 0.3;0.4 0.5],[1 0 1],[1 1
1]);
12 [HF,fr]=frmag(hn,512);
13 Hf=20*log10(HF);
14 a=gca();
15 plot(fr,Hf);
16 xlabel('Digital frequency F');
17 ylabel('Magnitude in dB');
18 xtitle('optimal BSF:N=21;Ap=0.2225;As=56.79dB');
```

Scilab code Exa 10.6b Optimal Half Band Filter Design

1 //optimal Fir band pass filter design

```
2 fp=8;fs=16;
3 \text{ Ap=1; As=50; S=48;}
4 Fp=fp/S;Fs=fs/S;
5 FT = 0.1; FC = 0.25
6 //calculation of filter length
7 delp=(10^{(Ap/20)}-1)/(10^{(Ap/20)}+1);
8 dels=10<sup>(-As/20)</sup>;
9 del=min(delp,dels);
10 N=1+((-10*log10(del*del)-13)/(14.6*FT));
11 N1=19;
12 [hn]=eqfir(N1,[0 1/6;1/3 0.5],[1 0],[1 1]);
13 [HF,fr]=frmag(hn,200);
14 Hf = 20 * log 10 (HF);
15 a=gca();
16 plot(fr,Hf);
17 xlabel('Digital frequency F');
18 ylabel('Magnitude in dB');
19 xtitle('optimal Half band LPF N=17');
```

Scilab code Exa 10.7 Multistage Interpolation

```
1 //The concept of multistage Interpolation
2 //(a)Single stage interpolator
3 Sin=4;Sout=48;
4 fp=1.8;
5 fs=Sin-fp;
6 FT=(fs-fp)/Sout;
7 disp('By using single stage the total filter length
is:')
8 L=4/FT
9 //(b)Two-stage interpolator
10 Sin=[4 12];
11 I=[3 4];//interpolating factors
12 Sout=[12 48];
13 fp=[1.8 1.8];
```

```
14 fs=Sin-fp;
15 L1=4*Sout./(fs-fp);
16 L=0;
17 for i=1:length(L1)
18
          L=L+L1(i);
19 end
20 disp('By using 2 stage interpolator filter length is
        :")
21 \text{ ceil}(L)
22 //(c)3 stage interpolator with I1=2; I2=3; I3=2
23 Sin = [4 \ 8 \ 24];
24 I = \begin{bmatrix} 2 & 3 & 2 \end{bmatrix};
25 Sout = \begin{bmatrix} 8 & 24 & 48 \end{bmatrix};
26 fp = [1.8 \ 1.8 \ 1.8];
27 fs = Sin - fp;
28 L2=4*Sout./(fs-fp); L=0;
29 for i=1:length(L2)
         L=L+L2(i);
30
31 end
32 \operatorname{disp}('By using 3 stage interpolator filter length is
        :")
33 \text{ ceil}(L)
34 / (d) 3 stage interpolator with I1=2; I2=3; I3=2
35 \quad \text{Sin} = \begin{bmatrix} 4 & 12 & 24 \end{bmatrix};
36 \quad I = \begin{bmatrix} 3 & 2 & 2 \end{bmatrix};
37 Sout = \begin{bmatrix} 12 & 24 & 48 \end{bmatrix};
38 fp = \begin{bmatrix} 1.8 & 1.8 & 1.8 \end{bmatrix};
39 fs = Sin - fp;
40 L3=4*Sout./(fs-fp); L=0;
41 for i=1:length(L3)
42
         L=L+L3(i);
43 end
44 disp('By using 2 stage interpolator filter length is
        :")
45 ceil(L)
```

Scilab code Exa 10.8 Design of Interpolating Filters

```
1 //Design of interpolating filters
2 //(a) Design using a single stage interpolator
3 fp=1.8; Sout=48; Sin=4;
4 Ap=0.6; As=50;
5 fs=Sin-fp;
6 //finding ripple parameters
7 delp=(10<sup>(Ap/20)-1)</sup>/(10<sup>(Ap/20)+1)</sup>;
8 dels=10^{(-As/20)};
9 N=Sout*(-10*log10(delp*dels)-13)/(14.6*(fs-fp))+1;
10 disp('By using single stage interpolator the filter
      design is:');
11 ceil(N)
12 // Design using 3-stage interpolator with I1=2; I2=3;
      I3 = 2
13 Ap=0.2;
14 Sin=[4 8 24];
15 Sout=[8 24 48];
16 fp=[1.8 1.8 1.8];
17 fs=Sin-fp;
18 delp=(10^{(Ap/20)-1})/(10^{(Ap/20)+1});
19 dels=10(-As/20);
20 p=14.6*(fs-fp);
21 N1=((-10*log10(delp*dels)-13)./p);
22 N1=(Sout.*N1)+1;N=0;
23 for i=1:length(N1)
24
       N=N+N1(i);
25 \text{ end}
26 disp('By using single stage interpolator the filter
      design is:');
27 \text{ ceil(N)}
```

Scilab code Exa 10.9 Multistage Decimation

```
1 //The concept of multistage Decimation
2 //(a) Single stage decimator
3 Sin=48; Sout=4;
4 fp=1.8;
5 fs=Sout-fp;
6 FT=(fs-fp)/Sin;
7 disp('By using single stage the total filter length
      is: ')
8 L=4/FT
9 //(b)Two-stage decimator
10 Sin=[48 12];
11 D=[4 3]; //decimating factors
12 Sout=[12 4];
13 fp=[1.8 1.8];
14 fs=Sout-fp;
15 L1=4*Sin./(fs-fp);
16 L=0;
17 for i=1:length(L1)
        L=L+L1(i);
18
19 end
20 disp('By using 2 stage decimator filter length is:")
21 \text{ ceil}(L)
22 //3 stage decimator with D1=2;D2=3;D3=2
23 Sin = [48 \ 24 \ 8];
24 D=\begin{bmatrix} 2 & 3 & 2 \end{bmatrix};
25 Sout = \begin{bmatrix} 24 & 8 & 4 \end{bmatrix};
26 fp = [1.8 \ 1.8 \ 1.8];
27 fs = Sout - fp;
28 L2=4*Sin./(fs-fp); L=0;
29 for i=1:length(L2)
30
        L=L+L2(i);
31 end
```

```
32 disp('By using 3 stage decimator filter length is:")
33 ceil(L)
34 //3 stage decimator with I1=2;I2=3;I3=2
35 Sin=[48 24 12];
36 D=[2 2 3];
37 Sout=[24 12 4];
38 fp=[1.8 1.8 1.8];
39 fs=Sout-fp;
40 L3=4*Sin./(fs-fp);L=0;
41 for i=1:length(L3)
42 L=L+L3(i);
43 end
44 disp('By using 3 stage decimator filter length is:")
45 ceil(L)
```

Scilab code Exa 10.10 Maximally Flat FIR filter Design

Appendix

Scilab code AP 1 Alias Frequency

```
1 function[F]=aliasfrequency(f,s,s1)
2 if (s>2*f) then
       disp("alias has not occured")
3
4 \text{ else}
       disp("alias has occured")
5
6 end
7 F=f/s;
8 for i=1:100
       if (abs(F)>0.5)
9
           F=F-i;
10
11
       end
12 end
13 fa=F*s1;
14 disp(fa," frequency of reconstructed signal is")
15 endfunction
```