Scilab Textbook Companion for Fundamental Of Physics by D. Haliday, R. Resnick And J. Walker¹

Created by
Aman Mangal
B.TECH (pursuing)
Computer Engineering
IIT Bombay
College Teacher
Not Decided
Cross-Checked by
Prashant Dave, IIT Bombay

October 16, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Fundamental Of Physics

Author: D. Haliday, R. Resnick And J. Walker

Publisher: John Wiley And Sons Inc.

Edition: 6

Year: 2011

ISBN: 9971-51-330-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
1	Measurement	14
2	Motion Along a Straight Line	18
3	Induction and Inductance	19
4	Motion Along a Straight Line	22
5	Magnetism of Matter Maxwell Equation	40
6	Electromagnetic Oscillations and Alternating Current	47
7	Vectors	49
8	Vectors	51
9	Electromagnetic Waves	67
10	Motion in Two and Three Dimesions	68
11	Motion in Two and Three Dimesions	69
12	Images	79
13	Interference	88
11	Diffraction	98

15 Force and Motion l	101
16 Force and Motion l	102
17 Relativity	113
18 Photons and Matter Waves	126
19 Force and Motion ll	127
20 Force and Motion ll	128
21 More About Matter waves	139
22 All About Atoms	149
23 Kinetic Energy and Work	153
24 Kinetic Energy and Work	154
25 Conduction of Electricity in Solids	161
26 Potential and Conservation of Energy	177
27 Nuclear Physics	180
28 Potential and Conservation of Energy	181
29 System of Particles	194
30 Energy from the Nucleus	202
31 System of Particles	205
32 Collisions	213
33 Quarks Leptons and the Big Bang	214
34 Rotation	224
35 Collisions	232

List of Scilab Codes

Exa 1.1	Sample Problem 1	14
Exa 30.3	Sample Problem 3	14
Exa 1.4	Sample Problem 2	15
Exa 1.4	Sample Problem 4	15
Exa 30.4	Sample Problem 4	16
Exa 1.3	Sample Problem 3	17
Exa 31.1	Sample Problem 1a	19
Exa 31.1	Sample Problem 1	19
Exa 1.4	Sample Problem 4	20
Exa 2.1.b	Sample Problem 1b	21
Exa 31.2	Sample Problem 1a	22
Exa 31.2	Sample Problem 2	22
Exa 2.1.c	Sample Problem 1c	23
Exa 31.3	Sample Problem 3	25
Exa 2.1.b	Sample Problem 1b	25
Exa 31.4	Sample Problem 4	26
Exa 2.1.d	Sample Problem 1c	27
Exa 2.1.d	Sample Problem 1d	27
Exa 2.1.d	Sample Problem 5	28
Exa 2.2	Sample Problem 2	29
Exa 31.6	Sample Problem 6	31
Exa 2.1.d	Sample Problem 1d	32
Exa 31.7	Sample Problem 7	32
Exa 2.2	Sample Problem 2	33
Exa 31.8	Sample Problem 8	34
Exa 2.3	Sample Problem 3	35
Exa 2.3	Sample Problem 3	36
Exa 2.4	Sample Problem 9	37

Exa 2.4	Sample Problem 4	37
Exa 2.4	Sample Problem 4	38
Exa 2.5	Sample Problem 5	40
Exa 2.5	Sample Problem 1	40
Exa 2.5	Sample Problem 5	41
Exa 32.2	Sample Problem 2	42
Exa 2.6	Sample Problem 6	43
Exa 2.6	Sample Problem 6	44
Exa 2.6	Sample Problem 3	44
Exa 2.7	Sample Problem 7	46
Exa 33.1	Sample Problem 1	47
Exa 2.7	Sample Problem 7	47
Exa 33.2	Sample Problem 1	49
Exa 33.2	Sample Problem 2	50
Exa 3.1	Sample Problem 1	51
Exa 33.3	Sample Problem 3	52
Exa 3.2	Sample Problem 2	52
Exa 3.2	Sample Problem 2	53
Exa 33.4	Sample Problem 4	54
Exa 33.4	Sample Problem 3	54
Exa 3.3	Sample Problem 3	55
Exa 33.5	Sample Problem 5	56
Exa 3.4	Sample Problem 4	56
Exa 3.4	Sample Problem 4	57
Exa 33.6	Sample Problem 6	58
Exa 3.5	Sample Problem 5	58
Exa 33.7	Sample Problem 6	59
Exa 33.7	Sample Problem 7	60
Exa 3.5	Sample Problem 5	61
Exa 33.8	Sample Problem 6	62
Exa 33.8	Sample Problem 8	62
Exa 3.7	Sample Problem 7	63
Exa 3.7	Sample Problem 7	64
Exa 33.9	Sample Problem 9	64
Exa 3.8	Sample Problem 8	65
Exa 3.8	Sample Problem 8	66
Exa 34.1	Sample Problem 1	67
Exa. 4.1	Sample Problem 1	68

Exa 4.1	Sample Problem 1	69
Exa 4.2.a	Sample Problem 2a	69
Exa 34.2	Sample Problem 2	70
Exa 4.2.a	Sample Problem 2a	71
Exa 4.2.b	Sample Problem 2b	72
Exa 34.3	Sample Problem 3	73
Exa 4.2.b	Sample Problem 2b	74
Exa 34.4	Sample Problem 4	75
Exa 4.3	Sample Problem 3	76
Exa 4.3	Sample Problem 3	77
Exa 34.5	Sample Problem 5	78
Exa 4.4	Sample Problem 4	79
Exa 4.4	Sample Problem 1	79
Exa 4.4	Sample Problem 4	80
Exa 4.5	Sample Problem 5	81
Exa 35.2	Sample Problem 5	82
Exa 35.2	Sample Problem 2	82
Exa 4.6	Sample Problem 6	83
Exa 35.3	Sample Problem 3	84
Exa 35.4	Sample Problem 4	85
Exa 35.4	Sample Problem 7	85
Exa 35.4	Sample Problem 6	86
Exa 36.1	Sample Problem 1	88
Exa 4.7	Sample Problem 7	89
Exa 36.2	Sample Problem 2	89
Exa 4.8	Sample Problem 8	90
Exa 4.8	Sample Problem 8	91
Exa 36.3	Sample Problem 3	92
Exa 4.9	Sample Problem 4	93
Exa 4.9	Sample Problem 9	93
Exa 4.9	Sample Problem 9	94
Exa 36.5	Sample Problem 5	94
Exa 4.10	Sample Problem 10	95
Exa 4.10	Sample Problem 10	96
Exa 36.6	Sample Problem 6	97
Exa 4.11	Sample Problem 11	98
Exa 4.11	Sample Problem 11	99
Exa. 37.1	Sample Problem 1	99

Exa 5.1	Sample Problem 1
Exa 37.2	Sample Problem 2
Exa 5.1	Sample Problem 1
Exa 37.3	Sample Problem 3
Exa 5.2	Sample Problem 2
Exa 5.2	Sample Problem 2
Exa 5.3	Sample Problem 3
Exa 5.3	Sample Problem 4
Exa 5.3	Sample Problem 3
Exa 5.4	Sample Problem 4
Exa 5.4	Sample Problem 4
Exa 5.5	Sample Problem 5
Exa 5.5	Sample Problem 5
Exa 37.5	Sample Problem 5
Exa 5.6	Sample Problem 6
Exa 38.1	Sample Problem 1
Exa 5.6	Sample Problem 6
Exa 38.2	Sample Problem 2
Exa 5.7	Sample Problem 7
Exa 38.3	Sample Problem 3
Exa 5.7	Sample Problem 7
Exa 38.4	Sample Problem 4
Exa 5.8	Sample Problem 8
Exa 38.5	Sample Problem 5
Exa 38.5	Sample Problem 8
Exa 38.6	Sample Problem 6
Exa 5.9	Sample Problem 9
Exa 5.9	Sample Problem 9
Exa 38.7	Sample Problem 7
Exa 39.1	Sample Problem 1
Exa 6.1	Sample Problem 1
Exa 39.2	Sample Problem 2
Exa 6.1	Sample Problem 1
Exa 6.2	Sample Problem 2
Exa 39.3	Sample Problem 2
Exa 39.3	Sample Problem 3
Exa 39.4	Sample Problem 4
Exa 6.3	Sample Problem 3

Exa 6.3	Sample Problem 3	133
Exa 6.4	Sample Problem 6	134
Exa 39.5	Sample Problem 5	135
Exa 6.4	Sample Problem 4	136
Exa 6.4	Sample Problem 4	136
Exa 6.5	Sample Problem 5	137
Exa 6.5	Sample Problem 7	137
Exa 6.5	Sample Problem 5	139
Exa 6.6	Sample Problem 6	140
Exa 40.1	Sample Problem 1	140
Exa 6.6	Sample Problem 3	142
Exa 6.6	Sample Problem 6	142
Exa 6.7	Sample Problem 4	143
Exa 6.7	Sample Problem 7	144
Exa 6.7	Sample Problem 7	144
Exa 40.6	Sample Problem 6	145
Exa 40.8	Sample Problem 8	146
Exa 40.8	Sample Problem 8	146
Exa 40.8	Sample Problem 8	146
Exa 41.1		149
Exa 41.2		150
Exa 6.9	•	150
Exa 41.3		151
Exa 7.1	·	154
Exa 7.1	•	155
Exa 41.4		155
Exa 41.5		157
Exa 41.5	•	158
Exa 7.2	•	159
Exa 41.6	*	160
Exa 7.3		161
Exa 7.3	•	161
Exa 42.1	·	162
Exa 7.4	•	163
Exa 7.4	1	164
Exa 7.5	•	165
Exa 7.5	*	165
Exa 7.5	·	166

Exa 7.6	Sample Problem 6	167
Exa 7.6	Sample Problem 6	167
Exa 42.3	Sample Problem 3	169
Exa 42.4	Sample Problem 7	170
Exa 42.4	Sample Problem 4	170
Exa 7.7	Sample Problem 7	171
Exa 7.8	Sample Problem 8	172
Exa 42.5	Sample Problem 5	172
Exa 7.9	Sample Problem 8	173
Exa 7.9	Sample Problem 9	173
Exa 7.9	Sample Problem 6	174
Exa 7.9	Sample Problem 9	175
Exa 7.10	Sample Problem 10	175
Exa 42.7	Sample Problem 7	177
Exa 7.10	Sample Problem 10	177
Exa 8.1	Sample Problem 1	178
Exa 43.1	Sample Problem 1	180
Exa 8.2	Sample Problem 1	181
Exa 8.2	Sample Problem 2	181
Exa 8.2	Sample Problem 2	181
Exa 8.3	Sample Problem 3	183
Exa 8.2	Sample Problem 4	183
Exa 8.2	Sample Problem 3	183
Exa 8.2	Sample Problem 2	184
Exa 8.3	Sample Problem 5	185
Exa 8.3	Sample Problem 4	186
Exa 8.3	Sample Problem 3	187
Exa 43.5	Sample Problem 6	188
Exa 43.5	Sample Problem 5	188
Exa 8.4	Sample Problem 4	189
Exa 8.7	Sample Problem 7	190
Exa 8.8	Sample Problem 5	190
Exa 8.8	Sample Problem 8	190
Exa 43.6	Sample Problem 6	192
Exa 9.1	Sample Problem 1	194
Exa 43.7	Sample Problem 7	195
Exa 8.6	Sample Problem 6	195
Exa. 43.8	Sample Problem 8	196

Exa 9.2	Sample Problem 2	196
Exa 8.7	Sample Problem 9	197
Exa 8.7	Sample Problem 7	198
Exa 9.3	Sample Problem 3	198
Exa 8.8	Sample Problem 10	199
Exa 8.8	Sample Problem 8	199
Exa 9.4	Sample Problem 4	200
Exa 44.1	Sample Problem 1	202
Exa 9.5	Sample Problem 5	202
Exa 44.2	Sample Problem 2	203
Exa 9.6	Sample Problem 3	205
Exa 9.6	Sample Problem 6	205
Exa 9.1	Sample Problem 1	206
Exa 9.7	Sample Problem 7	207
Exa 44.4	Sample Problem 4	208
Exa 9.8	Sample Problem 8	208
Exa 9.2	Sample Problem 2	209
Exa 44.5	Sample Problem 5	210
Exa 9.9	Sample Problem 9	210
Exa 9.3	Sample Problem 3	211
Exa 44.6	Sample Problem 6	211
Exa 10.1	Sample Problem 1	214
Exa 10.1	Sample Problem 4	215
Exa 45.1	Sample Problem 1	215
Exa 9.5	Sample Problem 2	216
Exa 9.5	Sample Problem 5	217
Exa 45.2	Sample Problem 3	218
Exa 10.3	Sample Problem 3	218
Exa 10.4	Sample Problem 4	219
Exa 45.3	Sample Problem 3	220
Exa 10.5	Sample Problem 6	221
Exa 10.5	Sample Problem 5	221
Exa 45.6	Sample Problem 6	222
Exa 9.7	Sample Problem 7	222
Exa 45.7	Sample Problem 1	224
Exa 9.8	Sample Problem 7	225
Exa 9.8	Sample Problem 8	225
Exa 9 9	Sample Problem 9	226

AP 1	Modern Physics	228
AP 2	$\operatorname{degree}_r ad$	229
AP 2	Sample Problem 2	229
AP 2	gravitation	229
AP 4	electrostatic	230
AP 5	Example 17-1	232
AP 6	Bernauli's Equation	233
AP 7	Cross Product	234
Exa 10.1	Sample Problem 1	234
AP 8	Example 11-7	235
AP 9	collision	235
AP 10	Example 4-3	236
AP 11	Example 4-2a	236
AP 12	Example 2-1b	237
AP 13	Example 2-1a	237

List of Figures

4.3	Sample Problem 2	35
11.1	Sample Problem 2b	75
17.2	Sample Problem 9	125
20.1	Sample Problem 3	135
	Sample Problem 9	
24.1	Sample Problem 3	156

Chapter 1

Measurement

Scilab code Exa 1.1 Sample Problem 1

```
1 //Given that
2 velocityP = 23 //rides per h
3 c1 = 4 //from ride to stadia
4 c2 = 6 //from stadia to plethra
5 c3 = 30.8 //from plethra to meter
6 c4 = 10^-3 //from meter to kilometer
7 c5 = 60 * 60 //from h to sec
8
9 //Sample Problem 1-1
10 printf("**Sample Problem 1-1**\n")
11 velocityC = velocityP * c1 * c2 * c3 * c4 / c5
12 printf("The speed is %e km/s", velocityC)
```

Scilab code Exa 30.3 Sample Problem 3

```
1 //Given that
2 a = 2*10^-2 //in meter
```

```
3 b = 4*10^-2  //in meter
4 r = 3*10^-2  //in meter
5 c = 3*10^6  //in A/m^4
6 uo = 4*%pi*10^-7  //in SI unit
7
8 //Sample Problem 30-3
9 printf("**Sample Problem 30-3**\n")
10 //Using gauss law
11 //B*L = uo*I
12 Ienc = integrate('c*x^2*2*%pi*x', 'x', a, r)
13 L = 2*%pi*r
14 B = uo*Ienc/L
15 printf("The magnetic field at x=r is %eT", B)
```

Scilab code Exa 1.2 Sample Problem 2

```
Scilab code Exa 1.4 //Given that

2 conv1 = 170.474 //conversion from crans to liters

3 conv2 = 48.26 //from covido to cm

4 V1 = 1255 //in crans

5 //Sample Problem 1-2

7 printf("**Sample Problem 1-2**\n")

8 VC = V1 * conv1 * 10^3 / (conv2^3)

9 printf("The required declaration is %e cubic covidos ", VC)

Sample Problem 4

1 //Given that

2 height = 1.70 //in meter
```

```
3 elapsed_time = 11.1 //in sec
4
5 //Sample Problem 1-4
6 printf("**Sample Problem 1-4**\n")
7 //the angle between the two radius is
8 theta = elapsed_time / (24 * 3600) * %pi*2 //in radians
9 //we also have d^2 = 2 * r *h
10 //as d is very small hence can be considered as a arc
11 //d = r * theta
12 //=> r * theta^2 = 2 * h
13 radius = 2 * height /theta^2
14 printf("The radius of earth is %e m", radius)
```

Scilab code Exa 30.4 Sample Problem 4

```
1 //Given that
2 L = 1.23 //in meter
3 d = 3.55*10^-2 //in meter
4 i = 5.57 //in A
5 n = 850*5
6 uo = 4*%pi*10^-7 //in SI unit
7
8 //Sample Problem 30-4
9 printf("**Sample Problem 30-4**\n")
10 B = uo*n/L*i
11 printf("The magnetic field inside the solenoid is %eT", B)
```

Scilab code Exa 1.3 Sample Problem 3

```
//Given that
//the crossection to be approximately squre
Radius = 2 //in meter
side = 4 * 10^-3 //converted from mm to meter

//Sample Problem 1-3
printf("**Sample Problem 1-3**\n")
//making the volume equal
Length = 4/3 * %pi * Radius^3 / side^2
L_km = Length/10^3
crder = round(log(L_km)/log(10)) // will give us
order of magnitude
printf("The order of length of string is 10^%d km",
order)
```

Chapter 2 Motion Along a Straight Line

Chapter 3

Induction and Inductance

Scilab code Exa 2.1.a Sample Problem 1a

```
Scilab code Exa 31.11 // Given that
2 velocity = 70 //in km/h
3 distance_covered = 8.4
                             //in km
4 next_time = 30 //in \min
5 \text{ next\_walk} = 2 //\text{in km}
7 //Sample Problem 2-1a
8 printf("**Sample Problem 2-1a**\n")
9 overall_displacement = distance_covered + next_walk
10 printf("Overall displacement from begining of the
     drive to the station is %f km",
     overall_displacement)
  Sample Problem 1
1 //Given that
2 i = 1.5 //in A
3 D = 3.2*10^-2 //in meter
```

```
4 N = 220/10^-2 //in turns/m
5 n = 130
6 d = 2.1*10^-2 //in meter
7 deltaT = 25*10^-3 //in s
8 uo = 4*%pi*10^-7 //in SI unit
9
10 //Sample Problem 31-1
11 printf("**Sample Problem 31-1**\n")
12 A = %pi*(d/2)^2
13 deltaPhi = uo*N*i*A
14 E = n*deltaPhi/deltaT
15 printf("The emf induced is equal to %eV", E)
```

Scilab code Exa 1.4 Sample Problem 4

```
//Given that
height = 1.70 //in meter
leapsed_time = 11.1 //in sec

//Sample Problem 1-4
printf("**Sample Problem 1-4**\n")
//the angle between the two radius is
theta = elapsed_time / (24 * 3600) * %pi*2 //in radians
//we also have d^2 = 2 * r *h
//as d is very small hence can be considered as a arc
//d = r * theta
//=> r * theta
//=> r * theta^2 = 2 * h
radius = 2 * height /theta^2
printf("The radius of earth is %e m", radius)
```

```
check Appendix AP 13 for dependency:
```

```
Example2_1a.sce
```

Scilab code Exa 2.1.b Sample Problem 1b

```
1 exec('Example2_1a.sce', -1)
2 clc
3
4 //Sample Problem 2-1b
5 printf("\n**Sample Problem 2-1b**\n")
6 time = distance_covered / velocity //in hr
7 delta_t = time + next_time /60 //in hr
8 printf("Time interval from the begining of the drive to the arrival at the station is %f hr", delta_t
)
```

Chapter 4

3 t = poly(0, 't')

Motion Along a Straight Line

Scilab code Exa 2.1.a Sample Problem 1a

```
Scilab code Exa 31.2 //Given that
2 velocity = 70 //in km/h
3 distance_covered = 8.4 //in km
4 next_time = 30 //in min
5 next_walk = 2 //in km
6
7 //Sample Problem 2-1a
8 printf("**Sample Problem 2-1a**\n")
9 overall_displacement = distance_covered + next_walk
10 printf("Overall displacement from begining of the drive to the station is %f km", overall_displacement)
Sample Problem 2

1 //Given that
2 r = 0.20 //in meter
```

```
check Appendix AP 13 for dependency:
Example2_1a.sce
check Appendix AP 12 for dependency:
Example2_1b.sce
```

Scilab code Exa 2.1.c Sample Problem 1c

```
1 exec('Example2_1a.sce', -1)
2 clc
3
4 //Sample Problem 2-1c
5 printf("\n**Sample Problem 2-1c**\n")
6 average_velocity = overall_displacement/delta_t
```

```
7 printf ("The average velocity over the whole journey
      is \%f \text{ km/h/n}, average_velocity)
9 //from position v/s time graph
10 xset ('window',1)
11 xtitle ("position v/s time", "time(hr)", "position(Km)
12 //drawing reference lines
13 plot(linspace(delta_t,delta_t,10),linspace(0,
      overall_displacement,10), '--.x')
14 plot(linspace(0,delta_t,10),linspace(
      overall_displacement, overall_displacement, 10), '
      --.0'
15 plot(linspace(time, time, 10), linspace(0,
      distance_covered, 10), '---')
16 plot(linspace(0, time, 10), linspace(distance_covered,
      distance_covered, 10), '---')
17 //position v/s time graph
18 x = linspace(0, time, 10);
19 y = linspace(0, distance_covered, 10);
20 plot(x,y,'r');
21 //average graph
22 x = linspace(time, delta_t, 10);
23 y = linspace(distance_covered,overall_displacement
      ,10);
24 plot(x,y,'r');
25 //slope of this line will give us the average
      velocity
26 \times = linspace(0, delta_t, 10);
27 y = linspace(0, overall_displacement, 10);
28 plot(x,y,'m');
29 legend('\$\delta x=10.4 km\$', 'time interval=.62hr')
30 printf ("The average velocity from the graph is %f km
      /h", 10.4/delta_t)
```

check Appendix AP 13 for dependency:

Scilab code Exa 31.3 Sample Problem 3

```
1 //Given that
2 t = poly(0, 't')
3 / B = 4*t^2*x^2
4 W = 3.0 //in meter
5 H = 2.0 //in meter
6 \text{ t1} = 0.10 //\text{in sec}
8 //Sample Problem 31-3
9 printf("**Sample Problem 31-3**\n")
10 flux = integrate('4*x^2*H', 'x', 0, W)
11 E = derivat(flux*t^2)
12 E1 = horner(E, t1)
13 printf("The induced emf is equal to %fV", E1)
  Scilab code Exa 2.1.b Sample Problem 1b
1 exec('Example2_1a.sce', -1)
2 clc
3
4 //Sample Problem 2-1b
5 printf("n**Sample Problem 2-1b**\\n")
6 time = distance_covered / velocity //in hr
7 delta_t = time + next_time /60 //in hr
8 printf("Time interval from the begining of the drive
       to the arrival at the station is %f hr", delta_t
     )
```

Scilab code Exa 31.4 Sample Problem 4

```
1 //Given that
2 R = 8.5*10^-2
                    //in meter
3 Rb = 0.13 //in T/s
4 r = 5.2*10^{-2} //in meter
6 //Sample Problem 31-4a
7 printf("**Sample Problem 31-4a**\n")
8 //Using Faraday's law
9 Rf = Rb*\%pi*r^2
10 E = Rf/(2*\%pi*r)
11 printf ("The induced electric field is equal to %eV/m
      \n", E)
12
13 //Sample Problem 31-4b
14 printf("n**Sample Problem 31-4b**\\n")
15 r = 12.5*10^-2 //in meter
16 \text{ Rf} = \text{Rb}*\%\text{pi}*\text{R}^2
17 E = Rf/(2*\%pi*r)
18 printf ("The induced electric field is equal to %eV/m
     ", E)
```

check Appendix AP 13 for dependency:

Example2_1a.sce

check Appendix AP 12 for dependency:

```
Example2_1b.sce
check Appendix AP 13 for dependency:
Example2_1a.sce
check Appendix AP 12 for dependency:
Example2_1b.sce
```

Scilab code Exa 31.5 Scilab code Exa 2.1.d Sample Problem 1c

Scilab code Exa 2.1.d Sample Problem 1d

```
1 exec('Example2_1a.sce', -1)
2 clc
3
4 //Sample Problem 2-1c
5 printf("n**Sample Problem 2-1c**\\n")
6 average_velocity = overall_displacement/delta_t
7 printf("The average velocity over the whole journey
     is \%f km/h\n", average_velocity)
9 //from position v/s time graph
10 xset ('window',1)
11 xtitle ("position v/s time", "time(hr)", "position(Km)
12 //drawing reference lines
13 plot(linspace(delta_t,delta_t,10),linspace(0,
      overall_displacement,10), '--.x')
14 plot(linspace(0,delta_t,10),linspace(
     overall_displacement, overall_displacement, 10), '
     --.0'
```

```
15 plot(linspace(time, time, 10), linspace(0,
      distance_covered, 10), '---')
16 plot(linspace(0,time,10),linspace(distance_covered,
      distance_covered, 10), '---')
17 //position v/s time graph
18 x = linspace(0, time, 10);
19 y = linspace(0, distance_covered, 10);
20 plot(x,y,'r');
21 //average graph
22 x = linspace(time, delta_t, 10);
23 y = linspace(distance_covered,overall_displacement
      ,10);
24 plot(x,y,'r');
25 //slope of this line will give us the average
      velocity
26 	 x = linspace(0, delta_t, 10);
27 y = linspace(0, overall_displacement, 10);
28 plot(x,y,'m');
29 legend('\$\delta x=10.4 km\$', 'time interval=.62hr')
30 printf ("The average velocity from the graph is %f km
      /h", 10.4/delta_t)
   Sample Problem 5
1 //Given that
2 \operatorname{exec}('\operatorname{Example}2_1\operatorname{a.sce}', -1)
3 \text{ exec}('Example2\_1a.sce', -1)
4 clc
5
6 //Sample Problem 2-1d
7 printf("n**Sample Probelm 2-1d**\\n")
8 time_station = 45 //in min
9 //he trevels 2 km back to the truck
10 final_displacement = overall_displacement + 2 //in
      km
11 final_average_velocity = final_displacement /(
      delta_t + time_station /60)
12 printf ("Average velocity from the begining of the
```

drive till reaching back to the truck is %f km/h", final_average_velocity)

```
1 //Given that
2 R = 9.0 //in Ohm
3 L = 2*10^-3 //in Henery
4 E = 18 //in Volts
6 //Sample Problem 31-5a
7 printf("**Sample Problem 31-5a**\n")
8 //As soon as switch is closed the inductor will act
      like current barrier
9 Io = E/R
10 printf("The current as soon as qwitch is closed is
      equal to \%1.2 \, fA \setminus n", Io)
11
12 //Sample Problem 31-5b
13 printf("n**Sample Problem 31-5b**\\n")
14 // After long time inductor will act like short
      circuit
15 \text{ Req} = R/3
16 If = E/(R/3)
17 printf("The current through the battery after long
      time will be %1.2fA", If)
```

```
1 / Sample Problem 2-2
2 printf("**Sample Problem 2-2**\n")
\frac{3}{\sqrt{\text{we know that v=dx/dt}}}
4 xset ('window', 2)
5 //velocity v/s time graph
6 subplot(2,1,1);
7 xtitle ("VELOCITY v/s TIME", "time (sec)", "velocity (
     m/s)");
  plot2d(linspace(0,0,10),linspace(0,0,10),style=3,
     rect = [0,0,10,5]);
9 //drawing the graph
10 plot(linspace(0,1,10),linspace(0,0,10), 'm');
11 plot(linspace(1,3,10),linspace(0,4,10), 'm');
12 plot(linspace(3,8,10),linspace(4,4,10), 'm');
13 plot(linspace(8,9,10),linspace(4,0,10), 'm');
14 plot(linspace(9,10,10),linspace(0,0,10), 'm');
15 //dotted lines
16 plot(linspace(0,3,5),linspace(4,4,5),'--');
17 plot(linspace(3,3,5),linspace(0,4,5),'--');
18 plot(linspace(8,8,5),linspace(0,4,5),'--');
19
20 //acceleration v/s time graph
21 subplot (2,1,2);
22 xtitle("ACCELERATION v/s TIME", "time (sec)", "
      acceleration s(m/s^2)")
  plot2d(linspace(0,0,10),linspace(0,0,10),style=0,
     rect = [0, -5, 10, 5]);
24 //drawing the graph
25 plot(linspace(0,1,5),linspace(0,0,5), 'm');
26 plot(linspace(1,1,5),linspace(0,2,5), 'm');
27 plot(linspace(1,3,5),linspace(2,2,5), 'm');
28 plot(linspace(3,3,5),linspace(2,0,5), m');
29 plot(linspace(3,8,5),linspace(0,0,5), 'm');
30 plot(linspace(8,8,5),linspace(0,-4,5),'m');
31 plot(linspace(8,9,5),linspace(-4,-4,5), 'm');
32 plot(linspace(9,9,5),linspace(-4,0,5), 'm');
33 plot(linspace(9,10,5),linspace(0,0,5), 'm');
34 //dotted lines
```

```
35 plot(linspace(1,1,5),linspace(-5,0,5),'--');
36 plot(linspace(3,3,5),linspace(-5,0,5),'--');
37 plot(linspace(8,8,5),linspace(-5,-4,5),'--');
38 plot(linspace(9,9,5),linspace(-5,-4,5),'--');
39 plot(linspace(0,1,5),linspace(2,2,5),'--');
40 plot(linspace(0,8,5),linspace(-4,-4,5),'--');
41 plot(linspace(1,3,5),linspace(0,0,5),'--');
42 plot(linspace(8,9,5),linspace(0,0,5),'--');
```

Scilab code Exa 31.6 Sample Problem 6

```
1 //Given that
2 L = 53*10^-3 //in H
3 R = 0.37 //in Ohm
4
5 //Sample Problem 31-6
6 printf("**Sample Problem 31-6**\n")
7 //i = io(1-e^(t/T))
8 //ln2 = t/T
9 T = L/R
10 t = T*log(2)
11 printf("The time taken to rach the current to half of its stedy state value is %fs", t)
```

```
check Appendix AP 13 for dependency:
Example2_1a.sce
check Appendix AP 12 for dependency:
Example2_1b.sce
```

Scilab code Exa 2.1.d Sample Problem 1d

```
1 //Given that
2 exec('Example2_1a.sce', -1)
3 \text{ exec} ( \text{'Example } 2\_1 \text{ a.sce'}, -1)
4 clc
5
6 //Sample Problem 2-1d
7 printf("n**Sample Probelm 2-1d**\\n")
8 \text{ time\_station} = 45 //\text{in min}
9 //he trevels 2 km back to the truck
10 final_displacement = overall_displacement + 2 //in
      km
11 final_average_velocity = final_displacement /(
      delta_t + time_station /60)
12 printf ("Average velocity from the begining of the
      drive till reaching back to the truck is %f km/h"
      , final_average_velocity)
```

Scilab code Exa 31.7 Sample Problem 7

```
1 //Given that
2 L = 53*10^-3 //in H
3 R = 0.35 //in Ohm
4 V = 12 //in Volts
5
6 //Sample Problem 31-7a
7 printf("**Sample Problem 31-7a**\n")
8 i = V/R //in steady state
9 E = 1/2*L*i^2
10 printf("The Energy stored in the inductor in steady state is %fJ\n", E)
11
```

```
//Sample Problem 31-7b
printf("\n**Sample Problem 31-7b**\n")

Et = E/2
//hence It = Io/sqrt(2)

f = log(1-1/sqrt(2)) //the number of times of time constant
printf("After t=%1.1fT, the energy stored in the inductor will be half of tis steady state value",
f)
```

Scilab code Exa 2.2 Sample Problem 2

```
1 / Sample Problem 2-2
2 printf("**Sample Problem 2-2**\n")
3 //we know that v=dx/dt
4 xset ('window', 2)
5 //velocity v/s time graph
6 subplot(2,1,1);
7 xtitle ("VELOCITY v/s TIME", "time (sec)", "velocity (
     m/s)");
8 plot2d(linspace(0,0,10),linspace(0,0,10),style=3,
     rect = [0,0,10,5]);
9 //drawing the graph
10 plot(linspace(0,1,10),linspace(0,0,10), 'm');
11 plot(linspace(1,3,10),linspace(0,4,10), 'm');
12 plot(linspace(3,8,10),linspace(4,4,10), 'm');
13 plot(linspace(8,9,10),linspace(4,0,10), 'm');
14 plot(linspace(9,10,10),linspace(0,0,10), 'm');
15 //dotted lines
16 plot(linspace(0,3,5),linspace(4,4,5),'--');
17 plot(linspace(3,3,5),linspace(0,4,5),'--');
```

```
18 plot(linspace(8,8,5),linspace(0,4,5),'--');
19
20 //acceleration v/s time graph
21 subplot (2,1,2);
22 xtitle("ACCELERATION v/s TIME", "time (sec)", "
      acceleration s(m/s^2)")
  plot2d(linspace(0,0,10),linspace(0,0,10),style=0,
     rect = [0, -5, 10, 5]);
24 //drawing the graph
25 plot(linspace(0,1,5),linspace(0,0,5), 'm');
26 plot(linspace(1,1,5),linspace(0,2,5), 'm');
27 plot(linspace(1,3,5),linspace(2,2,5), 'm');
28 plot(linspace(3,3,5),linspace(2,0,5), 'm');
29 plot(linspace(3,8,5),linspace(0,0,5), 'm');
30 plot(linspace(8,8,5),linspace(0,-4,5), 'm');
31 plot(linspace(8,9,5),linspace(-4,-4,5), 'm');
32 plot(linspace(9,9,5),linspace(-4,0,5), 'm');
33 plot(linspace(9,10,5),linspace(0,0,5), 'm');
34 //dotted lines
35 plot(linspace(1,1,5),linspace(-5,0,5),'---');
36 plot(linspace(3,3,5),linspace(-5,0,5),'---');
37 plot(linspace(8,8,5),linspace(-5,-4,5),'-.');
38 plot(linspace(9,9,5),linspace(-5,-4,5),'-.');
39 plot(linspace(0,1,5),linspace(2,2,5),'--');
40 plot(linspace(0,8,5),linspace(-4,-4,5),'--');
41 plot(linspace(1,3,5),linspace(0,0,5),'--');
42 plot(linspace(8,9,5),linspace(0,0,5),'--');
```

Scilab code Exa 31.8 Sample Problem 8

```
1 //Given that
```


Figure 4.3: Sample Problem 2

```
a = 1.2*10^-3
                  //in meter
                 //in meter
  b = 3.5*10^-3
4 i = 2.7 //in Amp
  1 = 1 //in meter(say)
  uo = 4*\%pi*10^-7
8 //Sample Problem 31-8
9 printf("**Sample Problem 31-8**\n")
10 B = uo*i/(2*\%pi) // divided by r
11 Ul = B^2/(2*uo) //divided by r^2
12 //Energy as a funtion of r
13 U = U1*2*%pi*1 //divided by r by r
14 Energy = integrate('U/r', 'r', a, b)
15 printf("Energy per unit length is equal to \%1.2\,\mathrm{eJ/m}"
      , Energy)
```

Scilab code Exa 2.3 Sample Problem 3

```
1 //Given that
2 t = poly(0,'t');
3 x = 7.8 + 9.2 * t - 2.1 * t^3;
4
5 //Sample Problem 2-3
6 printf("**Sample Problem 2-3**\n")
7 v = derivat(x)
8 velocity = horner(v,3.5)
9 printf("Velocity at t=3.5 second is equal to %f m/s", velocity)
```

Scilab code Exa 2.3 Sample Problem 3

```
1 //Given that
2 t = poly(0,'t');
3 x = 7.8 + 9.2 * t - 2.1 * t^3;
4
5 //Sample Problem 2-3
6 printf("**Sample Problem 2-3**\n")
7 v = derivat(x)
8 velocity = horner(v,3.5)
9 printf("Velocity at t=3.5 second is equal to %f m/s", velocity)
```

Scilab code Exa 31.9 Sample Problem 9

```
Scilab code Exa 24 // Given that
2 N1 = 1200
              //turns
3 N2 = N1
4 R2 = 1.1*10^-2 //in meter
5 R1 = 15*10^-2 //in meter
6 \text{ uo} = 4*\%pi*10^-7
8 //Sample Problem 31-9
9 printf("**Sample Problem 31-9**\n")
10 //let's assume
11 i = 1 //in amp
12 B1 = uo*N1*i/(2*R1)
13 phi2 = B1*%pi*R2^2*N2
14 M = phi2/i
15 printf ("The mutual inductance of the two coil is
      equal to \%1.2\,\mathrm{eH}", M)
   Sample Problem 4
1 //Given that
2 t = poly(0, 't')
3 x = t^3 - 27 * t + 4
5 //Sample Problem 2-4a
6 printf("**Sample Problem 2-4a**\n")
7 velocity = derivat(x)
8 acceleration = derivat(velocity)
```

```
9 printf("The velocity as a function of time in m/s is
        ")
10 disp(velocity)
11 printf("The acceleration as a function of time in m/
        s^2 is")
12 disp(acceleration)
13
14 //Sample Problem 2-4b
15 printf("\n**Sample Problem 2-4b**\n")
16 v0 = roots(velocity)
17 printf("velocity of the particle is zero at times in
        sec")
18 disp(v0)
```

Scilab code Exa 2.4 Sample Problem 4

```
1 //Given that
2 t = poly(0, 't')
3 x = t^3 - 27 * t + 4
4
5 //Sample Problem 2-4a
6 printf("**Sample Problem 2-4a**\n")
7 velocity = derivat(x)
8 acceleration = derivat(velocity)
9 printf("The velocity as a function of time in m/s is ")
10 disp(velocity)
11 printf("The acceleration as a function of time in m/s^2 is")
12 disp(acceleration)
```

```
14 //Sample Problem 2-4b
15 printf("\n**Sample Problem 2-4b**\n")
16 v0 = roots(velocity)
17 printf("velocity of the particle is zero at times in sec")
18 disp(v0)
```

Magnetism of Matter Maxwell Equation

Scilab code Exa 2.5 Scilab code Exa 2.5 Sample Problem 5 Sample Problem 1

```
1 //Given that
2 \text{ conv} = 5/18 //\text{converts} \text{ velocity from km/h to in m/s}
3 speed_initial = 100 * conv //in \, km/h
4 speed_final = 80 * conv
                             //in km/h
5 displacement = 88 //in meter
7 //Sample Problem 2-5a
8 printf("**Sample Problem 2-5a\n")
9 //using newton's 3rd equation of motion
10 acceleration = (speed_final^2 - speed_initial^2)/(2
     * displacement)
11 printf("The acceleration is equal to \%f m/sec^2\n",
      acceleration)
12
13 //Sample Problem2-5b
14 printf("n**Sample Problem 2-5a**\\n")
```

```
15 //using newton's first equation of motion
16 time = (speed_final - speed_initial)/acceleration
17 printf("The time taken to decrease the speed is %f
      sec", time)
1 //Given that
2 T = 300 //in K
3 B = 1.5 //in T
4 ub = 9.27*10^-24 //in J/T
5 \text{ mu} = 1.0*ub
6 \text{ K} = 1.38*10^-23 //\text{in J/K}
7 e = 1.6*10^-19 //in coulomb
9 //Sample Problem 32-1
10 printf("**Sample Problem 32-1**\n")
11 K = 3/2*K*T
12 \text{ deltaU} = 2*ub*B
13 printf ("The average translation kinetic energy of
      the atoms is \%1.2\,\mathrm{eeV}\,\mathrm{n}", K/e)
14 printf ("The difference between the energy of the two
       arrangement is \%1.2\,\mathrm{eeV}", deltaU/e)
```

Scilab code Exa 2.5 Sample Problem 5

```
1 //Given that
2 conv = 5/18 //converts velocity from km/h to in m/s
3 speed_initial = 100 * conv //in km/h
4 speed_final = 80 * conv //in km/h
5 displacement = 88 //in meter
6
7 //Sample Problem 2-5a
```

```
8 printf("**Sample Problem 2-5a\n")
9 //using newton's 3rd equation of motion
10 acceleration = (speed_final^2 - speed_initial^2)/(2
     * displacement)
11 printf("The acceleration is equal to %f m/sec^2\n",
     acceleration)
12
13 //Sample Problem2-5b
14 printf("\n**Sample Problem 2-5a**\n")
15 //using newton's first equation of motion
16 time = (speed_final - speed_initial)/acceleration
17 printf("The time taken to decrease the speed is %f sec", time)
```

Scilab code Exa 32.2 Sample Problem 2

```
1 //Given that
2 \text{ density} = 7900
                    //in kg/m^3
3 L = 3*10^-2 //in meter
4 w = 1*10^-3 //in meter
5 t = 0.50*10^{-3} //in meter
6 MFe = 2.1*10^-23 //in J/T
7 f = 10/100
8 M = 55.847*10^{-3}
                       //in kg/mol
9 \text{ Na} = 6.023*10^23
                      //in/mol
10
11 / Sample Problem 32-2
12 printf("**Sample Problem 32-2**\n")
13 N = density*L*w*t/M * Na
14 \text{ MD} = N*f*MFe
15 printf ("The needles magnetic dipole moment is %1.2 eJ
      /\mathrm{T}", MD)
```

Scilab code Exa 2.6 Sample Problem 6

```
Scilab code Exa 216 // Given that
             //in m/sec^2
2 g = -9.8
3 displacement = -48 //in meter
5 //Sample Problem 2-6a
6 printf("**Sample Problem 2-6a**\n")
7 //using newton's equation of motion
8 //displacement = 0 * t + .5 * g * t * t
9 //displacement = .5 * g * t * t
10 time = sqrt(displacement/(.5 * g))
11 printf ("The time taken to reach at the ground is %f
      \sec \langle n, time)
12
13 //Sample Problem 2-6b
14 printf("n**Sample Problem 2-6b**\\n")
15 t = poly(0, 't');
16 \text{ dis_t} = 0 * t + .5 * g * t * t
17 ds = horner(dis_t, [1, 2, 3])
18 printf ("The displacements at times 1,2,3 sec in
      meter is")
19 disp(ds)
20
21 //Sample Problem 2-6c
22 printf("n**Sample Problem 2-6c**\\n")
23 //using newton's first equation of motion v = u + a*
      \mathbf{t}
```

```
24 velocity = 0 + g * time
25 printf ("The velocity at water surface is equal to %f
      km/h n, velocity)
26
27 //Sample Problem 2-6d
28 printf("n**Sample Problem 2-6d**\\n")
29 //using newton's first equation of motion
30 \text{ v_at_time_t} = 0 + g * t
31 velocities = horner(v_at_time_t,[1,2,3])
32 printf("The velocitis at times 1,2,3 sec in m/s is")
33 disp(velocities)
   Scilab code Exa 2.6 Sample Problem 6
     Sample Problem 3
1 //Given that
2 g = -9.8 //in m/sec^{2}
3 displacement = -48 //in meter
5 //Sample Problem 2-6a
6 printf("**Sample Problem 2-6a**\n")
7 //using newton's equation of motion
8 //displacement = 0 * t + .5 * g * t * t
9 //displacement = .5 * g * t * t
10 time = sqrt(displacement/(.5 * g))
11 printf("The time taken to reach at the ground is %f
      \sec n, time)
12
13 //Sample Problem 2-6b
14 printf("n**Sample Problem 2-6b**\\n")
15 t = poly(0, 't');
16 \text{ dis_t} = 0 * t + .5 * g * t * t
17 	ext{ ds} = horner(dis_t, [1, 2, 3])
18 printf ("The displacements at times 1,2,3 sec in
      meter is")
19 disp(ds)
20
21 //Sample Problem 2-6c
```

```
22 printf("n**Sample Problem 2-6c**\\n")
23 //using newton's first equation of motion v = u + a*
24 velocity = 0 + g * time
25 printf ("The velocity at water surface is equal to %f
      km/h n, velocity)
26
27 //Sample Problem 2-6d
28 printf("n**Sample Problem 2-6d**\\n")
29 //using newton's first equation of motion
30 \text{ v_at\_time\_t} = 0 + g * t
31 velocities = horner(v_at_time_t,[1,2,3])
32 printf ("The velocitis at times 1,2,3 sec in m/s is")
33 disp(velocities)
1 //Given that
2 r = 11.0*10^{-3} //in meter
3 R = 5*r
4 Edot = 1.50*10^12 //in V/m.s
5 \text{ uo} = 4*\%pi*10^-7
6 \text{ Eo} = 8.85*10^-12
                     //in C^2/N.m^2
7
8 //Sample Problem 32-3
9 printf("**Sample Problem 32-3**\n")
10 // for r = R/5
11 B = uo*Eo*R^2/(2*r)*Edot
12 printf("The magnetic field is at r=R/5 is equal to
     %1.2\,\mathrm{eT}", B)
```

Scilab code Exa 2.7 Sample Problem 7

```
1 //Given that
2 g = -9.8
             //in m/sec^2
3 \text{ v_initial} = 12 //\text{in m/s}
4 v_final = 0 //at maximum height velocity equal to
      zero
6 //Sample Problem 2-7a
7 printf("**Sample Problem 2-7a**\n")
8 //using newton'd first equation of motion
9 // v_{final} = v_{initial} + g * t
10 h_max_time = (v_final - v_initial)/g
11 printf("After %f sec, the ball will attain its
     maximum height \ n", h_max_time)
12
13 //Sample Problem 2-7b
14 printf("n**Sample Problem 2-7b**\\n")
15 //using newton's second equation of motion
16 h_max = (v_final^2 - v_initial^2)/(2 * g)
17 printf("The maximum height reached by the baseball
      is \%f m\n", h_max)
18
19 //Sample Problem 2-7c
20 printf("n**Sample Problem 2-7c**\\n")
21 displacement = 5
22 t = poly(0, 't')
23 \text{ quad_t} = v_{\text{initial}} * t + .5 * g * t * t -
      displacement
24 t_5 = roots(quad_t)
25 printf ("At following times in sec, the ball will be
      at height 5m")
26 disp(t_5)
```

Electromagnetic Oscillations and Alternating Current

Scilab code Exa 33.1 Sample Problem 1

```
1 //Given that
2 C = 1.5*10^-6 //in F
3 V = 57 //in volts
4 L = 12*10^-3 //in H
5
6 //Sample Problem 33-1
7 printf("**Sample Problem 33-1**\n")
8 Imax = V*sqrt(C/L)
9 printf("The maximum current in the circuit is %1.2eA", Imax)
```

Scilab code Exa 2.7 Sample Problem 7

```
1 //Given that
```

```
2 g = -9.8 //in m/sec^{2}
3 \text{ v_initial} = 12 //\text{in m/s}
4 v_final = 0 //at maximum height velocity equal to
      zero
6 //Sample Problem 2-7a
7 printf("**Sample Problem 2-7a**\n")
8 //using newton'd first equation of motion
9 // v_{final} = v_{initial} + g * t
10 h_max_time = (v_final - v_initial)/g
11 printf("After %f sec, the ball will attain its
      maximum height \ n", h_max_time)
12
13 //Sample Problem 2-7b
14 printf("n**Sample Problem 2-7b**\\n")
15 //using newton's second equation of motion
16 \text{ h_max} = (v_final^2 - v_initial^2)/(2 * g)
17 printf("The maximum height reached by the baseball
      is \%f m\n", h_max)
18
19 //Sample Problem 2-7c
20 printf("n**Sample Problem 2-7c**")
21 displacement = 5
22 t = poly(0, 't')
23 \text{ quad_t} = \text{v_initial} * \text{t} + .5 * \text{g} * \text{t} * \text{t} -
      displacement
24 t_5 = roots(quad_t)
25 printf("At following times in sec, the ball will be
      at height 5m")
26 disp(t_5)
```

Vectors

```
check Appendix AP 2 for dependency:
```

```
degree_rad.sci
```

Scilab code Exa 3.1 Scilab code Exa 33.2 Sample Problem 1

```
1  exec('degree_rad.sci', -1)
2
3  //Given that
4  a = [2,0]
5  b = [2 *cos(dtor(30)),2 *sin(dtor(30))]
6  c = [-1,0]
7
8  //Sample Problem 3-1
9  printf("**Sample Problem 3-1**\n")
10  poss = [norm(a+b+c) norm(a-b+c), norm(a+b-c), norm(a-b-c)]
11  max_norm = 0
12  for v = poss
13     if v > max_norm then max_norm = v
14     end
```

```
15 end
16 printf("The maximum possible value is %f m",
     max_norm)
   Sample Problem 2
1 //Given that
2 C = 1.5*10^-6
                   //in F
3 V = 57 //in volts
4 L = 12*10^{-3} //in H
6 //Sample Problem 33-2a
7 printf("**Sample Problem 33-2a**\n")
8 //V(accross Inductor) = V(accross Capacitor)
9 //-L*(dI/dt) = V
10 //I = C*(dV/dt)
11 / L*C*(d^2V/dt^2) = -V
12 //at t=0, Potential difference = V
13 w = 1/sqrt(L*C)
14 printf ("The potential defference accross the
      inductor is V=\%d*\cos(\%d*t)\n", V, w)
15
16 //Sample Problem 33-2b
17 printf("n**Sample Problem 33-2b**\\n")
18 MaxRate = abs(-V/L)
19 printf("The maximum rate of change in current is %1
      .2 \operatorname{famp/s}", MaxRate)
```

Vectors

```
check Appendix AP 2 for dependency:
    degree_rad.sci
```

Scilab code Exa 3.1 Sample Problem 1

```
1 exec('degree_rad.sci', -1)
3 //Given that
4 a = [2,0]
5 b = [2 * \cos(dtor(30)), 2 * \sin(dtor(30))]
6 c = [-1, 0]
7
8 //Sample Problem 3-1
9 printf("**Sample Problem 3-1**\n")
10 poss = [norm(a+b+c) norm(a-b+c), norm(a+b-c), norm(a
     -b-c)]
11 \text{ max\_norm} = 0
12 for v = poss
13
       if v > max_norm then max_norm = v
14
15 end
16 printf("The maximum possible value is %f m",
     max_norm)
```

```
check Appendix AP 2 for dependency: degree_rad.sci
```

Scilab code Exa 33.3 Sample Problem 3

```
1 //Given that
2 L = 12*10^{-3}
                 //in H
3 C = 1.6*10^-6 //in F
4 R = 1.5 //in ohm
6 //Sample Problem 33-3a
7 printf("**Sample Probelm 33-3a**\n")
8 //Q/2 = Q * e^{(-R*t/(2*L))}
9 t = -2*L/R*log(0.50)
10 printf ("At time t=\%1.2 esec, the amplitude of charge
      oscillation is half of the maximum value\n", t)
11
12 //Sample Problem 33-3b
13 printf("n**Sample Probelm 33-3b**\\n")
14 w = 1/sqrt(L*C)
15 T = (2*\%pi)/w
16 n = t/T
17 printf("The number of oscillation are %1.2 f till t=
     \%1.2e", n, T)
```

Scilab code Exa 3.2 Sample Problem 2

```
1 exec('degree_rad.sci', -1)
2
```

```
3 //Given that
4 dis = 215 //in km
5 position = [dis * cos(dtor(22)), dis * sin(dtor(22))]
6
7 / \text{Sample Problem } 3-2
8 printf("**Sample Problem 3-2**\n")
9 printf("The plane is %f km in the north & %f in the
     east", position(1), position(2))
     check Appendix AP 2 for dependency:
     degree_rad.sci
  Scilab code Exa 3.2 Sample Problem 2
1 exec('degree_rad.sci', -1)
3 //Given that
4 \text{ dis} = 215
             //in km
5 position = [dis * cos(dtor(22)), dis * sin(dtor(22))]
6
7 / Sample Problem 3-2
8 printf("**Sample Problem 3-2**\n")
9 printf("The plane is %f km in the north & %f in the
     east", position(1), position(2))
     check Appendix AP 2 for dependency:
     degree_rad.sci
```

```
check Appendix AP 2 for dependency:
```

```
degree_rad.sci
```

Scilab code Exa 33.4 Sample Problem 4

```
1 //Given that
2 R = 200
              //in Ohm
               //in volts
3 \text{ Em} = 36
4 \text{ fd} = 60
             //in Hz
5 t = poly(0, 't')
6 w = 2*\%pi*fd
7 /V = \text{Em} \cdot \sin(w \cdot t)
9 //Sample Problem 33-4a
10 printf ("**Sample Problem 33-4a**\n")
11 //Vr = Emax * sin(w * t)
12 printf ("The voltage drop across the resistor is Vr=
       \%1.2 \text{ f} * \sin (\%1.2 \text{ f} * \text{t}) \setminus \text{n}, Em, w)
13
14 //Sample Problem 33-4b
15 printf("n**Sample Problem 33-4b**\\n")
16 \text{ Ir} = \text{Em/R}
17 printf("The current in the resistor as a function of
        time is Ir = \%1.2 f * sin(\%1.2 f * t)", Ir, w)
```

Scilab code Exa 33.4 Sample Problem 3

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 displacement_vector = [-2.6,-3.9,.025] //each in km
5
```

Scilab code Exa 3.3 Sample Problem 3

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 displacement_vector = [-2.6,-3.9,.025] //each in km
5
6 //Sample Problem 3-3
7 printf("**Sample Problem 3-3**\n")
8 mag = norm(displacement_vector)
9 sw_angle = atan(displacement_vector(2)/displacement_vector(1))
10 up_angle = displacement_vector(3)/norm(displacement_vector)
11 printf("The team displacement vector had a magnitude %f km,\n and was at an angle of %d south of west and\n at an angle of %f upward", mag, rtod(sw_angle), rtod(up_angle))
```

Scilab code Exa 33.5 Sample Problem 5

```
1 //Given that
                 //in Farad
2 C = 15*10^-6
3 \text{ Em} = 36.0 //\text{in volts}
4 \text{ fd} = 60.0
              //in Hz
6 //Sample Problem 33-5a
7 printf("**Sample Problem 33-5a**\n")
8 //Vc = Emax*sin(w*t)
9 printf("The voltage drop across the capacitor is Vc=
      \%1.2 f * sin (\%1.2 f * t) \n", Em, w)
10
11 //Sample Problem 33-5b
12 printf("n**Sample Problem 33-5b**n")
13 //I = -C*(dV/dt)
14 \quad IcMAX = abs(w*C*Em)
15 printf("The current in the capacitor as a function
      of time is Ic=\%1.2 f*cos(\%1.2 f*t)", IcMAX, w)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 3.4 Sample Problem 4

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 a = [4.2,-1.5]
5 b = [-1.6,2.9]
6 c = [0,-3.7]
7
8 //Sample Problem 3-4
9 printf("**Sample Problem 3-4**\n")
10 r = a + b + c
11 magnitude = norm(r)
12 angle = rtod(atan(r(2)/r(1)))
13 printf("The magnitude of the vector is %f m & the angle measured from the x axis is %f", magnitude, (angle))

check Appendix AP 2 for dependency:
    degree_rad.sci
```

Scilab code Exa 3.4 Sample Problem 4

check Appendix AP 2 for dependency:

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 a = [4.2,-1.5]
5 b = [-1.6,2.9]
6 c = [0,-3.7]
```

degree_rad.sci

```
8 //Sample Problem 3-4
9 printf("**Sample Problem 3-4**\n")
10 r = a + b + c
11 \text{ magnitude} = \text{norm}(r)
12 angle = rtod(atan(r(2)/r(1)))
13 printf ("The magnitude of the vector is %f m & the
      angle measured from the x axis is %f", magnitude,
       (angle))
   Scilab code Exa 33.6
      Sample Problem 6
   Scilab code Exa 3.5 // Given that
2 L = 230*10^{-3} //in Farad
3 \text{ Em} = 36.0
                //in volts
4 \text{ fd} = 60.0
               //in Hz
6 //Sample Problem 33-6a
7 printf("**Sample Problem 33-6a**\n")
8 //Vc = Emax*sin(w*t)
9 printf("The voltage drop across the inductor is Vi=
      \%1.2 \text{ f} * \sin (\%1.2 \text{ f} * \text{t}) \setminus \text{n}, Em, w)
10
11 //Sample Problem 33-6b
12 printf("n**Sample Problem 33-6b**\\n")
13 //V = -L*(dI/dt)
14 IcMAX = abs(Em/(w*L))
15 printf ("The current in the inductor as a function of
       time is Ic=-\%1.2 f*cos(\%1.2 f*t)", IcMAX, w)
   Sample Problem 5
1 exec ("degree_rad.sci",-1)
```

3 //Given that

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 3.6 Sample Problem 6

```
Scilab code Exa 3317 exec("degree_rad.sci",-1)

2

3 //Given that
4 a = [3,-4,0]
5 b = [-2,0,3]
```

```
7 //Sample Problem 3-6
8 printf("**Sample Problem 3-6**\n")
9 angle_ab = acos(-norm(a*b')/(norm(a) * norm(b)))
10 printf ("The angle between given vectors is %f
      degress", rtod(angle_ab))
   Sample Problem 7
1 //Given that
2 R = 200 //in ohm
3 C = 15*10^-6
                   //in F
4 L = 230*10^{-3} //in H
5 \text{ Em} = 36.0 //\text{in volts}
6 \text{ fd} = 60.0 //\text{in Hz}
8 //Sample Problem 33-7a
9 printf("**Sample Problem 33-7a**\n")
10 \ w = 2*\%pi*fd
11 \quad X1 = w*L
12 \quad Xc = 1/(w*C)
13 Z = sqrt(R^2 + (X1 - Xc)^2)
14 \text{ Imax} = \text{Em/Z}
15 printf("The amplitude of current in the circuit is
      \%1.2 \, \text{fA}, \text{Imax} \setminus \text{n}, \text{Imax})
16
17 //Sample Problem 33-7b
18 printf("n**Sample Problem 33-7a**\\n")
19 phi = atan((X1-Xc)/R)
20 printf ("The phase constant is equal to %fdegrees",
      phi)
```

```
check Appendix AP 2 for dependency:
```

degree_rad.sci

Scilab code Exa 3.5 Sample Problem 5

```
1 exec ("degree_rad.sci",-1)
3 //Given that
                 //in km
4 a = [36,0]
5 c = [25 * \cos(dtor(135)), 25 * \sin(dtor(135))]
                                                      //in
6 \text{ d_mag} = 62 //\text{in km}
8 //Sample Problem 3-5
9 printf("**Sample Problem 3-5**\n")
10 / \text{we have a} + b + c = d
11 // therefore ax = bx + cx + dx
12 // bx = 0
13 d_x = a(1) + c(1)
14 d_y = d_mag * sqrt(1 - (d_x/d_mag)^2)
15 d = [d_x, d_y]
16 b = d(2) - a(2) - c(2)
17 printf("The magnitude of b is equal to %f km", b)
```

```
check Appendix AP 2 for dependency:

degree_rad.sci

check Appendix AP 7 for dependency:

cross_product.sci

check Appendix AP 2 for dependency:

degree_rad.sci
```

Scilab code Exa 33.8 Scilab code Exa 33.8 Sample Problem 6

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 = [3, -4, 0]
5 b = [-2,0,3]
7 //Sample Problem 3-6
8 printf("**Sample Problem 3-6**\n")
9 angle_ab = acos(-norm(a*b')/(norm(a) * norm(b)))
10 printf ("The angle between given vectors is %f
      degress", rtod(angle_ab))
   Sample Problem 8
1 //Given that
2 Erms = 120 //in \text{ volts}
3 \text{ fd} = 60 //\text{in Hz}
4 R = 200 //in ohm
5 \text{ X1} = 80.0 //\text{in ohm}
6 \text{ Xc} = 150 //\text{in ohm}
8 //Sample Problem 33-8a
9 printf("**Sample Problem 33-8a**\n")
10 Z = sqrt(R^2 + (X1 - Xc)^2)
11 pf = R/Z
12 printf ("The power factor for the circuit is \%.3 \text{ f} \text{ n}",
       pf)
13
14 //Sample Problem 33-8b
15 printf("n**Sample Problem 33-8b**\\n")
16 \text{ Irms} = \text{Erms/R}
```

```
17 Pavg = Erms*Irms*pf
18 printf("The average rate of disscipation of energy
        is equal to %1.2fW\n", Pavg)

19
20 //Sample Problem 33-8c
21 printf("\n**Sample Problem 33-8c**\n")
22 Xc = X1
23 w = 2*%pi*fd
24 Cnew = 1/Xc/w
25 printf("The new capacitance should be %1.2eF", Cnew)
```

Scilab code Exa 3.7 Sample Problem 7

```
1 exec("degree_rad.sci",-1)
2 exec("cross_product.sci",-1)
3
4 //Given that
5 a = [18 * cos(dtor(250)), 18 * sin(dtor(250)),0]
6 b = [0,0,12]
7
8 //Sample Problem 3-7
9 printf("**Sample Problem 3-7**\n")
10 cross_ab = crossproduct(a,b)
11 angle_x = acos(cross_ab(1)/norm(cross_ab))
12 printf("The magnitude of cross product of given vectors is %f \n and angle with the x axis in degrees is %f", norm(cross_ab),rtod(angle_x))
```

check Appendix AP 7 for dependency:

cross_product.sci

check Appendix AP 2 for dependency:

```
degree_rad.sci
```

Scilab code Exa 3.7 Sample Problem 7

```
1 exec("degree_rad.sci",-1)
2 exec("cross_product.sci",-1)
3
4 //Given that
5 a = [18 * cos(dtor(250)), 18 * sin(dtor(250)),0]
6 b = [0,0,12]
7
8 //Sample Problem 3-7
9 printf("**Sample Problem 3-7**\n")
10 cross_ab = crossproduct(a,b)
11 angle_x = acos(cross_ab(1)/norm(cross_ab))
12 printf("The magnitude of cross product of given vectors is %f \n and angle with the x axis in degrees is %f", norm(cross_ab),rtod(angle_x))
```

```
check Appendix AP 7 for dependency:
cross_product.sci
check Appendix AP 2 for dependency:
degree_rad.sci
```

Scilab code Exa 33.9 Sample Problem 9

```
1 //Given that
2 \text{ Vp} = 8.5*10^3 //\text{in Volts}
3 Vs = 120 //in volts
4 P = 78*10^3 //in W
6 //Sample Problem 33-9a
7 printf("**Sample Problem 33-9a**\n")
8 \text{ ratio} = Vp/Vs
9 printf ("The turn ratio is equal to \%.3 \text{ f} \text{ n}", ratio)
10
11 //Sample Problem 33-9b
12 printf("n**Sample Problem 33-9b**\\n")
13 Is = P/Vs
14 \text{ Ip} = P/Vp
15 printf ("The current in primary circuit is \%1.2\,\mathrm{eA}\,\mathrm{n}",
16 printf ("The current in secondary circuit is %1.2eA\n
      ", Is)
17
18 //Sample Problem 33-9c
19 printf("n**Sample Problem 33-9c**\\n")
20 \text{ Rs} = Vs/Is
21 \text{ Rp} = \text{Vp/Ip}
22 printf ("The resistance in primary circuit is \%1.2\,\mathrm{eA}\
      n", Rp)
23 printf ("The resistance in secondary circuit is %1.2
      eA \setminus n", Rs)
```

Scilab code Exa 3.8 Sample Problem 8

```
1 exec("degree_rad.sci",-1)
2 exec("cross_product.sci",-1)
3
4 //Given that
5 a = [3,-4,0]
```

```
6 b = [-2,0,3]
7
8 //Sample Problem 3-8
9 printf("**Sample Problem 3-8**\n")
10 cross_ab = crossproduct(a,b)
11 printf("The cross product of given vectors is ")
12 disp(cross_ab)
```

```
check Appendix AP 7 for dependency:
cross_product.sci
check Appendix AP 2 for dependency:
degree_rad.sci
```

Scilab code Exa 3.8 Sample Problem 8

```
1 exec("degree_rad.sci",-1)
2 exec("cross_product.sci",-1)
3
4 //Given that
5 a = [3,-4,0]
6 b = [-2,0,3]
7
8 //Sample Problem 3-8
9 printf("**Sample Problem 3-8**\n")
10 cross_ab = crossproduct(a,b)
11 printf("The cross product of given vectors is ")
12 disp(cross_ab)
```

Electromagnetic Waves

Scilab code Exa 34.1 Sample Problem 1

```
//Given that
d = 1.8 //in meter
P = 250 //in W
c = 3*10^8 //in m/s
mu = 4*%pi*10^-7 //in SI unit

//Sample Problem 34-1
printf("**Sample Problem 34-1**\n")
Erms = sqrt(P*c*mu/(4*%pi*d^2))
Brms = Erms/c
printf("The rms value of electric field is equal to %1.2eV/m\n", Erms)
Brms = printf("The rms value of magnetic field is equal to %1.2eV/m\n", Erms)
```

Motion in Two and Three Dimesions

Scilab code Exa 4.1 Sample Problem 1

```
//Given that
r_initial = [-3,2,5] //in meter
r_final = [9,2,8] //in meter
//Sample Problem 4-1
printf("**Sample Problem 4-1**\n")
dis_v = r_final - r_initial
printf("The displacement vector of the particle in meter is")
disp(dis_v)
```

Motion in Two and Three Dimesions

check Appendix AP 2 for dependency:

Gravitation.sci

Scilab code Exa 4.1 Sample Problem 1

```
//Given that
r_initial = [-3,2,5] //in meter
r_final = [9,2,8] //in meter
//Sample Problem 4-1
printf("**Sample Problem 4-1**\n")
dis_v = r_final - r_initial
printf("The displacement vector of the particle in meter is")
disp(dis_v)
```

Scilab code Exa 4.2.a Sample Problem 2a

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 t = poly(0, 't')
5 x = -0.31 *t^2 + 7.2 *t +28
                                //in meter
6 y = 0.22 *t^2 - 9.1 *t + 30 //in meter
8 //Sample Problem 4-2a
9 printf("**Sample Problem 4-2a**\n")
10 time_t =15 //in sec
11 position_r = [horner(x,time_t),horner(y,time_t)]
12 printf ("The position vector of the rabbit at t=15 \sec
      in meter is")
13 disp(position_r)
14 printf ("The magnitude of the position vector is %f m
     n, norm(position_r))
15 printf ("The angle made by the position vector with
     the x axis in degrees at the same time %f", rtod(
     atan(position_r(2)/position_r(1))))
```

Scilab code Exa 34.2 Sample Problem 2

```
1 exec('Gravitation.sci', -1)
2
3 //Given that
4 density = 3.5*10^3 //in kg/m^3
5 c = 3*10^8 //in m/s
6 d = 1 //(say)
7 Ps = 3.9*10^26 //in W
8
9 //Sample Problem 34-2
10 printf("**Sample Problem 34-2**\n")
11 R = poly(0, 'R')
12 A = %pi*R^2
13 Ad = 4*%pi*d^2
```

Scilab code Exa 4.2.a Sample Problem 2a

```
1 exec ("degree_rad.sci",-1)
3 //Given that
4 t = poly(0, 't')
5 x = -0.31 *t^2 + 7.2 *t +28 //in meter
6 y = 0.22 *t^2 - 9.1 *t + 30 //in meter
8 //Sample Problem 4-2a
9 printf("**Sample Problem 4-2a**\n")
10 time_t =15 //in sec
11 position_r = [horner(x,time_t),horner(y,time_t)]
12 printf ("The position vector of the rabbit at t=15 \sec
      in meter is")
13 disp(position_r)
14 printf ("The magnitude of the position vector is %f m
     \n", norm(position_r))
15 printf ("The angle made by the position vector with
     the x axis in degrees at the same time %f", rtod(
```

```
check Appendix AP 2 for dependency:

degree_rad.sci

check Appendix AP 11 for dependency:

Example4_2a.sce
```

Scilab code Exa 4.2.b Sample Problem 2b

```
1 exec("Example4_2a.sce",-1)
2 clc
3
4 //Sample Problem 4-2b
5 printf("**Sample Problem 4-2b**\n")
6 xx = horner(x, [0:2:25])
7 \text{ yy} = \text{horner}(y, [0:2:25])
8 xset('window',3)
9 xtitle ("Y v/s X [t=0sec to t=25sec]", "X (m)", "Y (m)
10 plot2d(linspace(0,0,10),linspace(0,0,10),style=3,
     rect = [0, -80, 80, 40]);
11 //plotting grid
12 plot(linspace(10,10,5),linspace(-80,40,5),'---')
13 plot(linspace(20,20,5),linspace(-80,40,5),'---')
14 plot(linspace(30,30,5),linspace(-80,40,5),'---')
15 plot(linspace(40,40,5),linspace(-80,40,5),'---')
16 plot(linspace(50,50,5),linspace(-80,40,5),'---')
17 plot(linspace(60,60,5),linspace(-80,40,5),'---')
18 plot(linspace(70,70,5),linspace(-80,40,5),'---')
19 plot(linspace(80,80,5),linspace(-80,40,5),'---')
20 plot(linspace(0,80,5),linspace(-60,-60,5),'---')
21 plot(linspace(0,80,5),linspace(-40,-40,5),'---')
```

```
22 plot(linspace(0,80,5),linspace(-20,-20,5),'--')
23 plot(linspace(0,80,5),linspace(0,0,5),'--')
24 plot(linspace(0,80,5),linspace(20,20,5),'--')
25 plot(linspace(0,80,5),linspace(40,40,5),'--')
26 //plotting graph
27 plot(xx,yy,'m<-')
```

```
check Appendix AP 2 for dependency:
degree_rad.sci
check Appendix AP 2 for dependency:
degree_rad.sci
check Appendix AP 11 for dependency:
Example4_2a.sce
```

Scilab code Exa 34.3 Sample Problem 3

```
1 exec('degree_rad.sci', -1)
2
3 //Given that
4 theta1 = dtor(60)
5 theta2 = dtor(90-60)
6 I = 1 //(say)
7
8 //Sample Problem 34-3
9 printf("**Sample Problem 34-3**\n")
10 //half of the original intensity, from the one-half rule
11 I1 = I/2
12 I2 = I1*cos(theta1)^2
13 I3 = I2*cos(theta2)^2
14 printf("The ratio of the initial inensity to the final intensity of the light is %.4f", I3)
```

Scilab code Exa 4.2.b Sample Problem 2b

```
1 exec("Example4_2a.sce",-1)
2 clc
4 //Sample Problem 4-2b
5 printf("**Sample Problem 4-2b**\n")
6 xx = horner(x, [0:2:25])
7 \text{ yy} = \text{horner}(y, [0:2:25])
8 xset('window',3)
  xtitle ("Y v/s X [t=0sec to t=25sec]", "X (m)", "Y (m)
     ");
10 plot2d(linspace(0,0,10),linspace(0,0,10),style=3,
     rect = [0, -80, 80, 40]);
  //plotting grid
12 plot(linspace(10,10,5),linspace(-80,40,5),'---')
13 plot(linspace(20,20,5),linspace(-80,40,5),'---')
14 plot(linspace(30,30,5),linspace(-80,40,5),'---')
15 plot(linspace(40,40,5),linspace(-80,40,5),'---')
16 plot(linspace(50,50,5),linspace(-80,40,5),'---')
17 plot(linspace(60,60,5),linspace(-80,40,5),'---')
18 plot(linspace(70,70,5),linspace(-80,40,5),'---')
19 plot(linspace(80,80,5),linspace(-80,40,5),'---')
20 plot(linspace(0,80,5),linspace(-60,-60,5),'--')
21 plot (linspace (0,80,5), linspace (-40,-40,5), '---')
22 plot(linspace(0,80,5),linspace(-20,-20,5),'---')
23 plot(linspace(0,80,5),linspace(0,0,5),'--')
24 plot(linspace(0,80,5),linspace(20,20,5),'---')
25 plot(linspace(0,80,5),linspace(40,40,5),'--')
26 //plotting graph
27 plot(xx,yy, m.<-)
```


Figure 11.1: Sample Problem 2b

check Appendix AP 2 for dependency:
degree_rad.sci

Scilab code Exa 34.4 Sample Problem 4

```
1 exec('degree_rad.sci', -1)
3 //Given that
4 n1 = 1.33
5 n2 = 1.77
6 n3 = 1.00
7 \text{ theta1} = 50
                //in degrees
9 //Sample Problem 34-4a
10 printf ("**Sample Problem 34-4a**\n")
11 \text{ AORl} = 90 - \text{theta1}
12 AORr = rtod(asin(n1/n2*sin(dtor(AOR1))))
13 printf("The angle of reflection is %1.2 fdegrees\n",
      AOR1)
14 printf ("The angle of refraction is %1.2 fdegrees \n",
      AORr)
15
16 //Sample Problem 34-4b
17 printf("n**Sample Problem 34-4b**\\n")
18 Af = rtod(asin(n2/n3*sin(dtor(AORr))))
19 printf ("The final angle of refraction is %1.2
      fdegrees", Af)
```

check Appendix AP 11 for dependency:

Example4_2a.sce

Scilab code Exa 4.3 Sample Problem 3

```
1 exec("Example4_2a.sce",-1)
2 clc
3
4 //Sample Problem 4-3
5 printf("\n**Sample Problem 4-3**\n")
```

```
6 velocity_v_x = derivat(x)
7 velocity_v_y = derivat(y)
8 v_time_t = [horner(velocity_v_x, time_t), horner(
      velocity_v_y,time_t)]
9 printf("The velocity vector of the rabbit at t=15 \sec
       in m/s is")
10 disp(v_time_t)
11 printf ("The magnitude of the velocity vector is %f m
     /s \ n", norm(v_time_t))
12 printf("The angle made by the velocity vector with
      the x axis in degrees at the same time %f", rtod(
      atan(v_time_t(2)/v_time_t(1)))
     check Appendix AP 11 for dependency:
     Example4_2a.sce
     check Appendix AP 2 for dependency:
     degree_rad.sci
   Scilab code Exa 4.3 Sample Problem 3
1 exec("Example4_2a.sce",-1)
2 clc
4 //Sample Problem 4-3
5 printf("n**Sample Problem 4-3**\\n")
6 velocity_v_x = derivat(x)
7 velocity_v_y = derivat(y)
8 v_time_t = [horner(velocity_v_x, time_t), horner(
      velocity_v_y,time_t)]
9 printf("The velocity vector of the rabbit at t=15sec
       in m/s is")
10 disp(v_time_t)
```

```
11 printf("The magnitude of the velocity vector is %f m /s\n", norm(v_time_t))
```

Scilab code Exa 34.5 Sample Problem 5

```
1 exec('degree_rad.sci', -1)
2
3 //Given that
4 e = 45 //in degrees
5
6 //Sample Problem 34-5
7 printf("**Sample Problem 34-5**\n")
8 //For extrem case
9 n = 1/sin(dtor(e))
10 printf("The index of refraction should be at least %1.1 f", n)
```

check Appendix AP 10 for dependency:

Example4_3.sce

Chapter 12

Images

check Appendix AP 10 for dependency:

Example4_3.sce

Scilab code Exa 4.4 Scilab code Exa 4.4 Sample Problem 4 Sample Problem 1

```
1 exec("Example4_3.sce",-1)
2 clc
3
4 //Sample Problem 4-4
5 printf("\n**Sample Problem 4-4**\n")
6 acceler_x = derivat(velocity_v_x)
7 acceler_y = derivat(velocity_v_y)
8 a_time_t = [horner(acceler_x,time_t),horner(acceler_y,time_t)]
9 printf("The acceleration vector of the rabbit at t=15 sec in m/sec^2 is")
10 disp(a_time_t)
11 printf("The magnitude of the acceleration vector is %f m/sec^2\n", norm(a_time_t))
```

```
12 printf ("The angle made by the acceleration vector
     with the x axis in degrees at the same time %f",
     rtod(atan(a_time_t(2)/a_time_t(1))))
1 //Given that
2 h = 1 //(say)
3 f = 40 //in cm
4 \text{ hdash} = .20*h
6 //Sample Problem 35-1a
7 printf("**Sample Problem 35-1a**\n")
8 printf ("The image is virtual & on the opposite side
      of mirror because of having same orientation\n")
9
10 //Sample Problem 35-1b
11 printf("n**Sample Problem 35-1b**\\n")
12 printf("The height of image is smaller than the
      object. Therefore, the mirror is concave\n")
```

Scilab code Exa 4.4 Sample Problem 4

```
1 exec("Example4_3.sce",-1)
2 clc
3
4 //Sample Problem 4-4
5 printf("\n**Sample Problem 4-4**\n")
6 acceler_x = derivat(velocity_v_x)
7 acceler_y = derivat(velocity_v_y)
8 a_time_t = [horner(acceler_x, time_t), horner(acceler_y, time_t)]
9 printf("The acceleration vector of the rabbit at t = 15 sec in m/sec^2 is")
10 disp(a_time_t)
```

check Appendix AP 2 for dependency: degree_rad.sci

Scilab code Exa 4.5 Sample Problem 5

```
1 exec ("degree_rad.sci",-1)
3 //Given that
4 velocity_v0 = [-2,4] //in m/s
5 \text{ acceler_a} = [3 * \cos(\text{dtor}(130)), 3 * \sin(\text{dtor}(130))]
        //in m/sec^2
                //in sec
 time_t = 5
8 //Sample Problem 4-5
9 printf("**Sample Problem 4-5**\n")
10 //using newton's first equation of motion v = u + a
11 velocity_t = velocity_v0 + acceler_a * time_t
12 printf ("The velocity vector of the particle at t=5
     sec in m/s is")
13 disp(velocity_t)
14 printf ("The magnitude of the velocity vector is %f m
     /s \ n", norm(velocity_t))
15 printf("The angle made by the velocity vector with
     the x axis in degrees at the same time %f", rtod(
     atan(velocity_t(2)/velocity_t(1))))
```

```
degree_rad.sci
  Scilab code Exa 4.5 Sample Problem 5
  Scilab code Exa 3512 exec ("degree_rad.sci", -1)
3 //Given that
4 \text{ velocity\_v0} = [-2,4]
                          //in m/s
5 acceler_a = [3 * \cos(dtor(130)), 3 * \sin(dtor(130))]
        //in m/sec^2
                //in sec
6 \text{ time\_t} = 5
8 //Sample Problem 4-5
9 printf("**Sample Problem 4-5**\n")
10 //using newton's first equation of motion v = u + a
     *t
11 velocity_t = velocity_v0 + acceler_a * time_t
12 printf ("The velocity vector of the particle at t=5
      sec in m/s is")
13 disp(velocity_t)
14 printf ("The magnitude of the velocity vector is %f m
     / s \ n", norm(velocity_t))
15 printf("The angle made by the velocity vector with
      the x axis in degrees at the same time %f", rtod(
      atan(velocity_t(2)/velocity_t(1)))
```

check Appendix AP 2 for dependency:

Sample Problem 2

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 4.6 Sample Problem 6

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 v_rescue = [55,0] //in m/s
5 dis_y = -500 //in m
6 g = -9.8 //in m/s^2
7
8 //Sample Problem 4-6a
9 printf("**Sample Problem 4-6a**\n")
10 //using newton's second equation of motion
11 time = sqrt(2 *dis_y /g)
12 dis_x = v_rescue(1) *time
```

```
13 printf ("The angle of the piliots line of sight to
     the victim %f degrees\n",rtod(atan(-dis_x/dis_y))
14
15 //Sample Problem 4-6b
16 printf("n**Sample Problem 4-6b**\\n")
17 u_initial = v_rescue
18 //using newton's first equation of motion
19 v_{final} = u_{initial} + [0,g] * time
20 printf("The velocity vector of the capsule near
      water in m/s is")
21 disp(v_final)
22 printf ("The magnitude of the velocity vector is %f m
     /s \ n", norm(v_final))
23 printf("The angle made by the velocity vector with
     the x axis in degrees at the same time %f", rtod(
     atan(v_final(2)/v_final(1)))
```

Scilab code Exa 35.3 Sample Problem 3

```
//Given that
Xo = -20 //in cm
m = -0.25
n = 1.65
//Sample Problem 35-3a
printf("**Sample Problem 35-3a**\n")
printf("The image is real real because m<0 as well as m<1\n")
printf("The mens is converging because magnification is negative for real image\n")
printf("The object is outside the focal length because m<1\n")</pre>
```

```
printf("The image is on the opposite side of the
    image from the lens\n")

printf("The image is erect\n")

//Sample Problem 35-3b

printf("\n**Sample Problem 35-3b**\n")

f = Xo*m*Xo/(Xo-m*Xo)

R = (n-1)*2*f

printf("The radius of curvature of the lens is %1.2
    fcm", f)
```

```
check Appendix AP 2 for dependency:
degree_rad.sci
check Appendix AP 2 for dependency:
degree_rad.sci
```

Scilab code Exa 35.4 Scilab code Exa 35.4 Sample Problem 4 Sample Problem 7

```
1 //Given that
2 L= 10 //in cm
3 f1 = 24 //in cm
4 f2 = 9 //in cm
5 xo = -6 //in cm
6
7 //Sample Problem 35-4
8 printf("**Sample Problem 35-4**\n")
9 xi1 = xo*f1/(xo+f1)
```

```
10 \text{ xo2} = \text{xi1} - \text{L}
11 xi2 = xo2*f2/(xo2+f2)
12 printf ("The final image will be at a distance of
      %dcm from the second mirror", xi2)
1 exec("degree_rad.sci",-1)
3 //Given that
4 \text{ range_x} = 560
                     //in m
5 \text{ vO_mag} = 82
                    //in m/sec
6 g = -9.8
             //in m/s^2
8 //Sample Problem 4-7a
9 printf("**Sample Problem 4-7a**\n")
10 theta = .5 * asin(-g* range_x/v0_mag^2)
11 printf ("The angle at which the ball be fired to hit
      the ship is \%f degrees or \%f \ n", rtod(theta), (90
       - rtod(theta)))
12
13 //Sample Problem 4-7b
14 printf ("n**Sample Problem 4-7b**\\n")
15 //Range is maximum when theta = 45 degree
16 R_max = -v0_mag^2/g
17 printf("The maximum possible range is %f m", R_max)
   Scilab code Exa 35.4 Sample Problem 6
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 \text{ v_rescue} = [55,0]
                      //in m/s
5 \text{ dis_y} = -500 // \text{in m}
6 \text{ g} = -9.8 //\text{in m/s}^2
8 //Sample Problem 4-6a
9 printf("**Sample Problem 4-6a**\n")
10 //using newton's second equation of motion
```

```
11 time = sqrt(2 * dis_y /g)
12 dis_x = v_rescue(1) *time
13 printf("The angle of the piliots line of sight to
     the victim %f degrees\n",rtod(atan(-dis_x/dis_y))
     )
14
15 //Sample Problem 4-6b
16 printf("n**Sample Problem 4-6b**\\n")
17 u_initial = v_rescue
18 //using newton's first equation of motion
19 v_{final} = u_{initial} + [0,g] * time
20 printf("The velocity vector of the capsule near
     water in m/s is")
21 disp(v_final)
22 printf("The magnitude of the velocity vector is %f m
     / s \ n", norm(v_final))
23 printf("The angle made by the velocity vector with
     the x axis in degrees at the same time %f", rtod(
     atan(v_final(2)/v_final(1)))
```

Chapter 13

Interference

Scilab code Exa 36.1 Sample Problem 1

```
//Given that
1 = 550*10^-9 //in meter
nu = 1.60
nu = 1.00
t = 2.6*10^-6 //in meter

//Sample Problem 36-1a
printf("**Sample Problem 36-1a**\n")
deltaPHI = t/1*(n2 - n1)*360
printf("The phase difference is equal to %1.2 fdegrees\n", deltaPHI)

//Sample Problem 36-1b
printf("\n**Sample Problem 36-1b**\n")
printf("The interference produced would be constructive")
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 4.7 Sample Problem 7

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 \text{ range_x} = 560
                    //in m
                    //in m/sec
5 \text{ vO_mag} = 82
6 \text{ g} = -9.8 //\text{in m/s}^2
8 //Sample Problem 4-7a
9 printf("**Sample Problem 4-7a**\n")
10 theta = .5 *asin(-g* range_x/v0_mag^2)
11 printf ("The angle at which the ball be fired to hit
      the ship is \%f degrees or \%f \setminus n, rtod(theta), (90)
       - rtod(theta)))
12
13 //Sample Problem 4-7b
14 printf("n**Sample Problem 4-7b**\\n")
15 //Range is maximum when theta = 45 degree
16 R_max = -v0_mag^2/g
17 printf("The maximum possible range is %f m", R_max)
```

Scilab code Exa 36.2 Sample Problem 2

```
1 //Given that
2 l = 546*10^-9 //in meter
3 d = 12*10^-5 //in meter
4 D = 55*10^-2 //in meter
5
6 //Sample Problem 36-2
```

```
7 printf("**Sample Problem 36-2**\n")
8 beeta = 1*D/d
9 printf("The difference between two adjacent maxima is %1.2em", beeta)
```

```
check Appendix AP 2 for dependency:

degree_rad.sci

check Appendix AP 2 for dependency:

degree_rad.sci

check Appendix AP 2 for dependency:

degree_rad.sci

degree_rad.sci
```

Scilab code Exa 4.8 Sample Problem 8

```
Scilab code Exa 418 exec ("degree_rad.sci",-1)
2
3 //Given that
4 \text{ gr\_height} = 3
                      //in m
5 \text{ theta} = \text{dtor}(53)
               //in m/s^2
6 g = -9.8
7 v0 = 26.5
                //in m/s
8 \text{ tower\_height} = 18 //\text{in m}
9
10 //Sample Problem 4-8a
11 printf("**Sample Problem 4-8a**\n")
12 x = poly(0, 'x')
13 \ y = x * tan(theta) + g * x * x /(2* v0^2) * sec(
      theta)^2
```

```
14 \text{ y\_tower1} = \text{horner}(y, 23)
15 if y_tower1<0 then printf("No, It does not clear the
       first Ferris wheel\n")
       else printf("Yes, It clears the first Ferris
16
          wheel\n")
17 end
18
19 //Sample Proble, 4-8b
20 printf("n**Sample Problem 4-8b**\\n")
21 \quad y_{max} = horner(y, 34.5)
22 printf ("The balls clearance above middle tower is %f
       m/n", y_max + gr_height - tower_height)
23
24 //Sample Problem 4-8c
25 printf("n**Sample Problem 4-8c**\n")
26 \text{ Range} = -v0^2 * \sin(2*\text{theta})/g
27 printf ("The centre of the net should be placed at a
      diastance of %f m form the cannon", Range)
```

Sample Problem 8

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 gr_height = 3 //in m
5 theta = dtor(53)
6 g = -9.8 //in m/s^2
7 v0 = 26.5 //in m/s
8 tower_height = 18 //in m
9
10 //Sample Problem 4-8a
11 printf("**Sample Problem 4-8a**\n")
12 x = poly(0, 'x')
13 y = x * tan(theta) + g * x * x /(2* v0^2) * sec(theta)^2
14 y_tower1 = horner(y,23)
```

```
15 if y_tower1<0 then printf("No, It does not clear the
       first Ferris wheel\n")
       else printf("Yes, It clears the first Ferris
16
          wheel\n")
17 \text{ end}
18
19 //Sample Proble, 4-8b
20 printf("n**Sample Problem 4-8b**\\n")
21 \quad y_{max} = horner(y, 34.5)
22 printf ("The balls clearance above middle tower is %f
       m n, y_max + gr_height - tower_height)
23
24 //Sample Problem 4-8c
25 printf("n**Sample Problem 4-8c**\\n")
26 \text{ Range} = -v0^2 * \sin(2*\text{theta})/g
27 printf ("The centre of the net should be placed at a
      diastance of %f m form the cannon", Range)
   Scilab code Exa 36.3
   Sample Problem 3
1 exec('degree_rad.sci', -1)
```

```
1 exec('degree_rad.sci', -1)
2
3 //Given that
4 Eo = 1 //(say)
5 E1 = Eo
6 E2 = Eo
7 E3 = Eo
8 phi1 = dtor(0)
9 phi2 = dtor(60)
10 phi3 = dtor(-30)
11
12 //Sample Problem 36-3
13 printf("**Sample Problem 36-3**\n")
14 Eh = E1*cos(phi1) + E2*cos(phi2) + E3*cos(phi3)
15 Ev = E1*sin(phi1) + E2*sin(phi2) + E3*sin(phi3)
16 Er = sqrt(Ev^2 + Eh^2)
```

```
17 theta = rtod(atan(Ev/Eh))
18 printf("The resultant electric field is E=%1.2f*Eo* \sin(w*t + \%1.2f)", Er, theta)
```

Scilab code Exa 36.4 Scilab code Exa 4.9 Sample Problem 4 Sample Problem 9

```
1 //Given that
2 \text{ lmin} = 400
                 //in nm
3 \, lmax = 690
                 //in nm
4 n2 = 1.33
5 L = 320 //in nm
7 //Sample Problem 36-4
8 printf("**Sample Problem 36-4**\n")
9 \text{ flag} = 1
10 \text{ odd_number} = 1
11 while flag == 1
12
        lambda = 4*L*n2/odd_number
        if lambda > lmin & lambda < lmax then</pre>
13
14
            flag = 0
15
        end
        odd_number = odd_number + 2
16
17 \text{ end}
18 printf("The wavelength of the light is %1.2enm",
      lambda)
```

Scilab code Exa 4.9 Sample Problem 9

Scilab code Exa 36.5 Sample Problem 5

```
1 // Given that
```

Scilab code Exa 4.10 Sample Problem 10

```
1 //To convert velocity m/s from km/h
2 \text{ conv} = 5/18
3
4 //Given that
               //in km/hr
5 v_BA = 52
6 \text{ v}_PA = -78 //\text{in km/hr}
8 //Sample Problem 4-10a
9 printf("**Sample Problem 4-10a**\n")
10 //using concept of relative velocity
11 \quad v_PB = v_PA - v_BA
12 printf ("The velocity of P as measured by Barbara is
     \%d km/hr\n",v_PB)
13
14 //Sample Problem 4-10b
15 printf("n**Sample Problem 4-10b**\\n")
16 //In frame of Alex
17 delta_t = 10 //in sec
18 a_PA = (0 - v_PA)* conv/delta_t
19 printf ("The accleration of P in frame of Alex is %f
     m/s^2 n, a_PA)
```

```
20
21  //Sample Problem 4-10c
22  printf("\n**Sample Problem 4-10c**\n")
23  a_BA = 0
24  a_PB = a_PA - a_BA
25  printf("The acceleration of P as measured by B is %f m/s^2", a_PB)
```

Scilab code Exa 4.10 Sample Problem 10

```
1 //To convert velocity m/s from km/h
2 \text{ conv} = 5/18
4 //Given that
5 \text{ v}_BA = 52
                //in km/hr
6 \text{ v}_{PA} = -78 \text{ //in km/hr}
8 //Sample Problem 4-10a
9 printf("**Sample Problem 4-10a**\n")
10 //using concept of relative velocity
11 \quad v_PB = v_PA - v_BA
12 printf ("The velocity of P as measured by Barbara is
      %d km/hr\n",v_PB)
13
14 //Sample Problem 4-10b
15 printf("n**Sample Problem 4-10b**\\n")
16 //In frame of Alex
17 delta_t = 10 //in sec
18 a_PA = (0 - v_PA)* conv/delta_t
19 printf ("The accleration of P in frame of Alex is %f
     m/s^2 n, a_PA)
20
21 //Sample Problem 4-10c
```

```
22 printf("\n**Sample Problem 4-10c**\n")
23 a_BA = 0
24 a_PB = a_PA - a_BA
25 printf("The acceleration of P as measured by B is %f m/s^2", a_PB)
```

Scilab code Exa 36.6 Sample Problem 6

```
1 //Given that
2 lambda = 632.8*10^-9 //in meter
3 i = 0 //in rad
4 dFringes = 6
5 bFringes = 5
6
7 //Sample Problem 36-6
8 printf("**Sample Problem 36-6**\n")
9 //Assume the difference in thickness is 't'
10 //then the path difference will be 2*L
11 //hence
12 deltaL = bFringes/2*lambda
13 printf("The difference in thickness is equal to %fnm ", deltaL*10^9)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Chapter 14

Diffraction

```
check Appendix AP 2 for dependency:
    degree_rad.sci
    check Appendix AP 2 for dependency:
    degree_rad.sci
```

Scilab code Exa 4.11 Sample Problem 11

```
8 //Sample Problem 4-11
9 printf("**Sample Problem 4-11**\n")
10 //therefore in direction
```

11 $v_PW_y = v_PG_y - v_WG(2)$

 $6 \text{ v}_PW_mag = 215 //in km/h$

 $5 \quad v_PG_y = 0$

12 $v_PW_x = sqrt(v_PW_mag^2 - v_PW_y^2)$

 $13 \ v_PG_x = v_PW_x + v_WG(1)$

Scilab code Exa 37.1 Sample Problem 1

```
1 exec('degree_rad.sci', -1)
2
3 //Given that
4 lambda = 650*10^-9 //in meter
5 theta = dtor(15) //in radians
6
7 //Sample Problem 37-1a
8 printf("**Sample Problem 37-1a**\n")
```

Chapter 15 Force and Motion 1

check Appendix AP 2 for dependency:

degree_rad.sci

Chapter 16

Force and Motion 1

```
check Appendix AP 2 for dependency:
```

```
degree_rad.sci
```

Scilab code Exa 5.1 Sample Problem 1

Scilab code Exa 37.2

Sample Problem 2

```
//Sample Problem 37-2
printf("**Sample Problem 37-2**\n")
I = [];
for m = 1:3
    theta = (m+.5)*%pi
        I = [I, (sin(theta)/theta)^2]
end
printf("The intensities of secondary maximas relative to intensity of CBF is-\n")
printf("\tI1/Im = %.4 f\n", I(1))
printf("\tI2/Im = %.4 f\n", I(2))
printf("\tI3/Im = %.4 f", I(3))
```

Scilab code Exa 5.1 Sample Problem 1

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 m = .20 //in kg
5 F_1 = 4 * [1,0]
6 F_2 = 2 * [-1,0]
7 F_3 = 1 * [cos(dtor(30)),sin(dtor(30))]
8
9 //Sample Problebb nmkn nm 5-1
10 printf("**Sample Problem 5-1**\n")
11 acceleration_a = F_1(1)/m
12 acceleration_b = F_2(1)/m
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 37.3 Sample Problem 3

```
1 //Given that
2 d = 32*10^-3 //in meter
3 f = 24*10^-2 //in meter
4 lam = 550*10^-9 //in meter
5
6 //Sample Problem 37-3a
7 printf("**Sample Problem 37-3a**\n")
8 theta = 1.22*lam/d
9 printf("Angular sepration should be equal to %erad\n ", theta)
10
11 //Sample Problem 37-3b
12 printf("\n**Sample Problem 37-3b**\n")
13 deltaX = f*theta
14 printf("The sepration between the two images is %em" , deltaX)
```

Scilab code Exa 5.2 Sample Problem 2

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 \text{ mass} = 2 //\text{in kg}
5 \text{ acceleration} = 3 * [\cos(\text{dtor}(50)), \sin(\text{dtor}(50))]
                                                          //
      in m/s^2
                                                          //
  F1 = 10 * [\cos(dtor(180+30)), \sin(dtor(180+30))]
      in N
7 F2 = 20 * [0,1]
                        //in N
9 //Sample Problem 5-2
10 printf ("**Sample Problem 5-2**\n")
11 //from newton's first law
12 / F1 + F2 + F3 = mass * acceleration
13 F3 = mass * acceleration - F2 - F1
14 printf("The third Force vector F3 in N is")
15 disp(F3)
16 printf("The magnitude F3 is \%f m/s\n", norm(F3))
17 printf ("The angle made by F3 with the x axis in
      degrees %f", rtod(atan(F3(2)/F3(1))))
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 5.2 Sample Problem 2

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 \text{ mass} = 2 //\text{in kg}
5 acceleration = 3 * [\cos(dtor(50)), \sin(dtor(50))]
                                                            //
      in m/s^2
                                                            //
  F1 = 10 * [\cos(dtor(180+30)), \sin(dtor(180+30))]
      in N
7 F2 = 20 * [0,1]
                        //in N
9 //Sample Problem 5-2
10 printf ("**Sample Problem 5-2**\n")
11 //from newton's first law
12 / F1 + F2 + F3 = mass * acceleration
13 \text{ F3} = \text{mass} * \text{acceleration} - \text{F2} - \text{F1}
14 printf("The third Force vector F3 in N is")
15 disp(F3)
16 printf ("The magnitude F3 is \%f m/s\n", norm (F3))
17 printf ("The angle made by F3 with the x axis in
      degrees \%f", rtod(atan(F3(2)/F3(1))))
     check Appendix AP 2 for dependency:
```

```
check Appendix AP 2 for dependency:

degree_rad.sci

check Appendix AP 2 for dependency:

degree_rad.sci
```

Scilab code Exa 5.3 Scilab code Exa 5.3 Sample Problem 3 Sample Problem 4

```
1 exec("degree_rad.sci",-1)
3 //GIven that
4 F_A = 220 * [\cos(dtor(180-47)), \sin(dtor(180-47))]
     //in N
5 F_B_{dir} = [0,-1]
6 \text{ F_C_mag} = 170 //\text{in N}
7
8 //Sample Problem 5-3
9 printf("**Sample Problem 5-3**\n")
10 //net sum of three forces must be zero
11 phi = acos(-F_A(1) / F_C_mag)
12 F_B_mag = F_C_mag * sin(phi) + F_A(2)
13 printf("The magnitude of Bettys force is %f N",
     F_B_mag)
1 //Given that
2 1 = 405*10^{-9} //in meter
3 d = 19.44*10^-6 //in meter
4 \quad a = 4.050*10^-6
                   //in meter
6 //Sample Problem 37-4a
7 printf("**Sample Problem 37-4a**\n")
8 n = floor(d/a)
9 printf("The number of bright fringes are %d\n", 2*n
     +1)
10
11 //Sample Problem 37-4b
12 printf("n**Sample Problem 37-4b**\\n")
13 num = ceil(2*d/a)
14 printf("The number of bright fringes within either
      of the first side peak is %d", num/2 - 1)
```

Scilab code Exa 5.3 Sample Problem 3

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 5.4 Sample Problem 4

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 g = 10 //in m/s^2
5 mass = 80 //in kg
6 theta = 30 //in degrees
7 Force_applied = 2.5 * mass * g * [cos(dtor(theta)), sin(dtor(theta))]
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 5.4 Sample Problem 4

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 \text{ g} = 10 //\text{in m/s}^2
5 \text{ mass} = 80 //\text{in kg}
6 \text{ theta} = 30 //\text{in degrees}
7 Force_applied = 2.5 * mass * g * [cos(dtor(theta)),
      sin(dtor(theta))]
8 \text{ W_car} = 7 * 10^5 // \text{in N}
9 distance = 1 //in meter
10
11 //Sample Problem 5-4
12 printf ("**Sample Problem 5-4**\n")
13 //using Newtons first law
14 acceleration = Force_applied(1) / (W_car /g)
15 //using newtons third equation of motion
```

```
16 v_final = sqrt(2 * acceleration * distance)
17 printf("The velocity after trevelling 1 m distance
    is %f m/s", v_final)
```

Scilab code Exa 5.5 Sample Problem 5

```
1 //Given that
2 g = 9.8 //in m/s^2
3 M = 3.3 //in kg
4 m = 2.1 //in kg
6 //Sample Problem 5-5
7 printf("**Sample Problem 5-5**\n")
8 //from FBD1
9 //both will have common acceleration
10 / mg - T = ma
11 //T = Ma
12 / adding \rightarrow mg = (M+m)a
13 a = m * g /(M + m)
14 \ T = m *g - m *a
15 printf("The acceleration of both the blocks is %f m/
     s^2 n, a)
16 printf("The tension in the string is %f N", T)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 5.5 Sample Problem 5

```
1 //Given that
2 g = 9.8 //in m/s^2
3 M = 3.3 //in kg
4 m = 2.1 //in kg
6 //Sample Problem 5-5
7 printf("**Sample Problem 5-5**\n")
8 //from FBD1
9 //both will have common acceleration
10 / \text{mg} - \text{T} = \text{ma}
11 //T = Ma
12 // adding \rightarrow mg = (M+m) a
13 a = m * g /(M + m)
14 T = m *g - m *a
15 printf ("The acceleration of both the blocks is %f m/
      s^2 n, a)
16 printf ("The tension in the string is %f N", T)
```

Scilab code Exa 37.5 Sample Problem 5

```
1 exec('degree_rad.sci', -1)
2
3 //Given that
4 N = 1.26*10^4
5 w = 25.4*10^-3 //in meter
6 l1 = 589*10^-9 //in meter
7 l2 = 589.59*10^-9 //in meter
8
9 //Sample Problem 37-5a
10 printf("**Sample Problem 37-5a**\n")
11 d = w/N
12 m = 1
13 theta = asin(m*11/d)
```

```
14 theta = rtod(theta)
15 printf ("The first order maxima occurs at an angle of
       %fdegree from the center \n", theta)
16
17 //Sample Problem 37-5b
18 printf("n**Sample Problem 37-5b**\\n")
19 theta = rtod(theta)
20 D = m/(d*cos(theta))
21 \text{ deltaL} = 12-11
22 deltaTHETA = D*deltaL
23 printf ("The anglar sepration between the two first
      orderlines is %erad\n", deltaTHETA)
24
25 //Sample Problem 37-5c
26 printf("n**Sample Problem 37-5c**\\n")
27 \text{ Lavg} = (11+12)/2
28 R = Lavg/(m*deltaL)
29 N = R/m
30 printf("The least number of rulings a grating can
      have is %d", N)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Chapter 17

Relativity

Scilab code Exa 5.6 Sample Problem 6

```
1 exec("degree_rad.sci", -1)
3 // Given that
4 g = 9.8 //in m/s^2
5 m = 15 //in kg
6 //from FBD
7 T = m *g
9 //Sample Problem 5-6
10 printf ("**Sample Problem 5-6**\n")
11 //we have-
12 / T1\cos(28) - T2\cos(47) = 0
13 / T1\sin(28) + T2\sin(47) = T
14 //therefore
15 \text{ mat}_1 = [\cos(\text{dtor}(28)), -\cos(\text{dtor}(47)); \sin(\text{dtor}(28)),
       sin(dtor(47))]
16 \text{ mat}_2 = [0 ; T]
17 / \text{wr have} \rightarrow \text{mat}_1 * \text{ans} = \text{mat}_2
18 \text{ mat\_ans} = inv(mat\_1) * mat\_2
```

```
19 printf("The tension in the first chord is \%f N n",
     mat_ans(1,1))
20 printf("The tension in the second chord is \%f N n",
     mat_ans(2,1))
21 printf("The tension in the third chord is %f N", T)
```

Scilab code Exa 38.1 Sample Problem 1

```
1 //Given that
2 r = 0.9990
3 t = 10 //in years
5 //Sample Problem 38-1
6 printf("**Sample Problem 38-1**\n")
7 y = 1/sqrt(1-r^2)
8 \text{ tEarth} = \text{t*y}
9 T = 2*tEarth
10 printf ("The time as measured from the earth is %1.2
     fy", T)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 5.6 Sample Problem 6

```
1 exec("degree_rad.sci", -1)
3 //Given that
```

```
4 g = 9.8 //in m/s^2
5 m = 15 //in kg
6 //from FBD
7 T = m *g
9 //Sample Problem 5-6
10 printf("**Sample Problem 5-6**\n")
11 //we have—
12 / T1\cos(28) - T2\cos(47) = 0
13 / T1\sin(28) + T2\sin(47) = T
14 //therefore
15 mat_1 = [\cos(dtor(28)), -\cos(dtor(47)); \sin(dtor(28)),
      sin(dtor(47))]
16 \text{ mat}_2 = [0 ; T]
17 / \text{wr have} \rightarrow \text{mat}_1 * \text{ans} = \text{mat}_2
18 \text{ mat\_ans} = inv(mat\_1) * mat\_2
19 printf("The tension in the first chord is \%f N n",
      mat_ans(1,1))
20 printf ("The tension in the second chord is \%f N\n",
      mat_ans(2,1))
21 printf ("The tension in the third chord is \% f N", T)
```

Scilab code Exa 38.2 Sample Problem 2

```
1 //Given that
2 Tl = 0.1237*10^-6 //in sec
3 c = 3*10^8 //in m/s
4 r = 0.990
5
6 //Sample Problem 38-2
7 printf("**Sample Problem 38-2**\n")
```

```
8 y = 1/sqrt(1-r^2)
9 Tb = Tl*y //in laboratory frame
10 v = r*c
11 d = v*Tb
12 printf("The kaon can go till %dm", d)
```

```
check Appendix AP 2 for dependency:
degree_rad.sci
check Appendix AP 2 for dependency:
degree_rad.sci
```

Scilab code Exa 5.7 Sample Problem 7

```
1  exec("degree_rad.sci", -1)
2
3  //Given that
4  m = 15  //in kg
5  g = 9.8  //in m/s^2
6  T = m* g* sin(dtor(27))
7  N = m* g* cos(dtor(27))
8
9  //Sample Problem 5-7a
10  printf("**Sample Problem 5-7a**\n")
11  printf("The tension in the chord is %f N\n", T)
12  printf("The Normal force is %f N\n", N)
13
14  //Sample Problem 5-7b
15  printf("\n**Sample Problem 5-7b**\n")
```

Scilab code Exa 38.3

Sample Problem 3

```
1 //Given that
2 Lp = 230 ///in meter
3 t = 3.57*10^-6 //in meter
4 c = 3*10^8 //in m/s
5
6 //Sample Problem 38-3
7 printf("**Sample Problem 38-3**\n")
8 //y = 1/sqrt(1-r^2)
9 //L = Lp/y
10 //L = r*c*t
11 //solving -
12 r = Lp/sqrt((c*t)^2 + Lp^2)
13 printf("The relative velocoty is equal to %.3 fc m/s", r)
```

Scilab code Exa 5.7 Sample Problem 7

```
1 exec("degree_rad.sci", -1)
2
3 //Given that
4 m = 15 //in kg
5 g = 9.8 //in m/s^2
6 T = m* g* sin(dtor(27))
7 N = m* g* cos(dtor(27))
8
9 //Sample Problem 5-7a
10 printf("**Sample Problem 5-7a**\n")
11 printf("The tension in the chord is %f N\n", T)
```

```
12 printf("The Normal force is %f N\n", N)
13
14 //Sample Problem 5-7b
15 printf("\n**Sample Problem 5-7b**\n")
16 a = g * sin(dtor(27))
17 printf("The acceleration of block after cutting the chord is %f m/s^2", a)
```

Scilab code Exa 38.4 Sample Problem 4

Scilab code Exa 5.8 Sample Problem 8

```
1 //Given that
2 g = 9.8 //in m/s^2
3 m = 72.2 //in kg
5 //Sample Problem 5-8a
6 printf("**Sample Problem 5-8a**\n")
7 scale_read_b = m *g
8 printf("The reading of the scale in case a is %f",
      scale_read_b)
10 //Sample Problem 5-8b
11 printf("**Sample Problem 5-8b**\n")
12 / N - mg = ma
13 a_U = 3.2 //in m/s^2
14 \text{ scale\_read\_c\_U} = m * (g + a\_U)
15 printf("The reading of the scale in case b if cab
      moves upaward is %f\n", scale_read_c_U)
16 \text{ a_D} = -3.2 //\text{in m/s}^2
17 scale_read_c_D = m * (g + a_D)
18 printf("The reading of the scale in case b if cab
      moves downaward is \%f \setminus n, scale_read_c_D)
19
20 //Sample Problem 5-8b
21 printf("n**Sample Problem 5-8b**\\n")
22 //using newtons second law => net force = mass *
      acceleration
23 	ext{ F_net} = m *a_U
```

```
24 printf("The net force on passenger during upward
         journey is %f N\n", F_net)
25 printf("The acceleration of passenger in the frame
         if cab is 0")
```

Scilab code Exa 38.5 Sample Problem 5

```
1 //Given that
2 lp1 = 499.8*10^-9 //in meter
3 \text{ lp2} = 501.6*10^-9 //in meter
4 c = 3*10^8 //in m/s
5 \text{ Ms} = 1.99*10^30
                    //in kg
6 G = 6.67*10^-11
                    //in SI unit
7 R = 100 //in light year
8 conv = 9.46*10^15 //conversion factor from light
      year to sec
10 //Sample Problem 38-5a
11 printf ("**Sample Problem 38-5a**\n")
12 lo = lp1 + lp2
13 \ lo = lo/2
14 \text{ deltaL} = abs(lp1 - lo)
15 v = deltaL/lo * c
16 printf("The speed of gas relative to us is %1.2em/s\
     n", v)
17
18 //Sample Problem 38-5b
19 printf("n**Sample Problem 38-5b**\\n")
20 //G*M*m/r^2 = m*v^2/r
21 r = R*conv
22 M = v^2*r/G
```

```
23 ratio = M/Ms
24 printf("The mass of galaxy is %1.2e*Ms", ratio)
```

Scilab code Exa 38.5 Sample Problem 8

```
1 //Given that
2 g = 9.8 //in m/s^2
3 m = 72.2 //in kg
5 //Sample Problem 5-8a
6 printf("**Sample Problem 5-8a**\n")
7 scale_read_b = m *g
8 printf("The reading of the scale in case a is %f",
      scale_read_b)
9
10 //Sample Problem 5-8b
11 printf("**Sample Problem 5-8b**\n")
12 / N - mg = ma
13 a_U = 3.2 //in m/s^2
14 scale_read_c_U = m * (g + a_U)
15 printf("The reading of the scale in case b if cab
     moves upaward is \%f\n", scale_read_c_U)
16 a_D = -3.2 //in m/s^2
17 \text{ scale\_read\_c\_D} = m * (g + a\_D)
18 printf("The reading of the scale in case b if cab
     moves downaward is \%f \ n", scale_read_c_D)
19
20 //Sample Problem 5-8b
21 printf("n**Sample Problem 5-8b**\\n")
22 //using newtons second law => net force = mass *
      acceleration
23 F_net = m *a_U
24 printf ("The net force on passenger during upward
     journey is %f N n, F_net)
25 printf ("The acceleration of passenger in the frame
      if cab is 0")
```

Scilab code Exa 38.6 Sample Problem 6

```
1 //Given that
2 K = 2.53 //in Mev
                       //in kg
3 \text{ Me} = 9.109*10^-31
4 c = 3*10^8 //in m/s
5 \text{ conv} = 1.6*10^-19*10^6 //Mev to joule conversion
      factor
6
7 //Sample Problem 38-6a
8 printf("**Sample Problem 38-6a**\n")
9 Eactual = Me*c^2/conv + K
10 printf ("The actual energy of the electron is %1.2 fMev
      \n", Eactual)
11
12 //Sample Problem 38-6b
13 printf("n**Sample Problem 38-6b**\\n")
14 p = sqrt(Eactual^2 - (Me*c^2))
15 printf("The momentum of the electron is \%1.2 \, \mathrm{fMev/c}",
       p)
```

Scilab code Exa 5.9 Sample Problem 9

```
1 //Sample Problem 5-9a
2 \text{ F_ap} = 20 //\text{in N}
3 \text{ m_A} = 4 //\text{in kg}
4 \text{ m}_B = 6 //\text{in kg}
6 //Sample Problem 5-9a
7 printf("**Sample Problem 5-9a**\n")
8 \text{ ac} = F_{ap} / (m_A + m_B)
9 printf("The comon acceleration of the blocks is %f m
      /s^2 n, ac)
10
11 //Sample Problem 5-9b
12 printf("n**Sample Problem 5-9b**\\n")
13 //from FBD of A
14 / F - F_AB = m_A * a
15 \text{ F\_AB} = \text{F\_ap} - \text{m\_A} * \text{ac}
16 printf("The force on block B by Block A is %f N",
      F_AB)
```

Scilab code Exa 5.9 Sample Problem 9

Scilab code Exa 38.7 Sample Problem 7

```
1 //Given that
2 K = 3.0*10^20*1.6*10^-19 //in J
3 \text{ Mp} = 1.67*10^-27 //in \text{ kg}
4 c = 3*10^8 //in m/s
5 \text{ conv} = 9.46*10^{15} //conversion factor from light
      year to sec
6 D = 9.8*10^4 //in light year
7
8 //Sample Problem 38-7a
9 printf("**Sample Problem 38-7a**\n")
10 Erm = (Mp*c^2)
11 y = (K + Erm)/Erm
12 r = sqrt(1 - (1/y)^2)
13 printf ("The velocity is approximately equal to %1.2 f
      *c \n", r)
14
15 //Sample Problem 38-7b
16 printf("n**Sample Problem 38-7b**\\n")
17 deltaT = D //in year
18 printf("The time taken is \%1.1\,\mathrm{ey}\,\mathrm{n}", deltaT)
19
20 //Sample Problem 38-7c
21 printf("n**Sample Problem 38-7c**\\n")
22 \text{ deltaTp} = \text{deltaT/y} * 365*24*3600
```


Figure 17.2: Sample Problem 9

23 printf("The time taken in reference frame of proton is $\%1.2\;\mathrm{fs}\,"$, deltaTp)

Chapter 18

Photons and Matter Waves

Scilab code Exa 39.1 Sample Problem 1

```
1 //Given that
2 P = 100 //in W
3 lambda = 590*10^-9 //in meter
4 h = 6.62*10^-34 //in J.s
5 c = 3*10^8 //in m/s
6
7 //Sample Problem 39-1
8 printf("**Sample Problem 39-1**\n")
9 Ep = h*c/lambda //Energy of each photon
10 N = P/Ep
11 printf("The rate at which photons are absorbed is %1 .2 e/s", N)
```

Chapter 19
Force and Motion Il

Chapter 20

Force and Motion Il

Scilab code Exa 6.1 Sample Problem 1

```
1 //Given that
2 mu_k = 0.6
3 d = 290 //in meter
4 g = 9.8 //in m/s^2
5 v_final = 0
6
7 //Sample Problem 6-1
8 printf("**Sample Problem 6-1**\n")
9 //using newton's 3rd equation of motion
10 ac = - mu_k * g //due to friction hence a negative sign
11 v_initial = sqrt(v_final^2 - 2 * ac * d)
12 printf("The inital velocity of that car would have been %f m/s", v_initial)
```

Scilab code Exa 39.2 Sample Problem 2

```
Scilab code Exa 6.11 // Given that
2 r = 3.5
            //in meter
3 P = 1.5 //in W
4 phi = 2.2 //in ev
5 \text{ conv} = 1.6*10^-19 //ev to Joule to conversion
      factor
6 R = 5.0*10^-11 //in meter
8 //Sample Problem 39-2
9 printf("**Sample Problem 39-2**\n")
10 I = P/(4*\%pi*r^2)
11 A = \%pi*R^2
12 deltaT = phi*conv/(I*A)
13 printf ("The time taken in ejecting electron is %ds",
       deltaT)
   Sample Problem 1
1 //Given that
2 \text{ mu_k} = 0.6
3 d = 290 //in meter
4 g = 9.8 //in m/s^2
5 \text{ v\_final} = 0
7 / Sample Problem 6-1
8 printf("**Sample Problem 6-1**\n")
9 //using newton's 3rd equation of motion
10 ac = - mu_k * g //due to friction hence a negative
      sign
11 v_{initial} = sqrt(v_{final^2} - 2 * ac * d)
12 printf("The inital velocity of that car would have
     been \%f \text{ m/s}, v_initial)
```

```
check Appendix AP 2 for dependency:

degree_rad.sci

check Appendix AP 2 for dependency:

degree_rad.sci
```

Scilab code Exa 6.2 Scilab code Exa 6.2 Sample Problem 2 Sample Problem 2

```
1 exec("degree_rad.sci",-1)
2
3 //GIven that
4 g = 9.8 //in /s^2
5 mass = 75 //in kg
6 mu_k = 0.10
7 phi = dtor(42)
8
9 //Sample Problem 6-2a
10 printf("**Sample Problem 6-2a**\n")
11 //T * cos(phi) - mu_k * N = 0
12 //T * sin(phi) + N = mass * g
13 mat_A = [cos(phi), -mu_k; sin(phi), 1]
14 mat_B = [0 ; mass * g]
15 F = inv(mat_A) * mat_B
```

```
16 printf ("The Tension in the string is \%f N\n", F(1))
17
18 //Sample Problem 6-2b
19 printf("n**Sample Problem 6-2b**\\n")
20 printf("The force of friction will not change")
   Scilab code Exa 3913 exec ("degree_rad.sci", -1)
3 //GIven that
4 g = 9.8 //in /s^2
5 \text{ mass} = 75 //\text{in kg}
6 \quad mu_k = 0.10
7 \text{ phi} = \text{dtor}(42)
9 //Sample Problem 6-2a
10 printf("**Sample Problem 6-2a**\n")
11 //T * \cos(phi) - mu_k * N = 0
12 //T * \sin(phi) + N = mass * g
13 mat_A = [cos(phi), -mu_k; sin(phi), 1]
14 \text{ mat}_B = [0 ; \text{mass} * g]
15 F = inv(mat_A) * mat_B
16 printf ("The Tension in the string is \%f N\n", F(1))
17
18 //Sample Problem 6-2b
19 printf("n**Sample Problem 6-2b**\\n")
20 printf("The force of friction will not change")
   Sample Problem 3
1 //Given that
2 h = 6.62*10^{-34} //in J.s
3 fo = 5.5*10^14 //in Hz
4 \text{ conv} = 1.6*10^-19 //ev to J conversion factor
6 //Sample Problem 39-3
7 printf("**Sample Problem 39-3**\n")
8 phi = h*fo/conv //in ev
```

```
9 printf("The work function of sodium is \%1.2\,\mathrm{fev}", phi
```

```
check Appendix AP 2 for dependency:
```

degree_rad.sci

Scilab code Exa 39.4 Sample Problem 4

```
1 exec('degree_rad.sci', -1)
2
3 //Given that
4 \ lambda = 22*10^-12 //in meter
5 \text{ conv} = 1.6*10^-19 //ev to J conversion factor
6 E = 56*10^3*conv
7 	mtext{ theta} = 	mtext{dtor}(85)
                      //in rad
8 h = 6.62*10^{-34} //in J.s
                     //in kg
9 \text{ Me} = 9.1*10^-31
10 c = 3*10^8 //in m/s
11
12 //Sample Problem 39-4a
13 printf ("**Sample Problem 39-4a**\n")
14 deltaL = h/(Me*c)*(1 - cos(theta))
15 printf("compton shift is equal to \%1.2 \,\mathrm{fpm} \,\mathrm{n}", deltaL
      *10^12)
16
```

```
17 //Sample Problem 39-4b
18 printf("n**Sample Problem 39-4b**\\n")
19 frac = deltaL/(lambda + deltaL)
20 printf ("The fraction of energy transfered is \%1.3\,\mathrm{f}",
        frac)
      check Appendix AP 2 for dependency:
      degree_rad.sci
      check Appendix AP 2 for dependency:
      degree_rad.sci
   Scilab code Exa 6.3 Sample Problem 3
  exec("degree_rad.sci",-1)
3 //Given that
4 \text{ theta} = \text{dtor}(13)
6 //Sample Problem 6-3
7 printf("**Sample Problem 6-3**\n")
8 / N = mg \cos(theta)
9 //f_s = mg \sin(theta)
10 // \operatorname{dividing} \rightarrow
11 // f_s / N = tan(theta)
12 \text{ mu_s} = \tan(\text{theta})
13 printf ("The value of coefficient of static friction
      is \%f", mu_s)
```

Scilab code Exa 6.3 Sample Problem 3

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 theta = dtor(13)
5
6 //Sample Problem 6-3
7 printf("**Sample Problem 6-3**\n")
8 //N = mg cos(theta)
9 //f_s = mg sin(theta)
10 //dividing->
11 //f_s/N = tan(theta)
12 mu_s = tan(theta)
13 printf("The value of coefficient of static friction is %f", mu_s)
```

Scilab code Exa 39.6 Sample Problem 6

```
Scilab code Exa 6.4 //Given that

2 v = 2.05*10^6 //in m/s

3 h = 6.62*10^-34 //in J.s

4 hC = h/(2*%pi)

5 precision = .50/100

6 Me = 9.109*10^-31 //in kg
```

Scilab code Exa 39.5 Sample Problem 5

Figure 20.1: Sample Problem 3

```
8 //Sample Problem 39-6
9 printf("**Sample Probelm 39-6**\n")
10 \text{ Px} = \text{Me*v}
11 deltaPx = precision*Px
12 \text{ deltaX} = hC/deltaPx
13 printf("The error in measuring x is %dnm", deltaX
      *10^9)
   Sample Problem 4
1 //Given that
2 \text{ v1} = 97 //\text{in km/hr}
3 //Assuming
4 \quad A1 = 1
5 //therefore
6 A2 = 2
8 //Sample Problem 6-4
9 printf("**Sample Problem 6-4**\n")
10 //the terminal velocity is inversly proportional to
      squre root of area
11 v2 = v1 * sqrt(A1/A2)
12 printf("The final velocity of cat will be %f km/hr",
       v2)
```

Scilab code Exa 6.4 Sample Problem 4

```
1 //Given that
2 v1 = 97 //in km/hr
3 //Assuming
```

```
4 A1 = 1
5 //therefore
6 A2 = 2
7
8 //Sample Problem 6-4
9 printf("**Sample Problem 6-4**\n")
10 //the terminal velocity is inversly proportional to squre root of area
11 v2 = v1 * sqrt(A1/A2)
12 printf("The final velocity of cat will be %f km/hr", v2)
```

Scilab code Exa 6.5 Scilab code Exa 6.5 Sample Problem 5 Sample Problem 7

```
1 //Given that
2 g = 9.8 //in m/s^2
3 Radius = 1.5 * 10^-3 //in meter
4 height = 1200 //in meter
5 C_drag = 0.60
6 density_water = 1000 //in kg/m^3
7 density_air = 1.2 //in kg/m^3
8
9 //Sample Problem 6-5a
10 printf("**Sample Problem 6-5a**\n")
11 //v_t = sqrt(2*F_g/(C*density*A))
12 volume_drop = 4/3*%pi*Radius^3
13 mass_drop = density_water *volume_drop
14 Area_drop = %pi *Radius^2
15 v_terminal = sqrt(2*mass_drop*g/(C_drag*density_air*Area_drop))
```

```
16 printf("The terminal velocity will be %f m/s\n",
     v_terminal)
17
18 //Sample Problem 6-5b
19 printf("n**Sample Problem 6-5b**\\n")
20 v_without_drag = sqrt(2 *g * height)
21 printf("The velocity just before the impact if there
       were no drag force would be %f m/s",
     v_without_drag)
1 //Given that
2 \text{ conv} = 1.6*10^-19
                      //ev to J conversion factor
3 E = 5.1*conv //in ev
4 Uo = 6.8*conv //in ev
5 L = 750*10^-12 //in m
6 h = 6.62*10^{-34} / in J.s
7 Me = 9.11*10^{-31} //in kg
9 //Sample Problem 39-7a
10 printf("**Sample Problem 39-7a**\n")
11 k = sqrt(8*\%pi^2*Me*(Uo-E)/h^2)
12 T = %e^{(-2*k*L)}
13 printf ("The transmission coefficient is %e", T)
```

Chapter 21

More About Matter waves

```
check Appendix AP 1 for dependency: quantum.sci
```

Scilab code Exa 6.5 Sample Problem 5

```
1 //Given that
2 g = 9.8 //in m/s^2
3 Radius = 1.5 * 10^{-3} //in meter
4 height = 1200 / in meter
5 \text{ C_drag} = 0.60
6 density_water = 1000 //in \, kg/m^3
7 density_air = 1.2 //in \text{ kg/m}^3
8
9 //Sample Problem 6-5a
10 printf("**Sample Problem 6-5a** \n")
11 //v_t = sqrt(2*F_g/(C*density*A))
12 volume_drop = 4/3*%pi*Radius^3
13 mass_drop = density_water *volume_drop
14 Area_drop = %pi *Radius^2
15 v_terminal = sqrt(2*mass_drop*g/(C_drag*density_air*
     Area_drop))
```

Scilab code Exa 6.6 Sample Problem 6

```
Scilab code Exa 40.11 // Given that
2 \text{ Radius\_earth} = 6.37 * 10^6
3 \text{ h\_alti} = 520 * 10^3 //in \text{ meter}
4 velocity = 7.6 * 10^3 //in m/s converted from km/s
5 \text{ mass} = 79 //\text{in kg}
7 //Sample Problem 6-6a
8 printf("**Sample Problem 6-6a**\n")
9 acce = velocity^2/(h_alti + Radius_earth)
10 printf("The acceleration is equal to \%f m/s<sup>2</sup>\n",
      acce)
11
12 //Sample Problem 6-5b
13 printf("n**Sample Problem 6-6b**\\n")
14 Force_total = mass * acce
15 printf("The net force is equal ro %f N", Force_total
   Sample Problem 1
1 exec ('quantum.sci', -1)
3 //Given that
```

```
4 L = 100*10^-12 //in m
6 //Sample Problem 40-1a
7 printf("**Sample Prblem 40-1a**\n")
8 n = 1 //for min energy
9 \text{ Emin} = \text{Ediff}(n, 0, Me, L)
10 printf ("The least possible energy is \%1.2 \, \text{fev} \, \text{n}",
      Emin/conv)
11
12 //Sample Problem 40-1b
13 printf("n**Sample Prblem 40-1b**\\n")
14 \quad n2 = 3
15 \quad n1 = 1
16 deltaE13 = Ediff(n2, n1, Me, L)
17 printf ("The energy to be transferred is \%1.2 \,\mathrm{fev} \,\mathrm{n}",
      deltaE13/conv)
18
19 //Sample Problem 40-1c
20 printf("n**Sample Prblem 40-1c**\\n")
21 lambda = wavelength(deltaE13)
22 printf ("The wavelength of photon is \%1.2 \,\mathrm{fnm} \,\mathrm{n}",
      lambda*10^9)
23
\frac{24}{\text{Sample Problem 40-1d}}
25 printf("n**Sample Prblem 40-1d**\\n")
26 \text{ deltaE12} = \text{Ediff}(2, 1, Me, L)
27 lambda1 = wavelength(deltaE12)
28 \text{ deltaE23} = \text{Ediff}(3, 2, Me, L)
29 lambda2 = wavelength(deltaE23)
30 printf("The possible wavelength of photon is :\n")
31 printf("\t \%1.2 \text{ fnm} \ n", lambda*10^9)
32 printf("\t \%1.2 \text{ fnm} \ n", lambda1*10^9)
33 printf("\t %1.2 fnm", lambda2*10^9)
```

Scilab code Exa 40.3 Sample Problem 3

```
Scilab code Exa 6.16 // Given that
2 L = 100*10^-12 //in m
3
4 //Sample Problem 40-3a
5 printf("**Sample Prblem 40-3a**\n")
6 P = integrate('2/L*(\sin(\%pi/L*x))^2', 'x', 0, L/3)
7 printf("The probability is equal to \%1.2 \text{ f} \setminus \text{n}", P)
9 //Sample Problem 40-3b
10 printf("n**Sample Prblem 40-3b**\\n")
11 P = integrate ('2/L*(\sin(\%pi/L*x))^2', 'x', L/3, 2*L
      /3)
12 printf ("The probability is equal to \%1.2 \text{ f} \cdot \text{n}", P)
   Sample Problem 6
1 //Given that
2 \text{ Radius\_earth} = 6.37 * 10^6
3 \text{ h\_alti} = 520 * 10^3 //in \text{ meter}
4 velocity = 7.6 * 10^3 //in m/s converted from km/s
5 \text{ mass} = 79 //\text{in kg}
7 //Sample Problem 6-6a
8 printf("**Sample Problem 6-6a**\n")
```

check Appendix AP 1 for dependency:

quantum.sci

Scilab code Exa 40.4 Sample Problem 4

```
Scilab code Exa 6.7 Scilab code Exa 6.7
```

```
1 exec('quantum.sci', -1)
2
3 //Given that
4 L = 100*10^-12 //in m
5 Uo = 450*conv //in ev
6 l = 2*10^-9 //in m
7
8 //Sample Problem 40-4a
9 printf("**Sample Prblem 40-4a**\n")
10 E1 = Ediff(1, 0, Me, L)
```

```
11 E = Uo - E1
12 lambda = wavelength(E)
13 printf ("The wavelength of the free electron is %1.2
     fnm \ n", lambda * 10^9)
14
15 //Sample Problem 40-4b
16 printf("n**Sample Prblem 40-4b**\\n")
17 E2 = Energy(1)
18 \text{ K} = \text{E2} - \text{E}
19 printf ("The electron energy is %1.2 fev", K/conv)
   Sample Problem 7
     Sample Problem 7
1 //Given that
2 g = 9.8 //in m/s^2
3 Radius = 2.7 / in meter
5 //Sample Problem 6-7
6 printf("**Sample Problem 6-7**\n")
7 //The velocity at highest point is equal to sqrt(gR)
8 velocity_topmost = sqrt(g * Radius)
9 printf("The velocity of ball at the topmost point
      would be %f m/s", velocity_topmost)
1 //Given that
2 g = 9.8 //in m/s^2
3 Radius = 2.7 //in meter
5 //Sample Problem 6-7
6 printf("**Sample Problem 6-7**\n")
7 //The velocity at highest point is equal to sqrt(gR)
8 velocity_topmost = sqrt(g * Radius)
9 printf("The velocity of ball at the topmost point
      would be %f m/s", velocity_topmost)
```

```
check Appendix AP 1 for dependency: quantum.sci
```

Scilab code Exa 40.6 Sample Problem 6

```
1 exec('quantum.sci', -1)
3 //Sample Problem 40-6a
4 printf("**Sample Prblem 40-6a**\n")
5 //lyman series : least energetic photon \Rightarrow 2 to 1
      transition
6 deltaE21 = -(13.6) * (1/2^2 - 1/1^2)*conv
7 lambda = wavelength(deltaE21)
8 printf("The wavelength of the least energetic photon
       in lyman series is \%1.2 \text{fnm/n}, lambda*10^9)
9
10 //Sample Problem 40-6b
11 printf("n**Sample Prblem 40-6b**\\n")
12 //lyman series limit => 1 to infinity transition
13 deltaE = -(13.6) * (0 - 1/1^2)*conv
14 lambda = wavelength(deltaE)
15 printf ("The wavelength of the lyman series limit is
      \%1.2\,\mathrm{fnm}\,\mathrm{\sc n}", lambda*10^9)
```

Scilab code Exa 6.8 Sample Problem 8

```
Scilab code Exa 40.8 Scilab code Exa 40.8 // Given that
2 g = 9.8
             //in m/s^2
3 R = 2.1
             //in m
4 \text{ mu_s} = 0.40
6 //Sample Problem 6-8a
7 printf("**Sample Problem 6-8a**\n")
8 / N = mv^2/R
9 / \text{mg} = \text{mu}_{-}\text{s} * \text{N}
10 / \text{mg} = \text{mu_s} * \text{m*v}^2/\text{R}
11 //v = sqrt(g*R/mu_s)
12 v_min = sqrt(g*R/mu_s)
13 printf("The minimum spped of the cylender should be
      %f m/s n, v_min)
14
15 //Sample Problem 6-8b
16 printf("n**Sample Problem 6-8b**\\n")
17 mass = 49 //in kg
18 c_force = mass * v_min^2/R
19 printf("The Centripetal force on the rider would be
      \%f N", c_force)
   Sample Problem 8
      Sample Problem 8
1 //Given that
2 p = 0.90
```

```
3
4 //Sample Problem 40-8
5 printf("**Sample Prblem 40-8**\n")
6 funcprot(0)
7 \text{ function } [P] = f(x)
       P = 1 - (\%e^{(-2*x)})*(1 + 2*x + 2*x^2) - p
9 endfunction
10 p = fsolve(1, f)
11 printf("The possible value of radius is \%1.2 \, f*a", p)
1 //Given that
2 g = 9.8 //in m/s^2
3 R = 2.1 //in m
4 \text{ mu_s} = 0.40
6 //Sample Problem 6-8a
7 printf("**Sample Problem 6-8a**\n")
8 //N = mv^2/R
9 / \text{mg} = \text{mus} * \text{N}
10 / mg = mu_s * m*v^2/R
11 //v = sqrt(g*R/mu_s)
12 v_min = sqrt(g*R/mu_s)
13 printf ("The minimum spped of the cylender should be
      %f m/s n, v_min)
14
15 //Sample Problem 6-8b
16 printf("n**Sample Problem 6-8b**\\n")
17 mass = 49 //in kg
18 c_force = mass * v_min^2/R
19 printf ("The Centripetal force on the rider would be
      %f N", c_force)
```

Chapter 22

All About Atoms

Scilab code Exa 41.1 Sample Problem 1

```
1 //Given that
2 Bdot = 1.4/10^-3 //in T/m
3 w = 3.5*10^-2 //in m
4 v = 750 //in m/s
5 M = 1.8*10^-25 //in kg
6 u = 9.27*10^-24 //in J/T
7
8 //Sample Problem 41-1
9 printf("**Sample Problem 41-1**\n")
10 Fz = u*Bdot
11 a = Fz/M
12 t = w/v
13 d = 0.5*a*t^2
14 printf("The atoms have been deflected %e m", d)
```

Scilab code Exa 41.2 Sample Problem 2

```
1 //Given that
2 B = 1.80 //in T
3 Uz =1.41*10^-26 //in J/T
4 h = 6.62*10^-34 //in J-s
5 c = 3*10^8 //in m/s
6
7 //Sample Problem 42-2
8 printf("**Sample Problem 42-2**\n")
9 f = 2*Uz*B/h
10 printf("The frequency of the alternating field is %e Hz\n", f)
11 lambda = c/f
12 printf("The wavelength of the field is %fm", lambda)
```

Scilab code Exa 6.9 Sample Problem 9

```
1 //Given that
2 g = 9.8 //in m/s^2
3 mass = 1600 //in kg
4 v_cons = 20 //in m/s
5 R_track = 190 //in meter
6
```


Figure 22.2: Sample Problem 9

```
7 //Sample Problem 6-9
8 printf("**Sample Problem 6-9**\n")
9 N = mass * g
10 f_s = mass * v_cons^2 /R_track
11 mu_s = f_s/N
12 printf("The coefficient of static friction for the given surface is %f", mu_s)
```

Scilab code Exa 41.3 Sample Problem 3

Figure 22.3: Sample Problem 9

```
1 //Sample Problem 41_3
2 printf("Sample Problem 42_3")
```

Chapter 23
Kinetic Energy and Work

Chapter 24

Kinetic Energy and Work

```
check Appendix AP 2 for dependency:
    degree_rad.sci
    check Appendix AP 2 for dependency:
    degree_rad.sci
```

Scilab code Exa 7.1 Sample Problem 1

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 weight_locomotive = 1.2 * 10^6 //Ng = 9.8 //in m/s
^2
5 acceleration = 0.26 //m/s^2
6 v_final = 0 //m/s
7 distance = 3.2 * 10^3 //m
8 g = 9.8 //in m/s^2
9
10 //Sample Problem 7-1
11 printf("**Sample Problem 7-1**\n")
```

```
// using newton's second equation of motion
v_initial = sqrt(v_final^2 + 2 * acceleration * distance)

total_kinetic_energy = 2 * .5 * weight_locomotive/g * v_initial^2

printf("The total kinetic energy of two locomotive just before the collision is %e J", total_kinetic_energy)
```

Scilab code Exa 7.1 Sample Problem 1

```
1 exec ("degree_rad.sci",-1)
3 //Given that
4 weight_locomotive = 1.2 * 10^6 //Ng = 9.8 //in m/s
5 acceleration = 0.26 / m/s^2
6 \text{ v_final} = 0 \text{ //m/s}
7 \text{ distance} = 3.2 * 10^3
8 \text{ g} = 9.8 //\text{in m/s}^2
10 //Sample Problem 7-1
11 printf ("**Sample Problem 7-1**\n")
12 //using newton's second equation of motion
13 v_initial = sqrt(v_final^2 + 2 * acceleration *
      distance)
14 total_kinetic_energy = 2 * .5 * weight_locomotive/g
      * v_initial^2
15 printf ("The total kinetic energy of two locomotive
      just before the collision is \%e J",
      total_kinetic_energy)
```

Scilab code Exa 41.4 Sample Problem 4

Figure 24.1: Sample Problem 3

```
1 //Given that
2 K = 35*10^3 //in ev
3 e = 1.6*10^-19 //in coulomb
4 h = 6.62*10^{-34} //in J-s
5 c = 3*10^8 //in m/s
7 //Sample Problem 41-4
8 printf("**Sample Problem 41-4**\n")
9 lambdaMin = h*c/(K*e)
10 printf("The cutoff wavelength is %em", lambdaMin)
      check Appendix AP 2 for dependency:
      degree_rad.sci
      check Appendix AP 2 for dependency:
      degree_rad.sci
   Scilab code Exa 7.2 Sample Problem 2
   Scilab code Exa 4115 exec ("degree_rad.sci", -1)
3 //Given that
4 \text{ mass} = 225 //in \text{ kg}
5 displacement = 8.5 //in meter
6 \text{ F1} = 12 //\text{in N}
7 Theta1 = dtor(30) //in rad
8 	ext{ F2} = 10 	ext{ //in } 	ext{N}
9 \text{ Theta2} = \text{dtor}(40)
                        //in rad
10
11 //Sample Problem 7-2a
```

```
12 printf ("**Sample Problem 7-2a**\n")
13 //form the definition of Work done
14 W1 = F1 * displacement * cos(Theta1)
15 W2 = F2 * displacement * \cos (Theta2)
16 //The net work done
17 \quad W = W1 + W2
18 printf ("The spies transfer %eJ amount of energy
      during the given displacement n, W)
19
20 //Sample Problem 7-2b
21 printf("n**Sample Problem 7-2b**\\n")
22 printf ("Work done by the normal in the process is 0J
      \n")
23 printf ("Work done by the gravity in the process is 0
      J \setminus n")
24
25 //Sample Problem 7-2c
26 printf("n**Sample Problem 7-2c**")
27 // Using Work Energy theorem
28 / W = Kf - Ki
29 / \text{Ki} = 0
30 v_final = sqrt(2* W/mass)
31 printf("The final velocity of the safe is equal to
     \%e", v_final)
   Sample Problem 5
1 //Given that
2 Kalpha = 178.9*10^-12 //in m
3 Kimpure = 143.5*10^{-12} //in m
4 Z = 27
6 //sample Problem 41-5
7 printf("**Sample Problem 41-5**\n")
8 \text{ Zx} = \text{sqrt}(\text{Kalpha/Kimpure})*(Z-1) + 1
9 printf("The proton number of the impurity is %d", Zx
      )
```

Scilab code Exa 7.2 Sample Problem 2

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 mass = 225 //in kg
5 displacement = 8.5 //in meter
6 \text{ F1} = 12 //\text{in N}
7 \text{ Theta1} = \text{dtor}(30)
                         //in rad
8 	ext{ F2} = 10 	ext{ //in } 	ext{N}
9 \text{ Theta2} = \text{dtor}(40)
                        //in rad
10
11 //Sample Problem 7-2a
12 printf("**Sample Problem 7-2a**\n")
13 //form the definition of Work done
14 W1 = F1 * displacement * cos(Theta1)
15 W2 = F2 * displacement * \cos (Theta2)
16 //The net work done
17 \quad W = W1 + W2
18 printf ("The spies transfer %eJ amount of energy
      during the given displacement\n", W)
19
20 //Sample Problem 7-2b
21 printf("n**Sample Problem 7-2b**\\n")
22 printf ("Work done by the normal in the process is 0J
      \n")
23 printf ("Work done by the gravity in the process is 0
      J \setminus n")
24
25 //Sample Problem 7-2c
```

```
26 printf("\n**Sample Problem 7-2c**\n")
27 //Using Work Energy theorem
28 //W = Kf - Ki
29 //Ki = 0
30 v_final = sqrt(2* W/mass)
31 printf("The final velocity of the safe is equal to %e", v_final)
```

Scilab code Exa 41.6 Sample Problem 6

```
1 //Given that
2 \text{ lambda} = 550*10^{-9} //in m
3 T = 300 //in K room temprature
4 h = 6.62*10^{-34} //in J-s
5 c = 3*10^8 //in m/s
6 = 1.6*10^-19
7 \text{ K} = 8.62*10^{-5*e}
9 //Sample Problem 41-6a
10 printf ("**Sample Problem 41-6a**\n")
11 deltaE = h*c/lambda
12 ratio = %e^{-(\text{deltaE})/(K*T)}
13 printf("The ratio is equal to \%e\n", ratio)
14
15 //Sample Problem 41-6b
16 printf("n**Sample Problem 41-6b**\\n")
17 \text{ ratio} = 0.5
18 T = -deltaE/K/log(ratio)
19 printf ("The temprature required for the given ratio
      is equal to %fK", T)
```

Chapter 25

Conduction of Electricity in Solids

Scilab code Exa 7.3 Scilab code Exa 7.3 Sample Problem 3 Sample Problem 3

```
1 //Given that
2 d = [-3, 0] //in meter
3 F = [2, -6] //in N
4
5 //Sample Problem 7-3a
6 printf("**Sample Problem 7-3a**\n")
7 W = F * d'
8 printf("The work done is equal to %dJ\n", W)
9
10 //Sample Problem 7-3b
11 printf("\n**Sample Problem 7-3b**\n")
12 Ki = 10 //in J
13 //Using work energy theorem
14 Kf = Ki + W
15 printf("The final kinetic energy of the crate is %dJ", Kf)
```

```
1 //Given that
2 d = [-3, 0]
                 //in meter
3 F = [2, -6]
                //in N
5 //Sample Problem 7-3a
6 printf("**Sample Problem 7-3a**\n")
7 W = F * d'
8 printf("The work done is equal to \%dJ\n", W)
10 //Sample Problem 7-3b
11 printf("n**Sample Problem 7-3b**\\n")
12 Ki = 10 //in J
13 //Using work energy theorem
14 \text{ Kf} = \text{Ki} + \text{W}
15 printf ("The final kinetic energy of the crate is %dJ
      ", Kf)
```

Scilab code Exa 42.1 Sample Problem 1

```
1 //Given that
2 T = 300 //in K
3 e = 1.6*10^-19 //in coulomb
4 Eg = 5.5*e //in J
5 K = 8.62*10^-5*e //in J/K
6
7 //Sample Problem 42-1
8 printf("**Sample Problem 42-1**\n")
9 P = %e^(-Eg/(K*T))
10 printf("The probability is equal to %e", P)
```

Scilab code Exa 7.4 Sample Problem 4

```
1 //Given that
2 \text{ mass} = 260 //\text{in kg}
3 d = 2 //in meter
4 \text{ g} = 9.8 //\text{on m}/^2
6 //Sample Problem 7-4a
7 printf("**Sample Problem 7-4a**\n")
8 //Using definition of work done
9 \text{ Wg = mass* g * (-1) * d}
10 printf("The work done by the force of gravity is %dJ
      \n", Wg)
11
12 //Sample Problem 7-4b
13 printf("n**Sample Problem 7-4b**\\n")
14 //Using work energy theorem
15 \text{ Wc} = -1 * \text{Wg}
16 printf("The work done by Chemerkins force is %dJ\n",
       Wc)
17
18 //Sample Problem 7-4c
19 printf("n**Sample Problem 7-4c**")
20 printf ("The Work done in helding the object
      stationary is 0, as the dispacement is 0 n
21
22 //Sample Problem 7-4d
23 printf("n**Sample Problem 7-4d**\\n")
24 Weight = 27900 //in N
25 d = 1 * 10^-2 //in meter
26 \text{ Wg} = \text{Weight} * d
27 printf("The work done by the gravity is %dJ", Wg)
```

Scilab code Exa 7.4 Sample Problem 4

```
1 //Given that
2 \text{ mass} = 260
                //in kg
3 d = 2 //in meter
4 \text{ g} = 9.8 //\text{on m}/^2
6 //Sample Problem 7-4a
7 printf ("**Sample Problem 7-4a**\n")
8 //Using definition of work done
9 \text{ Wg = mass* g * (-1) * d}
10 printf ("The work done by the force of gravity is %dJ
      \n", Wg)
11
12 //Sample Problem 7-4b
13 printf("n**Sample Problem 7-4b**\\n")
14 //Using work energy theorem
15 \text{ Wc} = -1 * \text{Wg}
16 printf("The work done by Chemerkins force is %dJ\n",
       Wc)
17
18 //Sample Problem 7-4c
19 printf("n**Sample Problem 7-4c**")
20 printf("The Work done in helding the object
      stationary is 0, as the dispacement is 0 \ n")
21
22 //Sample Problem 7-4d
23 printf("n**Sample Problem 7-4d**")
24 Weight = 27900 //in N
25 d = 1 * 10^-2 //in meter
26 \text{ Wg} = \text{Weight} * d
27 printf("The work done by the gravity is %dJ", Wg)
```

Scilab code Exa 7.5 Scilab code Exa 7.5 Sample Problem 2 Sample Problem 5

```
Scilab code Exa 7.5 // Given that
2 n = 2
3 V = 2*10^-6 //in m^3
4 density = 1.738*10^3
                          //in kg/m^3
5 M = 24.312*10^{-3} //in kg/m^3
6 \text{ Na} = 6.023*10^23
8 //Sample Problem 42-2
9 printf("**Sample Problem 42-2**\n")
10 num = density*V*Na/M
11 electrons = n*num
12 printf("The number of electrons is equal to %e",
      electrons)
1 //Given that
2 \text{ mass} = 15 //\text{in kg}
3 L = 5.7 //in meter
4 h = 2.5 //in meter
5 g = 9.8
6
7 //Sample Problem 7-5a
8 printf("**Sample Problem 7-5a**\n")
```

```
9 //Using the definition of work done
10 \text{ Wg} = - \text{ mass} * \text{g} * \text{h}
11 printf("The work done by the gravity is during the
      pull is \%eJ\n", Wg)
12
13 //Sample Problem 7-5b
14 printf("n**Sample Problem 7-5b**\\n")
15 // Using Work-Energy theorem
16 //as there is no change in kinetic energy
17 \text{ Wt} = - \text{Wg}
18 printf ("The work done by the tension during the pull
       is %eJ", Wt)
```

Sample Problem 5

```
1 //Given that
2 \text{ mass} = 15 //\text{in kg}
3 L = 5.7 //in meter
4 h = 2.5
            //in meter
5 g = 9.8
7 //Sample Problem 7-5a
8 printf("**Sample Problem 7-5a**\n")
9 //Using the definition of work done
10 \text{ Wg} = - \text{ mass} * \text{g} * \text{h}
11 printf("The work done by the gravity is during the
      pull is \%eJ \ n", Wg)
12
13 //Sample Problem 7-5b
14 printf("n**Sample Problem 7-5b**\\n")
15 //Using Work-Energy theorem
16 //as there is no change in kinetic energy
17 \text{ Wt} = - \text{Wg}
18 printf ("The work done by the tension during the pull
       is %eJ", Wt)
```

Scilab code Exa 7.6 Scilab code Exa 7.6 Sample Problem 6 Sample Problem 6

```
1 //Given that
2 g = 9.8 //in m/s^2
3 m = 500 //in kg
4 Vi = 4 //in m/s
5 a = g/5 //in m/s
6 d = 12 //in meter
7
  //Sample Problem 7-6a
9 printf("**Sample Problem 7-6a**\n")
10 //Using the definition of the work done
11 \text{ Wg} = m * g * d
12 printf ("The work done by the gravity during the fall
       is \%eJ \ n", Wg)
13
14 //Sample Problem 7-6b
15 printf("n**Sample Problem 7-6b**\\n")
16 //from Example7-6_FBD
17 / m*g - T = m*a
18 T = m * (g - a)
19 \text{ Wt} = - \text{ T } * \text{ d}
20 printf("The work done by the tension is \%eJ\n", Wt)
21
22 //Sample Problem 7-6c
```

```
23 printf("n*Sample Problem 7-6c**\n")
24 Wnet = Wt + Wg
25 printf("The net work done is %eJ\n", Wnet)
26
27 //Sample Problem 7-6d
28 printf("n**Sample Problem 7-6d**n")
29 //Using work energy theorem
30 / Kf - Ki = Wnet
31 \text{ Kf} = \text{Wnet} + .5 * m * \text{Vi}^2
32 printf("The final kinetic energy of the cab is %eJ",
       Kf)
1 //Given that
            //in m/s^2
2 g = 9.8
3 m = 500
            //in kg
4 \ Vi = 4
           //in m/s
5 a = g/5 //in m/s
6 d = 12 //in meter
8 //Sample Problem 7-6a
9 printf("**Sample Problem 7-6a**\n")
10 //Using the definition of the work done
11 \text{ Wg} = \text{m} * \text{g} * \text{d}
12 printf ("The work done by the gravity during the fall
       is \%eJ\n", Wg)
13
14 //Sample Problem 7-6b
15 printf("n**Sample Problem 7-6b**\\n")
16 //from Example7-6_FBD
17 / m*g - T = m*a
18 T = m * (g - a)
19 \text{ Wt} = - \text{ T} * \text{ d}
20 printf ("The work done by the tension is \%eJ \ n", Wt)
21
22 //Sample Problem 7-6c
23 printf("n*Sample Problem 7-6c**\n")
24 Wnet = Wt + Wg
```

Scilab code Exa 42.3 Sample Problem 3

```
1 //Given that
2 E = 7 //in ev
3 V = 2*10^-9 //in m^3
4 density = 2*10^28 //in m^3/ev
5 \text{ deltaE} = 3*10^{-3}
                      //in ev
7 //Sample Problem 42-3a
8 printf("**Sample Problem 42-3a**\n")
9 n = density*V
10 printf ("The number of states are equal to %1.2e per
      \operatorname{ev} \setminus \operatorname{n}", n)
11
12 //Sample Problem 42-3b
13 printf("n**Sample Problem 42-3b**\\n")
14 n = n*deltaE
15 printf ("The number of states are equal to %1.2e per
      ev \ n", n)
```

Scilab code Exa 42.4 Scilab code Exa 42.4 Sample Problem 7 Sample Problem 4

```
1 //Given that
2 Fa = 4.9 //in N
3 \times 1 = 12 \times 10^{-3} //in \text{ meter}
4 \times 2 = 17 \times 10^{-3} //in \text{ meter}
5 \times 3 = -12 \times 10^{-3} //in \text{ meter}
7 //Sample Problem 7-7a
8 printf("**Sample Problem 7-7a**\n")
9 / / k * x1 = Fa
10 //Spring constant
11 k = Fa/x1
12 \text{ Ws1} = -.5* \text{ k} * \text{ x2}^2
13 printf("The work done by the spring force is %fJ\n",
        Ws1)
14
15 //Sample Problem 7-7b
16 printf("n**Sample Problem 7-7b**\\n")
17 \text{ Ws2} = .5 * k * (x2^2 - x3^2)
18 printf("The work done by the spring is %fJ", Ws2)
1 //Given that
```

```
2 E = 0.10 //in ev
3 T = 800 //in K
4 k = 8.62*10^-5 //Boltzman constant
6 //Sample Problem 42-4a
7 txt = mopen('Example42_4_result.txt','wt')
8 mfprintf(txt, '**Sample Problem 42-4a**\n')
9 \text{ expo} = E/(k*T)
10 P = 1/(\%e^e) + 1)
11 mfprintf(txt, 'The probability of occupying the
     given energy state is equal to %f\n', P)
12
13 //Sample Problem 42-4b
14 Pbelow = 1/(1 + \%e^-expo)
15 mfprintf(txt, '\n**Sample Problem 42-4**\n')
16 mfprintf(txt, 'The probability of occupying the
     given energy state is equal to %f', Pbelow)
17 mclose(txt)
```

Scilab code Exa 7.7 Sample Problem 7

```
1 //Given that
2 Fa = 4.9 //in N
3 x1 = 12 * 10^-3 //in meter
4 x2 = 17 * 10^-3 //in meter
5 x3 = -12 * 10^-3 //in meter
6
7 //Sample Problem 7-7a
8 printf("**Sample Problem 7-7a**\n")
9 //k * x1 = Fa
10 //Spring constant
```

Scilab code Exa 7.8 Sample Problem 8

```
1 //Given that
2 m=.4 //in kg
3 Vi = .5 //in m/s
4 k = 750 //in N/m
5
6 //Sample Problem 7-8
7 printf("**Sample Problem 7-8**\n")
8 //Using work energy theorem
9 //Wnet = Kf - Ki
10 //Kf = 0
11 //.5*k*x^2 = Ki
12 x = sqrt(m*Vi^2/k)
13 printf("The compression in the spring is %em", x)
```

Scilab code Exa 42.5 Sample Problem 5

```
1 //Given that
```

Scilab code Exa 7.8 Sample Problem 8

```
Scilab code Exa 7.9 //Given that

2 m=.4 //in kg

3 Vi = .5 //in m/s

4 k = 750 //in N/m

5 //Sample Problem 7-8

7 printf("**Sample Problem 7-8**\n")

8 //Using work energy theorem

9 //Wnet = Kf - Ki

10 //Kf = 0

11 //.5*k*x^2 = Ki

12 x = sqrt(m*Vi^2/k)

13 printf("The compression in the spring is %em", x)

Sample Problem 9
```

```
1 //Sample Problem 7-9
2 printf("**Sample Problem 7-9**\n")
3 W = integrate('3*x^2', 'x', 2, 3) + integrate('4', 'x', 3, 0)
4 printf("The net work done is %dJ", W)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 42.6 Sample Problem 6

```
Scilab code Exa 7.9 // Given that
2 No = 10^16 //number per m<sup>3</sup>
3 T = 298 //in K
4 \text{ fac} = 10^6
5 density = 2330 //in kg/m^3
6 \text{ Na} = 6.023*10^23
7 M = 28.1*10^{-3} //in kg/mol
9 //Sample Problem 42-6
10 pt = mopen('Example42_6_result.txt', 'wt')
11 mfprintf(pt, '**Sample Problem 42-6**\n')
12 \text{ Np} = \text{fac*No} + \text{No}
13 NSi = density*Na/M
14 fraction = Np/NSi
15 mfprintf(pt, 'The fraction of Phosphorus atoms with
      Silicon atoms is equal to %e', fraction)
16 mclose(pt)
```

Sample Problem 9

```
1 //Sample Problem 7-9
2 printf("**Sample Problem 7-9**\n")
3 W = integrate('3*x^2', 'x', 2, 3) + integrate('4', 'x', 3, 0)
4 printf("The net work done is %dJ", W)
```

Scilab code Exa 7.10 Sample Problem 10

```
1 exec ("degree_rad.sci",-1)
3 //Given that
4 //taking right direction as positive direction
5 \text{ F1} = [-2, 0] //\text{in N}
6 v = [3, 0] //in m/s
7 \text{ mag} = [4,6]
9 //Sample Problem 7-10a&b
10 Qnum = ['a', 'b']
11 \text{ count} = 1
12 \quad for \quad x = mag
       printf("n**Sample Problem 7-10\%s**\\n", Qnum(
13
           count))
       F2 = [x*\cos(dtor(60)), x*\sin(dtor(60))] //in N
14
        //from the definition of the power
15
       P1 = F1 * v'
16
17
       P2 = F2 * v'
       Pnet = P1 + P2
18
19
       printf("The power transferred by F1 is %dW\n",
        printf ("The power transferred by F2 is %dW\n",
20
          P2)
```

```
printf("The net power transferred is %dW\n",
21
          Pnet)
22
       Pnet = round(Pnet)
23
       if Pnet == 0
            printf("The Kinetic energy is not changing\n
24
25
       else
           printf("The Kinetic Energy is changing\n")
26
27
       end
       count = count + 1
28
29 \text{ end}
```

check Appendix AP 2 for dependency:

degree_rad.sci

Chapter 26

Potential and Conservation of Energy

Scilab code Exa 42.7 Sample Problem 7

```
1 //Given that
2 Egap = 1.9 //in eV
3
4 //Sample Problem 42-7
5 pt = mopen('Example42_7_result.txt', 'wt')
6 mfprintf(pt, '**Sample Problem 42-7**\n')
7 lambada = 1242/Egap
8 mfprintf(pt, 'The wavelength emitted is equal to %dnm', lambada)
9 mclose(pt)
```

Scilab code Exa 7.10 Sample Problem 10

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 //taking right direction as positive direction
```

```
5 \text{ F1} = [-2, 0] //\text{in N}
6 v = [3, 0] //in m/s
7 \text{ mag} = [4,6]
9 //Sample Problem 7-10a&b
10 Qnum = ['a', 'b']
11 \text{ count} = 1
12 \text{ for } x = mag
       printf("\n*Sample Problem 7-10%s**\n", Qnum(
13
          count))
14
       F2 = [x*\cos(dtor(60)), x*\sin(dtor(60))] //in N
       //from the definition of the power
15
16
       P1 = F1 * v'
       P2 = F2 * v'
17
18
       Pnet = P1 + P2
       printf("The power transferred by F1 is %dW\n",
19
          P1)
       printf("The power transferred by F2 is %dW\n",
20
21
       printf("The net power transferred is %dW\n",
          Pnet)
22
       Pnet = round(Pnet)
23
       if Pnet == 0
            printf("The Kinetic energy is not changing\n
24
25
       else
26
            printf("The Kinetic Energy is changing\n")
27
       end
28
       count = count + 1
29 end
```

Scilab code Exa 8.1 Sample Problem 1

```
1 //Given that
2 h = 0.8 //in meter
3 1 = 2.0 //in meter
```

```
4 m = 2 //in kg
5 g = 9.8 //in m/s^2
6
7 //Sample Problem 8-1
8 printf("**Sample Problem 8-1**\n")
9 //Using the definition of
10 Wg = m* g* h
11 printf("The work done by the gravity is %eJ", Wg)
```

Nuclear Physics

Scilab code Exa 43.1 Sample Problem 1

```
1 //Given that
2 e = 1.6*10^-19
                   //ev to joule conversion
3 E = 5.30*10^6*e //in Joules
4 n = 79 //number of protons
6 //Sample Problem 43-1
7 txt = mopen('Example43_1_result.txt', 'wt')
8 mfprintf(txt, '**Sample Problem 43-1**\n')
9 K = 9*10^9 //in SI unit
10 q1 = 2*e
11 \ q2 = n*e
12 / K*q1*q2/d = E
13 d = K*q1*q2/E
14 mfprintf(txt, 'The distance of the alpha particles
     from gold nucleus is equal to %em', d)
15 mclose(txt)
```

Potential and Conservation of Energy

Scilab code Exa 8.2 Scilab code Exa 8.2 Scilab code Exa 8.2 Sample Problem 1 Sample Problem 2 Sample Problem 2

```
1 //Given that
2 mass = 2 //in kg
3 y1 = 5 //in meter
4 g = 9.8 //in m/s^2
5 ref = [0, 3, 5, 6]
6
7 //Sample Problem 8-2a
8 printf("**Sample Problem 8-2a**\n")
9 for x = ref
10    U = mass* g* (y1 - x)
11    printf("The potential energy at y1 is %dJ if reference is assumed to be at y=%d\n", U, x)
12 end
13
```

```
14 //sample Probelm 8-2b
15 printf("n**Sample Problem 8-2b**\\n")
16 y2 = 0
17 //The change in potential energy doesn't depend on
      choice of reference
18 \text{ deltaY} = y2 - y1
19 //because the deltaY doesn't depend upon the choice
      of references
20 deltaU = mass* g* deltaY
21 printf("The change in potential energy is %dJ same
      for all the references", deltaU)
1 //Given that
2 h = 0.8
           //in meter
3 \ 1 = 2.0 \ //in meter
4 m = 2 //in kg
5 g = 9.8 //in m/s^2
7 //Sample Problem 8-1
8 printf("**Sample Problem 8-1**\n")
9 //Using the definition of
10 \text{ Wg} = m*\text{ g* h}
11 printf("The work done by the gravity is %eJ", Wg)
1 / Sample Problem 43-2
2 txt = mopen('Example43_2_result.txt','wt')
3 mfprintf(txt, '**Sample Problem 43-2**\n')
4 A = 1 //say for the purpose of calculation
5 \text{ Mp} = 1.67*10^-27
6 \text{ Mass} = A*Mp
7 \text{ Rnot} = 1.2*10^-15
8 r = Rnot*A^(1/3)
9 Volume = 4/3*\%pi*r^3
10 density = Mass/Volume
11 mfprintf(txt, 'The density of nucleus is %eKg/m<sup>3</sup>',
      density)
12 mclose(txt)
```

Scilab code Exa 8.3 Sample Problem 3

```
//Given that
h = 8.5 //in meter\
g = 9.8 //in m/s^2

//Sample Problem 8-3
printf("**Sample Problem 8-3**\n")
//Using conservation of energy
//Change in Potential energy = Change in Kinetic energy
//m* g* h = .5* m* v^2
v = sqrt(2* g * h)
printf("The velocity of child at the bottom will be %fm/s", v)
```

Scilab code Exa 43.3 Scilab code Exa 43.3 Sample Problem 4 Scilab code Exa 8.2 Sample Problem 3

```
1 //Given that
2 m = 61
           //in kg
3 \text{ Hi} = 45
           //in meter
4 L = 25
           //in meter
5 k = 160
           //in N/m
6 g = 9.8
            //in m/s^2
8 //Sample Problem 8-4
9 printf("**Sample Problem 8-4**\n")
10 //Assume that the jumper goes x meter down the
      bridge
11 //Using energy conservation energy
12 s=poly(0,"s")
13 p = .5*k*(s-25)^2 - m*g*s //equal to 0
14 x = roots(p)
15 printf("The height fell down is %fm", x(2))
   Sample Problem 2
1 //Given that
2 Nn = 70
3 \text{ Np} = 50
4 \quad A = Nn + Np
6 //Sample Problem 43-3
7 txt = mopen('Example43_3_result.txt', 'wt')
8 mfprintf(txt, '**Sample Problem 43-3**\n')
9 Msn = 119.902199 //in Atomic mass unit
10 uCsqure = 931.5 //in Mev
11 Mp = 1.007825 //in Atomic mass unit
12 Mn = 1.008625 //in Atomic mass unit
13 deltaE = (Np*Mp + Nn*Mn - Msn)*uCsqure/A
14 mfprintf(txt, 'The binding energy per nucleon of Sn
      is %fMev/nucleon', deltaE)
15 mclose(txt)
```

1 //Given that

```
2 \text{ mass} = 2 //\text{in kg}
3 \text{ y1} = 5 //\text{in meter}
4 g = 9.8 //in m/s^2
5 \text{ ref} = [0, 3, 5, 6]
7 //Sample Problem 8-2a
8 printf("**Sample Problem 8-2a**\n")
9 \text{ for } x = \text{ref}
       U = mass* g* (y1 - x)
10
       printf("The potential energy at y1 is %dJ if
11
           reference is assumed to be at y=\%d\n", U, x)
12 end
13
14 //sample Probelm 8-2b
15 printf("n**Sample Problem 8-2b**\\n")
17 //The change in potential energy doesn't depend on
      choice of reference
18 \text{ deltaY} = y2 - y1
19 //because the deltaY doesn't depend upon the choice
      of references
20 deltaU = mass* g* deltaY
21 printf("The change in potential energy is %dJ same
      for all the references", deltaU)
```

Scilab code Exa 43.4 Scilab code Exa 43.4 Sample Problem 5

Scilab code Exa 8.3 Sample Problem 4

```
1 //Given that
2 n = 25
3 \text{ Ms} = 9000 //\text{in kg}
4 \quad Mm = 80 \quad //in \quad kg
5 d = [45, 10000] //in meter
6 t = 2 //in minute
7 \text{ g} = 9.8 //\text{in m/s}^2
9 //Sample Problem 8-5
10 \text{ count} = 0
11 \quad for \quad x = d
       //Sample Problem 8-5a
       if count == 0 then
13
            printf("**Sample Problem 8-5a**\n")
14
            count = count + 1
15
16
        end
       //We can assume that the force applied by each
17
           of man is equal to twice his weight
18
       Wnet = n * (2* Mm * g) * x
        printf("The total work done is equal to %eJ\n",
19
           Wnet)
20
       //Sample Problem 8-5b
21
22
       if count == 1 then
23
            printf("n**Sample Problem 8-5b**\\n")
            count = count + 1
24
25
        //All the work done must be converted into
26
           thermal energy
       TE = Wnet
27
28
       printf("The total thermal energy generated is
           equal to \%eJ\n", TE)
29
       //Sample Problem 8-5c
30
```

```
if count == 2 then
31
           printf("\n**Sample Problem 8-5c**\n")
32
           count = count + 1
33
34
       end
35
  end
   Sample Problem 3
1 //Sample Problem 43-4
2 txt = mopen('Example43_4_result.txt','wt')
3 mfprintf(txt, '**Sample Problem 43-4**\n')
4 \text{ slope} = (0-6.2)/(225-0)
5 lambda = -slope
6 mfprintf(txt, 'The disintegration constant for the
      radionuclide is \%fmin-1\n', lambda)
  Th = \log(2) / \text{lambda}
8 mfprintf(txt, 'The half life is equal to %dmin', Th)
9 mclose(txt)
1 //Given that
2 h = 8.5
            //in meter\
3 g = 9.8
           //in m/s^2
5 //Sample Problem 8-3
6 printf("**Sample Problem 8-3**\n")
7 //Using conservation of energy
8 //Change in Potential energy = Change in Kinetic
      energy
9 //m* g* h = .5* m* v^2
10 \ v = sqrt(2* g * h)
11 printf("The velocity of child at the bottom will be
     %fm/s", v)
```

Scilab code Exa 8.6 Sample Problem 6

```
Scilab code Exa 43.5 // Given that
            //in kg
2 m = 14
            //in N
3 	ext{ F} = 40
4 d = 0.50 //in meter
5 \text{ Vo} = 0.60 \text{ //in m/s} 

6 \text{ V} = 0.20 \text{ //in m/s} 
8 //Sample Problem 8-6a
9 printf("**Sample Problem 8-6a**\n")
10 //Using the definition of Work done
11 Wf = F*d
12 printf("The work done by the force F is equal to %dJ
      \n", Wf)
13
14 //Sample Problem 8-6b
15 printf("n**Sample Problem 8-6b**\\n")
16 //Using Work-Energy theorem
  //TE = decrease in Kinetic Energy + Work done by the
       force F
18 \text{ TE} = .5*m*(Vo^2 - V^2) + Wf
19 printf("The incrase in the thermal energy is equal
      to \%fJ", TE)
   Sample Problem 5
```

```
1 //Given that
2 M = 2.71 //in g
3 R = 4490 //in Bq
4 fraction = 1.17/100
5 Mo = 74.555 //gm/mol
6 Na = 6.023*10^23 //n /mol
7
8 //Sample Problem 43-5
9 txt = mopen('Example43_5_result.txt','wt')
10 mfprintf(txt, '**Sample Problem 43-5**\n')
11 Nk = Na * M * fraction/Mo
12 Th = log(2)*Nk/R
13 mfprintf(txt, 'The half life of the substance is %eSec', Th)
```

Scilab code Exa 8.4 Sample Problem 4

```
1 //Given that
2 m = 61
         //in kg
3 Hi = 45 //in meter
4 L = 25
          //in meter
5 k = 160 //in N/m
6 g = 9.8
          //in m/s^2
8 //Sample Problem 8-4
9 printf("**Sample Problem 8-4**\n")
10 //Assume that the jumper goes x meter down the
     bridge
11 //Using energy conservation energy
12 s=poly(0,"s")
13 p = .5*k*(s-25)^2 - m*g*s //equal to 0
```

```
14 x = roots(p)
15 printf("The height fell down is %fm", x(2))
```

Scilab code Exa 8.7 Sample Problem 7

```
1 //Given that
2 \text{ mass} = 2.0 //\text{in kg}
3 \text{ v1} = 4.0 //\text{in m/s}^2
4 Ff = 15 //in N
5 k = 10^4 //in N/m
7 / Sample Problem 8-7
8 printf("**Sample Problem 8-7**\n")
9 //Using energy conservation
10 / \text{Ki} = \text{Uf} + \text{TEf}
11 \text{ Ki} = .5* \text{ mass* v1^2}
12 / Uf = .5 * k * x^2
13 //TEf = Ff * x
14 s=poly(0, "s")
15 p = .5*k*s^2 + Ff*s - Ki
16 x = roots(p)
17 printf ("The compression in the spring is equal to
      \%fcm", x(1)*100)
```

Scilab code Exa 8.5 Scilab code Exa 8.8 Sample Problem 5 Sample Problem 8

```
1 //Given that
2 n = 25
3 \text{ Ms} = 9000 //\text{in kg}
4 \text{ Mm} = 80 //\text{in kg}
5 d = [45, 10000] //in meter
6 t = 2 //in minute
7 \text{ g} = 9.8 //\text{in m/s}^2
  //Sample Problem 8-5
10 \text{ count} = 0
11 \quad for \quad x = d
12
       //Sample Problem 8-5a
13
        if count == 0 then
            printf("**Sample Problem 8-5a**\n")
14
            count = count + 1
15
16
        end
        //We can assume that the force applied by each
17
           of man is equal to twice his weight
       Wnet = n * (2* Mm * g) * x
18
19
        printf("The total work done is equal to %eJ\n",
           Wnet)
20
21
        //Sample Problem 8-5b
22
        if count == 1 then
            printf("n**Sample Problem 8-5b**\\n")
23
24
            count = count + 1
25
        end
       //All the work done must be converted into
26
           thermal energy
27
       TE = Wnet
       printf("The total thermal energy generated is
28
           equal to \%eJ\n", TE)
29
30
        //Sample Problem 8-5c
       if count == 2 then
31
            printf("n**Sample Problem 8-5c**\\n")
32
            count = count + 1
33
34
        end
```

```
1 //Given that
2 m = 6.0
            //in kg
3 \text{ Vo} = 7.8
             //in m/s
             //in meter
4 \text{ Yo} = 8.5
5 \quad Y = 11.1
             //in meter
6 \text{ g} = 9.8 //\text{in m/s}^2
8 //Sample Problem 8-8
9 printf("**Sample Problem 8-8**\n")
10 //initial mechanical energy
11 Mi = .5* m* Vo^2 + m* g* Yo
12 // final mechanical energy
13 \text{ Mf} = 0 + m* g* Y
14 Eth = Mi - Mf
15 printf ("The thermal energy generated is equal to %fJ
      ", Eth)
```

Scilab code Exa 43.6 Sample Problem 6

```
1 //Given that
2 uCsqure = 931.5 //in Mev
3 M_H = 1.007825 //in Atomic mass unit
4 M_U = 238.05079 //in Atomic mass unit
5 M_Th = 234.04363 //in Atomic mass unit
6 M_He = 4.00260 //in Atomic mass unit
7 M_Pa = 237.05121 //in Atomic mass unit
8
9 txt = mopen('Example43_6_result.txt','wt')
10 //Sample Problem 43-6a
11 mfprintf(txt, '**Sample Problem 43-6a**\n')
12 Q = (M_U - (M_Th + M_He)) * uCsqure
13 mfprintf(txt, 'Energy released during alpha decay of uranium is %fMev\n', Q)
```

System of Particles

```
check Appendix AP 2 for dependency:
```

```
degree_rad.sci
```

Scilab code Exa 9.1 Sample Problem 1

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 m1 = 1.2 //in kg
5 m2 = 2.5 //in kg
6 m3 = 3.4 //in kg
7 a = 140 //in cm
8
9 //Sample Problem 9-1
10 printf("**Sample Problem 9-1**\n")
11 r1 = [0, 0]
12 r2 = [a, 0]
13 r3 = [a*cos(dtor(60)), a*sin(dtor(60))]
14 Rc = (m1*r1 + m2*r2 + m3*r3)/(m1 + m2 + m3)
15 printf("The co-ordinate of center of mass are (%f, %f)", Rc(1), Rc(2))
```

Scilab code Exa 43.7 Sample Problem 7

```
//Given that
M_P = 31.97391 //in u
M_S = 31.97207 //in u
ucsqure = 931.5 //in Mev
//Sample Problem 43-7
txt = mopen('Example43_7_result.txt','wt')
mfprintf(txt, '**Sample Problem 43-7**\n')
Q = -(M_S - M_P)*ucsqure
mfprintf(txt, 'The disintegration energy for the beta decay of Phosphorus is %fMev', Q)
mclose(txt)
```

Scilab code Exa 8.6 Sample Problem 6

```
1 //Given that
2 m = 14 //in kg
3 F = 40 //in N
4 d = 0.50 //in meter
5 Vo = 0.60 //in m/s
6 V = 0.20 //in m/s
7
8 //Sample Problem 8-6a
9 printf("**Sample Problem 8-6a**\n")
```

```
//Using the definition of Work done
Wf = F* d
printf("The work done by the force F is equal to %dJ\
\n", Wf)

//Sample Problem 8-6b
printf("\n**Sample Problem 8-6b**\n")
//Using Work-Energy theorem
//TE = decrease in Kinetic Energy + Work done by the force F

TE = .5*m*(Vo^2 - V^2) + Wf
printf("The incrase in the thermal energy is equal to %fJ", TE)
```

Scilab code Exa 43.8 Sample Problem 8

```
//Given that
ratio = 10.3
Th = 1.25*10^9 //in years

//Sample Problem 43-8
txt = mopen('Example43_8_result.txt','wt')
mfprintf(txt, '**Sample Problem 43-8**\n')
t = Th * log(1 + ratio)/log(2)
mfprintf(txt, 'The life of rock is %eyears', t)
mclose(txt)
```

Scilab code Exa 9.2 Sample Problem 2

```
//Sample Problem 9-2
printf("**Sample Problem 9-2**\n")
R = poly(0, 'R')
//Mass is proportinal to area
Aw = %pi* (2*R)^2
Ac = %pi* R^2
//& the x-co-ordinate of the masses
CMw = 0
CMc = -R
CMf = pdiv((Aw*CMw - Ac*CMc), (Aw - Ac))
printf("The CM is located at a distace of %fR to the right of the center", horner(CMf, 1))
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 43.9 Sample Problem 9

```
Scilab code Exa 8.17 // Given that
2 dose = 3 //in J/kg
3 c = 4180 //in J.kg/K
4 m = 1 //(say)
5
6 // Sample problem 43-9
7 txt = mopen('Example43_9_result.txt','wt')
8 mfprintf(txt, '**Sample Problem 43-9**\n')
9 deltaT = (dose/m)/c
10 mfprintf(txt, 'The change in temprature of the body is %eK', deltaT)
11 mclose(txt)
```

Sample Problem 7

```
1 //Given that
2 \text{ mass} = 2.0 //\text{in kg}
3 \text{ v1} = 4.0 //\text{in m/s}^2
4 Ff = 15 //in N
5 k = 10^4 //in N/m
7 / Sample Problem 8-7
8 printf("**Sample Problem 8-7**\n")
9 //Using energy conservation
10 / \text{Ki} = \text{Uf} + \text{TEf}
11 Ki = .5* mass* v1^2
12 //Uf = .5*k*x^2
13 / TEf = Ff * x
14 \text{ s=poly}(0, "s")
15 p = .5*k*s^2 + Ff*s - Ki
16 x = roots(p)
17 printf("The compression in the spring is equal to
      \%fcm", x(1)*100)
```

Scilab code Exa 9.3 Sample Problem 3

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 m1 = 4 //in kg
5 m2 = 8 //in kg
6 m3 = 4 //in kg
7 F1 = [-6, 0]
```

Scilab code Exa 43.10 Scilab code Exa 8.8 Sample Problem 10 Sample Problem 8

```
1 //Given that
2 e = 1.6*10^-19 //conversion from electron volt to
     Joule
3 \text{ deltaE} = 0.20*e
4 h = 6.62*10^{-34}
                   //in J.s
5
6 //Sample Problem 43-10
7 txt = mopen('Example43_10_result.txt','wt')
8 mfprintf(txt, '**Sample Problem 43-9**\n')
9 Tavg = h/(2*\%pi)/deltaE
10 mfprintf(txt, 'The average life of the compound is
     %esec', Tavg)
11 mclose(txt)
1 //Given that
2 m = 6.0 //in kg
3 Vo = 7.8 //in m/s
4 Yo = 8.5 //in meter
```

```
5 Y = 11.1 //in meter
6 g = 9.8 //in m/s^2
7
8 //Sample Problem 8-8
9 printf("**Sample Problem 8-8**\n")
10 //initial mechanical energy
11 Mi = .5* m* Vo^2 + m* g* Yo
12 //final mechanical energy
13 Mf = 0 + m* g* Y
14 Eth = Mi - Mf
15 printf("The thermal energy generated is equal to %fJ", Eth)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 9.4 Sample Problem 4

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 m = 2.0 //in kg
5 v1 = [0, -0.50]
6 v2 = [0.40, 0]
7
8 //Sample Problem 9-4
9 printf("**Sample Problem 9-4**\n")
10 deltaP = m* (v2 - v1)
11 printf("The change in mometum vactor in kg.m/sec is %1.1 fi + %1.1 fj", deltaP(1), deltaP(2))
```

Energy from the Nucleus

Scilab code Exa 44.1 Sample Problem 1

Scilab code Exa 9.5 Sample Problem 5

```
1 //Given that
2 //Before collision
3 m = 6 //in kg
4 v = 4 //in m/sec
5 //After collision
6 m1 = 2 //in kg
7
8 //Sample Problem 9-5
9 printf("**Sample Problem 9-5**\n")
10 m2 = m - m1
11 v1 = 8.0 //in m/s
12 v2 = (m*v - m1*v1)/m2
13 printf("The velocity of peiece having mass m2 is %dm/s", v2)
```

Scilab code Exa 44.2 Sample Problem 2

```
1 //Given that
2 c = 3*10^8 //in m/s
3 e = 1.6*10^-19
4 \text{ conv} = 3600*24 //\text{day to sec conversion}
5 Pgen = 3400*10^6 //in W
6 Pused = 1100*10^6 //in W
7 fuel = 8.60*10^4 //in kg
8 Q = 200*10^6*e //in J
9 Uinitial = 8.6*10^4 //in kg
10 M_u = 3.90*10^-25 //in kg/atom
11 N = 5.70*10^4
12 p = 3/100
13
14 txt = mopen('Example44_2_result.txt', 'wt')
15 //Sample Problem 44-2a
16 mfprintf(txt, '**Sample Problem 44-2a**\n')
17 eff = Pused/Pgen*100
```

```
18 mfprintf(txt, 'The efficiency of the power plant is
     %d\%\n', eff)
19
20 //Sample Problem 44-2b
21 mfprintf(txt, '\n**Sample Problem 44-2b**\n')
22 R = Pgen/Q
23 mfprintf(txt, 'The fissions in the reactor per
      second is %e\n', R)
24
25 //Sample Proble 44-2c
26 mfprintf(txt, '\n**Sample Problem 44-2c**\n')
27 \quad RateDay = (1+0.25)*R*M_u*conv
28 mfprintf(txt, 'The uranium use in a day is equal to
     %fkg/day n', RateDay)
29
30 //Sample Problem 44-2d
31 mfprintf(txt, '\n**Sample Problem 44-2d**\n')
32 T = fuel*p/RateDay
33 mfprintf(txt, 'The U will long for %ddays\n', T)
34
35 //Sample Problem 44-2e
36 mfprintf(txt, '\n**Sample Problem 44-2e**\n')
37 MassConvRate = Pgen/c^2
38 mfprintf(txt, 'The mass conversion rate is %ekg/s',
     MassConvRate)
39 mclose(txt)
```

degree_rad.sci

System of Particles

Scilab code Exa 9.6 Scilab code Exa 9.6 check Appendix AP 2 for dependency:

```
Sample Problem 3 Sample Problem 6
1 //Given that
2 \text{ ratio} = 0.0072
3 T = 2.0*10^9 //in years
4 Th1 = 7.04*10^8 //in years
5 \text{ Th2} = 44.7*10^8
                    //in years
7 // Sample Problem 44-3
8 txt = mopen('Example44_3_result.txt', 'wt')
9 mfprintf(txt, '**Sample Problem 44-3**\n')
10 11 = \log(2)/Th1
11 12 = \log(2)/Th2
12 ratioEarlier = ratio*%e^((11 - 12)*T)
13 mfprintf(txt, 'The earlier ratio is equal to \%f',
      ratioEarlier)
14 mclose(txt)
```

Scilab code Exa 9.1 Sample Problem 1

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 m1 = 1.2 //in kg
5 m2 = 2.5 //in kg
6 m3 = 3.4 //in kg
7 a = 140 //in cm
8
9 //Sample Problem 9-1
10 printf("**Sample Problem 9-1**\n")
11 r1 = [0, 0]
12 r2 = [a, 0]
```

```
13 r3 = [a*cos(dtor(60)), a*sin(dtor(60))]
14 Rc = (m1*r1 + m2*r2 + m3*r3)/(m1 + m2 + m3)
15 printf("The co-ordinate of center of mass are (%f, %f)", Rc(1), Rc(2))
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 9.7 Sample Problem 7

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 M = 1 //(say) to directly get the answer
5 \text{ Mc} = 0.30*\text{M}
6 Vc = [5*\cos(dtor(40)), 5*\sin(dtor(40))]
7 \text{ Mb} = 0.20*M
8 \text{ Ma} = 0.50 * M
9
10 //Sample Problem 9-7
11 printf ("**Sample Problem 9-7**\n")
12 deff('[f] = eq_maker(V)', 'f = Ma*V(1)*[cos(dtor
      (140)), \sin(\text{dtor}(140))] + Mb*V(2)*[0,-1] + Mc*Vc')
13 V= fsolve([0,0], eq_maker)
14 printf("The velocity of A is %dm/s & velocity of B
      is %fm/s after the collision in the given
      directions", V(1), V(2))
```

Scilab code Exa 44.4 Sample Problem 4

```
1 //Given that
2 R = 10^-15 //in meter
3 e = 1.6*10^-19 //in coloumb
4 q1 = e
5 k = 9*10^9 //in SI unit
6 B = 1.38*10^-23 //in J/K
8 txt = mopen('Example44_4_result.txt','wt')
9 //Sample Problem 44-4a
10 mfprintf(txt, '**Sample Problem 44-4a**\n')
11 K = k*q1^2/(2*R)/2
12 mfprintf(txt, 'The initial kinetic energy is equal
     to %dKev n', K/e/10^3)
13
14 //Sample Problem 44-4b
15 mfprintf(txt, '\n**Sample Problem 44-4b**\n')
16 T = 2*K/(3*B) //B is Boltzman constant
17 mfprintf(txt, 'The temprature required to achieve
     that energy equal to %eK', T)
18 mclose(txt)
```

Scilab code Exa 9.8 Sample Problem 8

```
1 //Given that
2 Mi = 850 //in kg
3 R = 2.3 //kg/s
4 Vrel = 2800 //in kg
5
6 //Sample Problem 9-8a
7 printf("**Sample Problem 9-8a**\n")
8 T = R*Vrel
```

Scilab code Exa 9.2 Sample Problem 2

```
//Sample Problem 9-2
printf("**Sample Problem 9-2**\n")
R = poly(0, 'R')
//Mass is proportinal to area
Aw = %pi* (2*R)^2
Ac = %pi* R^2
//& the x-co-ordinate of the masses
CMw = 0
CMc = -R
CMf = pdiv((Aw*CMw - Ac*CMc), (Aw - Ac))
printf("The CM is located at a distace of %fR to the right of the center", horner(CMf, 1))
```

check Appendix AP 2 for dependency:

Scilab code Exa 44.5 Sample Problem 5

```
//Sample Problem 44-5
txt = mopen('Example44_5_result.txt','wt')
mfprintf(txt, '**Sample Problem 44-5**\n')
MassRate = 4*1.67*10^-27/(4.20*10^-12) //mass of
    proton required to produce 1 unit of energy
Ps = 3.90*10^26 //in W
Rate = MassRate*Ps
mfprintf(txt, 'The rate at which hydrogen is
    consumed is %ekg/s', Rate)
mclose(txt)
```

Scilab code Exa 9.9 Sample Problem 9

```
1 //Given that
2 m = 4.0* 10^-6 //in kg
3 l = 0.77 * 10^-3 //in meter
4 h = 0.30 //in m
5 g = 9.8 //in m/s^2
6
7 //Sample Problem 9-9
8 printf("**Sample Problem 9-9**\n")
9 //Using Work-Energy theorem
10 //F * l = mgh
11 F = m* g* h/1
12 printf("The external force on the betal is %fN", F)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 9.3 Sample Problem 3

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
           //in kg
4 \quad \texttt{m1} = 4
5 m2 = 8
           //in kg
6 m3 = 4 //in kg
7 \text{ F1} = [-6, 0]
8 F2 = [12*\cos(dtor(45)), 12*\sin(dtor(45))]
9 F3 = [14, 0]
10
11 / Sample Problem 9-3
12 printf("**Sample Problem 9-3**\n")
13 aC = (F1 + F2 + F3)/(m1 + m2 + m3)
14 printf("The acceleration of center of mass is %fm/s
      ^2 at \nan angle of \%f degrees to the positive x-
      axis", norm(aC), rtod(atan(aC(2)/aC(1)))
```

Scilab code Exa 44.6 Sample Problem 6

```
1 //Given that
2 d = 200 //in kg/m<sup>3</sup>
3 fac = 10<sup>3</sup>
4 Na = 6.023*10<sup>23</sup>
```

```
5 Mt = 3*10^-3  //in kg/mol
6 Md = 2*10^-3  //in kg/mol
7
8 txt = mopen('Example44_6_result.txt','wt')
9 //Sample Problem 44-6a
10 mfprintf(txt, '**Sample Problem 44-6a**\n')
11 n = 2*fac *d *Na /(Mt + Md)
12 mfprintf(txt, 'The number of particle in unit volume is %em^-3\n', n)
13
14 //Sample Problem 44-6b
15 mfprintf(txt, '\n**Sample Problem 44-6b**\n')
16 TauMin = 10^20/n
17 mfprintf(txt, 'The duration of time, pallet can maintain is of the order of %esec', TauMin)
18 mclose(txt)
```

Collisions

```
check Appendix AP 2 for dependency:
    degree_rad.sci
    check Appendix AP 2 for dependency:
    degree_rad.sci
```

Quarks Leptons and the Big Bang

Scilab code Exa 10.1 Sample Problem 1

```
1  exec("degree_rad.sci",-1)
2
3  //Given that
4  m = 140 * 10^-3  //in kg
5  Vi = -39  //in m/s
6  Vf = 39  //in m/s
7
8  //Sample Problem 10-1a
9  printf("**Sample Problem 10-1a**\n")
10  //J = Pf - Pi
11  J = m *(Vf - Vi)
12  printf("The magnitude of impulse acted on the ball from bat is equal to %fN-s\n", J)
13
14  //Sample Problem 10-1b
15  printf("\n**Sample Problem 10-1b**\n")
16  t = 1.20* 10^-3  //in sec
```

Scilab code Exa 10.1 Sample Problem 4

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
4 m = 2.0 //in kg
5 v1 = [0, -0.50]
6 v2 = [0.40, 0]
7
8 //Sample Problem 9-4
9 printf("**Sample Problem 9-4**\n")
10 deltaP = m* (v2 - v1)
11 printf("The change in mometum vactor in kg.m/sec is %1.1 fi + %1.1 fj", deltaP(1), deltaP(2))
```

Scilab code Exa 45.1 Sample Problem 1

```
1 //Given that
2 Rpi = 139.6 //in Mev
3 Rmu = 105.7 //in Mev
4 c = 3*10^8 //in m/s
```

```
6 //Sample Problem 45-1
7 pt = mopen('Example45_1_result.txt', 'wt')
8 mfprintf(pt, '**Sample Problem 45-1**\n')
9 Kmu = poly(0, 'Kmu')
10 //CONSERVATION OF ENERGY
11 / Rpi + Kpi = Rmu + Kmu + Rv + Kv
12 //putting Rv(as mass is 0) & Kpi equal to 0
13 / \text{Rpi} = \text{Rmu} + \text{Kmu} + \text{Kv}
14 \text{ SUM} = \text{Rpi} - \text{Rmu}
                       //sum of Kmu & Kv
15 \text{ Kv} = \text{SUM} - \text{Kmu}
16 //for neutrino
17 \text{ Pv} = \text{Kv/c}
18 //CONSERVATION OF LINEAR MOMENIUM
19 // Ppi = Pmu + Pv
20 //putting Ppi equal to 0
21 \text{ Pmu} = - \text{Pv}
22 //for pion
23 P = Kmu + 2*Kmu*Rmu - (Pmu*c)^2
24 \text{ Kmu} = \text{roots}(P)
25 \text{ Kmu} = \text{Kmu}(2)
26 mfprintf(pt, 'The kinetic energy of the antimuon is
      %fMev n', Kmu)
27 mfprintf(pt, 'The kinetic energy of the neutrino is
      \% f Mev \backslash n ', SUM - Kmu)
28 mclose(pt)
```

```
Scilab code Exa 9.5 // Given that
2 M = 5.4
            //in kg
3 m = 9.5* 10^-3
                    //in kg
4 \text{ g} = 9.8 //\text{in m/s}^2
5 h = 6.3* 10^-2 //in meter
7 //Sample Problem 10-2
8 printf("**Sample Problem 10-2**\n")
9 // Mechanical energy conservation -
10 //0.5*(M+m)*Va^2 = (M+m)*g*h
11 Va = sqrt(g*h/0.5)
12 //Momentum conservation for the collision
13 Vb = (M+m)*Va/m
14 printf("The velocity of the bullet before collision
      is \%fm/s", Vb)
   Sample Problem 5
1 //Given that
2 //Before collision
3 m = 6 //in kg
4 v = 4 //in m/sec
5 // After collision
6 \text{ m1} = 2 //\text{in kg}
8 //Sample Problem 9-5
9 printf("**Sample Problem 9-5**\n")
10 \quad m2 = m - m1
11 v1 = 8.0 //in m/s
12 v2 = (m*v - m1*v1)/m2
13 printf("The velocity of peiece having mass m2 is %dm
      /s", v2)
```

Scilab code Exa 45.2 Sample Problem 3

Scilab code Exa 10.3 Sample Problem 3

```
1 //Given that
2 m1 = 0.70 //in kg
3 m = [0.14, 3.2] //in kg
4 k = [4.1* 10^4, 2.6* 10^6] //in N/m
5 d = [16* 10^-3, 1.1* 10^-3] //in meter
6
7 //Sample Problem 10-3a
8 printf("**Sample Problem 10-3a**\n")
```

```
9 name = ['board', 'block']
10 U = zeros(2,1)
11 for count = 1:2
       U(count) = 0.5* k(count)* d(count)^2
12
13
       printf ("The energy stored in %s is %fJ\n", name(
          count), U(count))
14 end
15
16 //Sample Problem 10-3b
17 printf("n**Sample Problem 10-3b**\\n")
18 for count = 1:2
19
       //Energy conservation
20
       Vf = sqrt(U(count)/(0.5*(m1+m(count))))
21
       //Momentum conservation
       Vi = (m1 + m(count))*Vf/m1
22
       printf("The minimum velocity required to break
23
          the \%s is \%fm/s\n", name(count), Vi)
24 end
```

check Appendix AP 9 for dependency:

collision.sci

Scilab code Exa 10.4 Sample Problem 4

```
1 exec('collision.sci', -1)
2
3 //Given that
4 m1 = 30*10^-3 //in kg
5 h1 = 8*10^-2 //in m
6 m2 = 75*10^-3 //in kg
7 g = 9.8 //in m/s^2
8 e = 1
```

```
10  //Sample Problem 10-4
11  printf("**Sample Problem 10-4**\n")
12  //velocity just before collision
13  Vi = zeros(1,2)
14  Vi(1) = sqrt(2*g*h1)
15  Vi(2) = 0
16  Vf = fsolve([0,0], collision)
17  printf("The velocity of m1 after collision is %fm/s", abs(Vf(1)))
```

Scilab code Exa 45.3 Sample Problem 3

```
1 //Given that
2 \text{ Ep} = 938.3 //in Mev}
3 Epi = 135.0 //in Mev
4 Epip = 139.6 //in Mev
6 //Sample Problem 45-3
7 pt = mopen('Example45_3_result.txt', 'wt')
8 mfprintf(pt, '**Sample Problem 45-3**\n')
9 Q = Ep - Epi - Epip
10 if (Q > 0) then
       mfprintf(pt, 'The proton can decay according to
11
          given scheme')
12 else
       mfprintf(pt, 'The proton cannot decay according
13
          to the given scheme')
14 end
15 mclose(pt)
```

Scilab code Exa 10.5 Scilab code Exa 10.5 Sample Problem 6 Sample Problem 5

```
1 //Given that
2 M = 1 //(say) to get the answer directly
3 Vi = 2100 //in \, km/h
4 //initial momentum
5 Pi = M* Vi
6 \text{ Vrel} = 500
               //in km/h
8 //Sample Problem 9-6
9 printf("**Sample Problem 9-6**\n")
10 //Assuming Vf as the final velocity of the hauler
11 Vf = poly(0, 'Vf')
12 Pf = 0.20*M*(Vf - Vrel) + (M - 0.20*M)*Vf
13 p = Pi - Pf
14 \text{ Vf} = \text{roots}(p)
15 printf("The final velocity of the hauler is %dkm/h",
       Vf)
1 //Given that
2 \text{ Ma} = 83 //\text{in kg}
3 Va = [6.2, 0] //in km/h
4 Mb = 55 //in kg
5 \text{ Vb} = [0, 7.8]
                  //in km/h
7 //Sample Problem 10-5a
8 printf("**Sample Problem 10-5a**\n")
```

Scilab code Exa 45.6 Sample Problem 6

```
1 //Given that
2 v = 2.8*10^8 //in m/s
3 H = 19.3*10^-3 //in m/s.ly
4
5 //Sample Problem 45-6
6 pt = mopen('Example45_6_result.txt', 'wt')
7 mfprintf(pt, '**Sample Problem 45-6**\n')
8 r = v/H
9 mfprintf(pt, 'The quasar is approx at a distance of %ely', r)
10 mclose(pt)
```

check Appendix AP 2 for dependency: degree_rad.sci

Scilab code Exa 9.7 Sample Problem 7

```
1 exec("degree_rad.sci",-1)
3 //Given that
4 M = 1 //(say) to directly get the answer
5 \text{ Mc} = 0.30*\text{M}
6 Vc = [5*\cos(dtor(40)), 5*\sin(dtor(40))]
7 \text{ Mb} = 0.20*M
8 \text{ Ma} = 0.50 * M
9
10 //Sample Problem 9-7
11 printf("**Sample Problem 9-7**\n")
deff('[f] = eq_maker(V)', 'f = Ma*V(1)*[cos(dtor)]
      (140), \sin(\text{dtor}(140)) + Mb*V(2)*[0,-1] + Mc*Vc')
13 V= fsolve([0,0], eq_maker)
14 printf("The velocity of A is %dm/s & velocity of B
      is %fm/s after the collision in the given
      directions", V(1), V(2))
```

Chapter 34

Rotation

Scilab code Exa 11.1 Sample Problem 1

```
Scilab code Exa 45.7 Scilab code Exa 9.8 //Given that

2  t = poly(0, 't')
3  A = -1.00-0.600*t+0.250*t^2

4
5  //Sample Problem 11-1a
6  printf("**Sample Problem 11-1a**\n")
7  Ts = [-3:0.5:6]
8  As = horner(A, Ts)
9  xset('window', 1)
10  xtitle( 'angular variable for the disk v/s time', 'time(sec)', 'Y-axis')
11  plot(Ts, As, 'm-o')
12
13  //Sample Problem 11-1b
14  printf("\n**Sample Problem 11-1b**\n")
15  To = roots(derivat(A))
```

```
16 printf("At t=%fsec, theta approaches its minimum
      value equal to \%f \setminus n, To, horner(A, To))
17
18 //Sample Problem 11-1c
19 printf("n**Sample Problem 11-1c**\\n")
20 Os = horner(derivat(A), Ts)
21 plot(Ts, Os, 'r-+')
22 legend('theta(rad)', 'omega(rad/s)')
   Sample Problem 7
     Sample Problem 8
1 //Given that
2 w = 1 //(say)
3 \ W = 1.1*w
4 c = 3*10^8 //in m/s
5 \text{ H} = 19.3*10^{-3} //\text{in m/s.ly}
7 //Sample Problem 45-7
8 pt = mopen('Example45_7_result.txt', 'wt')
9 mfprintf(pt, '**Sample Problem 45-7**\n')
10 \text{ deltaW} = W - w
11 r = c/H * deltaW/w
12 mfprintf(pt, 'The galaxy is at a distance of %ely',
      r)
13 mclose(pt)
1 //Given that
2 \text{ Mi} = 850 //\text{in kg}
3 R = 2.3 //kg/s
4 Vrel = 2800 //in kg
6 //Sample Problem 9-8a
7 printf("**Sample Problem 9-8a**\n")
8 T = R*Vrel
9 printf("The Thrust force rocket engine provide is
      equal to %dN\n", T)
10
```

```
//Sample Problem 9-8b
printf("\n**Sample Problem 9-8b**\n")
a = T/Mi
printf("The initial acceleration of rocket is %fm/s ^2\n", a)

//Sample Problem 9-8c
printf("\n**Sample Problem 9-8c**\n")
Mf = 180 //in kg
Vf = Vrel * log(Mi/Mf)
printf("The final velocity of the rocket is %fm/s", Vf)
```

check Appendix AP 2 for dependency:

degree_rad.sci

Scilab code Exa 9.9 Sample Problem 9

```
1 //Given that
2 m = 4.0* 10^-6 //in kg
3 l = 0.77 * 10^-3 //in meter
4 h = 0.30 //in m
5 g = 9.8 //in m/s^2
6
7 //Sample Problem 9-9
8 printf("**Sample Problem 9-9**\n")
9 //Using Work-Energy theorem
```

```
10 //F * l = mgh

11 F = m* g* h/l

12 printf("The external force on the betal is \%fN", F)
```

Appendix

Scilab code AP 1 Modern Physics

```
1 //Sone universal constant
                    //in J.s
2 h = 6.62*10^{-34}
3 c = 3*10^8 //in m/s
4 Me = 9.11*10^{-31} //in kg
5 \text{ conv} = 1.6*10^-19 //ev to Joule conversion factor
7 //calculates the energy difference between the two
     Energy levels n1 & n2
8 / M = \text{mass of the particle}
9 / L = width of the region
10 function [E] = Ediff(n2, n1, M, L)
11
       E = (n2^2-n1^2)*h^2/(8*M*L^2)
12 endfunction
13
14 //calculates the palnck's wavelength
15 / E = energy of the particle
16 function [lambda] = wavelength(E)
       lambda = h*c/E
17
18 endfunction
19
20 //calculates the palnck's energy
21 //w = wavelength of the particle
22 function [E] = Energy(w)
       E = h*c/w
23
24 endfunction
```

Scilab code AP 2 degree $_rad$

Sample Problem 2

```
1 //Given that
2 alpha = 0.335 //in rad/s<sup>2</sup>
3 Wo = -4.6 //in rad/s
4 Ao = 0 //in rad
5 \text{ Af} = 5* 2*\%pi //in rad
7 //Sample Problem 11-2a
8 printf("**Sample Problem 11-2a**\n")
9 //Using newton's second equation of motion
10 t = poly(0, 't')
11 p = Ao + Wo*t + 0.5*alpha*t^2 - Af
12 \text{ to } = \text{roots}(p)
13 printf("At time equal to %fsec, the reference line
      will be at given position n, to (2))
14
15 //Sample Problem 11-2c
16 printf("n**Sample Problem 11-2c**\\n")
17 p = Wo + alpha*t
18 \text{ ts} = \text{roots}(p)
19 printf("At time equal to %fsec, the disk momentarily
       stops", ts)
```

Scilab code AP 2 gravitation

```
1  // Universal constant G
2  G = 6.67*(10^-11)
3  // Radius of earth
4  Re = 6.37* 10^6 //in meter
```

```
5 //mass of earth
6 \text{ Me} = 5.98 * 10^24; //in kg
7 //Mass of Sun
8 \text{ Ms} = 1.99 * 10^30 // \text{in kg}
10 //calculates the gravitational force
11 / m1  = mass of the particle
12 //d = distance between m1 \& m2
13 function [Force] = GForce(m1,m2,d)
       Force = G*m1*m2/(d*d)
15 endfunction
16
17 //calculates the gravitational potential
18 / m1 \& m2 = mass of the particle
19 / d = distance between m1 \& m2
20 function [Potential] = GPotential(m1, m2, d)
       Potential = - G*m1*m2/d;
21
22 endfunction
23
24 // Kepler 's Law
25 / M = mass
26 //T = time period
27 function [radius] = KeplerRadius (M,T)
       radius = (G*M*T*T/(4*\%pi*\%pi))^(1/3)
28
29 endfunction
```

Scilab code AP 4 electrostatic

```
1 //permitivity constant
2 Eo = 8.85*10^-12 //in C^2/N.m^2
3 //electric consatnt
4 k = 1/(4*%pi*Eo)
5 //charge on proton
6 e = 1.6*10^-19 //in C
7
8 //calculates coloumb force on two charged particle having charge q1, q2 seprated by distance equal to r
```

```
9 function [F] = coulomb(q1, q2, r)
10    F = k*q1*q2/r^2
11 endfunction
12
13 //calculates the potential due to a particle having charge q at a distance d from the particle
14 function [V] = EPotential(q, r)
15    V = k*q/r
16 endfunction
```

Chapter 35

Collisions

```
Scilab code AP 5 check Appendix AP 2 for dependency:
```

```
degree_rad.sci
Example 17-1
```

```
1 //Given that
2 funcprot(0)
3 deff('[y] = wave(t, x)', 'y = 0.00327*\sin(72.1*x -
      2.72*t)')
4 //Comparing the given equation with the standard
     wave equation
5 A = 0.00327
                //in m
6 k = 72.1
            //in rad/s
7 w = 2.72
             //in rad/s
9 //Sample Problem 17-1a
10 printf("**Sample Problem 17-1a**\n")
11 printf("The amplitude of the wave is \%fm\n", A)
12
13 //Sample Problem 17-1b
14 printf("n**Sample Problem 17-1b**\\n")
15 lambda = 2*\%pi/k
16 printf(" wavelength = \%fm\n", lambda)
```

Scilab code AP 6 Bernauli's Equation

```
1 //function to calculate the water flow rate
2 / V(1) = water flow rate at 1 in m/s
3 / V(2) = water flow rate at 2 in m/s
4 //**Already defined variables**
5 / A(1) = cross-sectional area 1 in m<sup>2</sup>
6 / A(2) = cross-sectional area 2 in m<sup>2</sup>
7 / h = vertical height difference in water level in m
       (h(2)-h(1))
  //deltaP = difference in pressure in N/m^2 (P(2)-P)
      (1)
9 // density = density of fluid in kg/m<sup>3</sup>
10 g = 9.8 //acceleration due to gravity in m/s<sup>2</sup>
11 function [f] = Bernauli (V)
12
       f = zeros(2,1)
13
       //equation of continuity
14
       f(1) = A(1)*V(1) - A(2)*V(2)
       //Bernauli's equation
15
       f(2) = (V(2)^2 - V(1)^2) + 2*g*h + 2*deltaP/
16
          density
17 endfunction
```

Scilab code AP 7 Cross Product

```
1 //Vector Product of two given vectors
2 function [val] = crossproduct(A, B)
3    val = [A(2) * B(3) - A(3) * B(2),
4    A(3) * B(1) - A(1) * B(3),
5    A(1) * B(2) - A(2) * B(1)]
6 endfunction
```

Scilab code Exa 10.1 Sample Problem 1

```
1 exec ("degree_rad.sci",-1)
3 // Given that
4 \text{ m} = 140 * 10^{-3} //\text{in kg}
5 \text{ Vi} = -39 \text{ //in m/s}
6 \text{ Vf} = 39 //in \text{ m/s}
8 //Sample Problem 10-1a
9 printf("**Sample Problem 10-1a**\n")
10 //J = Pf - Pi
11 J = m * (Vf - Vi)
12 printf ("The magnitude of impulse acted on the ball
      from bat is equal to \%fN-s n, J)
13
14 //Sample Problem 10-1b
15 printf("n**Sample Problem 10-1b**\\n")
16 t = 1.20 * 10^{-3} //in sec
17 \text{ Favg} = J/t
18 printf ("The average force during the collision is
      %fN\n", Favg)
19
20 //Sample Problem 10-1c
21 printf("n**Sample Problem 10-1c**\\n")
22 Vf = 45* [cos(dtor(30)), sin(dtor(30))]
23 \text{ Vi} = [-39, 0]
```

Scilab code AP 8

Example 11-7

```
1 //Given that
2 M = 2.5
            //in kg
3 R = 0.20 //i meter
             //in kg
4 m = 1.2
5 g = 9.8 //in m/s^2
6 I = 0.5*M*R^2
8 //Sample Problem 11-7
9 printf("**Sample Problem 11-7**\n")
10 / \text{mg} - T = \text{ma}
11 / T*R = I*a/R
12 / T = I * a / R^2
13 //on adding \Rightarrow
14 \quad a = m*g/(m+I/R^2)
15 T = m*(g-a)
16 \text{ alpha} = a/R
17 printf ("The acceleration of the block is \%\text{fm/s}^2 \in \text{m}",
18 printf("The angular acceleration of the pulley is
      %frad/s^2\n", alpha)
19 printf ("The tension in the string is %fN", T)
```

Scilab code AP 9 collision

```
1 //To calculate velocities after a two particle head
      on collision
2 //Vf = velocities after collision
3 //**Already defined variables**
```

```
4 //e = newton's constant for collision
5 //ml&m2 = masses of the particles
6 //Vi = initial velocities of the particle
7 function [f] = collision(Vf)
8    f=zeros(2,1);
9    //newton's equation for collision
10    f(2) = e*(Vi(1)-Vi(2))-(Vf(2)-Vf(1));
11    //Momentum conservation
12    f(1) = (m1*Vi(1)+m2*Vi(2))-(m1*Vf(1)+m2*Vf(2))
13 endfunction
```

Scilab code AP 10 Example 4-3

```
1 exec("Example4_2a.sce",-1)
2 clc
3
4 //Sample Problem 4-3
5 printf("n**Sample Problem 4-3**\\n")
6 velocity_v_x = derivat(x)
7 velocity_v_y = derivat(y)
8 v_time_t = [horner(velocity_v_x, time_t), horner(
     velocity_v_y,time_t)]
9 printf("The velocity vector of the rabbit at t=15sec
      in m/s is")
10 disp(v_time_t)
11 printf ("The magnitude of the velocity vector is %f m
     /s \ n", norm(v_time_t))
12 printf("The angle made by the velocity vector with
     the x axis in degrees at the same time %f", rtod(
     atan(v_time_t(2)/v_time_t(1)))
```

Scilab code AP 11 Example 4-2a

```
1 exec("degree_rad.sci",-1)
2
3 //Given that
```

```
4 t = poly(0, 't')
5 x = -0.31 *t^2 + 7.2 *t +28
                                //in meter
6 y = 0.22 *t^2 - 9.1 *t + 30
                                //in meter
8 //Sample Problem 4-2a
9 printf("**Sample Problem 4-2a**\n")
10 time_t =15 //in sec
11 position_r = [horner(x,time_t),horner(y,time_t)]
12 printf("The position vector of the rabbit at t=15 sec
      in meter is")
13 disp(position_r)
14 printf ("The magnitude of the position vector is %f m
     \n", norm(position_r))
15 printf ("The angle made by the position vector with
     the x axis in degrees at the same time %f", rtod(
     atan(position_r(2)/position_r(1))))
```

Scilab code AP 12 Example 2-1b

```
1 exec('Example2_1a.sce', -1)
2 clc
3
4 //Sample Problem 2-1b
5 printf("\n**Sample Problem 2-1b**\n")
6 time = distance_covered / velocity //in hr
7 delta_t = time + next_time /60 //in hr
8 printf("Time interval from the begining of the drive to the arrival at the station is %f hr", delta_t
)
```

Scilab code AP 13 Example 2-1a

```
1 //Given that
2 velocity = 70 //in km/h
3 distance_covered = 8.4 //in km
4 next_time = 30 //in min
5 next_walk = 2 //in km
```