Scilab Textbook Companion for Gas Dynamics and Jet Propulsion by P. Murugaperumal¹

Created by
Bathini Maheswara Reddy
B.Tech
Mechanical Engineering
SASTRA UNIVERSITY
College Teacher
Prof. D. Venkatesan
Cross-Checked by
Chaitanya

June 8, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Gas Dynamics and Jet Propulsion

Author: P. Murugaperumal

Publisher: Scitech Publications, Chennai

Edition: 1

Year: 2005

ISBN: 8188429937

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	List of Scilab Codes	
1	Compressible Flow Fundamentals	12
2	Flow through Variable Area Ducts	46
3	Flow Through Constant Area Duct Adiabatic Flow	74
4	Flow Through Constant Area Ducts Rayleigh Flow	104
5	Normal and Oblique Shock	124
6	Aircraft Propulsion	170
7	Rocket Propulsion	195
8	Two Marks Questions and Answers	209

List of Scilab Codes

Exa 1.1	To calculate the work done	12
Exa 1.2	To calculate heat transfer internal energy change and	
	work done	13
Exa 1.3	To determine temperature enthalpy drop and internal	
	energy change	14
Exa 1.4	To determine properties at outlet and area ratio of dif-	
	fuser	15
Exa 1.5	To determine static pressure and axial force of turbojet	
	engine	16
Exa 1.6	To determine mach number at a point	17
Exa 1.7	To find direction of flow	17
Exa 1.8	To calculate the bulk modulus	18
Exa 1.9	To calculate mass of water to be pumped to obtain de-	
	sired pressure	19
Exa 1.10	To find sonic velocity	20
Exa 1.11	To find velocity of sound	20
Exa 1.12	To find highest pressure acting on surface of a body	22
Exa 1.13	To find air velocity for different types of flow	22
Exa 1.14	To find number of nozzles	23
Exa 1.15	To find properties of a gas in vessel at a point	24
Exa 1.16	To find mach number and velocity of flow	25
Exa 1.17	To find distance covered before sonic boom is heard on	
	ground	25
Exa 1.18	To calculate time elapsed to feel disturbance due to air-	
	craft	26
Exa 1.19	To find mach number at a point	27
Exa 1.20	To find Mach number	28
Exa 1.21	To find speed of sound and Mach number	28

Exa 1.22	To find maximum possible velocity of air	29
Exa 1.23	To find exit velocity of air	30
Exa 1.24	To find static conditions and Flight Mach number	30
Exa 1.25	To find stagnation pressure and mach number	31
Exa 1.26	To determine different velocities stagnation enthalpy and	
	crocco number	32
Exa 1.27	To find stagnation conditions and mass flow rate	33
Exa 1.28	To find stagnation conditions and velocity at dynamic	
	condition	33
Exa 1.29	To find flow velocity for compressible and incompressible	
	flow	34
Exa 1.30	To find Mach number velocity and area at a point	35
Exa 1.31	To find velocity and mass flow rate	36
Exa 1.32	To find various properties at one section in duct	37
Exa 1.33	To find various properties at one section in duct	38
Exa 1.34	To find maximum temperature encountered by skin .	39
Exa 1.35	To find rate of heat transfer	40
Exa 1.36	To find various properties in a nozzle	40
Exa 1.37	To find Mach number velocity and pressure at a section	
	in duct	41
Exa 1.38	To find mass flow rate and velocity at exit	43
Exa 1.39	To find time required for a value of pressure decrease	44
Exa 2.1	To find mass flow rate temperature and pressure at throat	46
Exa 2.2	To find properties at throat and exit in Convergent Di-	
	vergent nozzle	47
Exa 2.3	To find properties at throat and exit maximum possible	
	velocity of gas and type of nozzle	49
Exa 2.4	To find properties at exit in Convergent Divergent nozzle	50
Exa 2.5	To find mass flow rate and pressure of a CD nozzle	51
Exa 2.6	To find exit properties and force exerted on diffuser walls	52
Exa 2.7	To find properties at inlet and exit of diffuser	54
Exa 2.8	To find properties at throat and exit and maximum pos-	
	sible velocity of nozzle	55
Exa 2.9	To find Stagnation temperature properties at exit and	
	mass flow rate	56
Exa 2.10	To determine throat and exit conditions mass flow rate	
	through nozzle	57

Exa 2.11	To find properties at throat and test section mass flow
	rate and Power required in nozzle of wind tunnel
Exa 2.12	To find cross section at throat and exit
Exa 2.13	To find ratio of areas velocity and back pressure in CD nozzle
Exa 2.14	To find how duct acts
Exa 2.15	To find mass flow rate static and stagnation conditions
2110	and entropy change of subsonic diffuser
Exa 2.16	To find throat area reservoir conditions and mass flow
	rate
Exa 2.17	To find throat conditions ratio of velocities and mass
	flow rate
Exa 2.18	To find mass flow rate and exit conditions
Exa 2.19	To find mach number change in stagnation pressure en-
	tropy change and static temperature and efficiency of
	nozzle
Exa 2.20	To find pressure rise coefficient and ratio of area
Exa 2.21	To find area at throat and exit Mach number total pres-
	sure loss and entropy change
Exa 2.22	To find required throat and exit area of nozzle
Exa 3.1	To find length of pipe
Exa 3.2	To find length of required duct and length required to
T 0.0	obtain critical condition
Exa 3.3	To find length of pipe and mass flow rate
Exa 3.4	To find temperature velocity at a section and distance
E 2 E	between two sections
Exa 3.5 Exa 3.6	To find length of pipe and properties of air at exit
Exa 5.0	To find mach number properties at a section and critical section and length of the duct
Exa 3.7	TO find final pressure and velocity of duct
Exa 3.8	To find inlet mach number mass flow rate and exit tem-
Exa 9.0	perature
Exa 3.9	To find length diameter of the duct pressure at exit Stag-
п и 0.0	nation pressure lose and to verify exit mach number.
Exa 3.10	To find length of the pipe Mach number percent of stag-
11. 10 O.10	nation pressure loss and length required to reach choking
	condition
Exa 3.11	To find length of the pipe and mass flow rate
	U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Exa 3.12	To find length and Mach number of given pipe and at required section
Exa 3.13	To find length of the pipe percent of stagnation pressure
LX4 0.10	change and entropy change
Exa 3.14	To find maximum length of pipe and conditions of air
LX4 0.14	at exit
Exa 3.15	To find Maximum and required length of the pipe and
LX4 0.10	properties of air at a section
Exa 3.16	To find exit mach number and inlet temperature and
2110 0.10	pressure
Exa 3.17	To find Static and Stagnation conditions velocity length
2120 0121	and mass flow rate of air in pipe
Exa 3.18	To find length of pipe and properties of air at a section
	and limiting mach number
Exa 3.19	To find diameter of pipe
Exa 3.20	To determine required inlet conditions
Exa 3.21	To find mach number at sections and mean value of
	friction
Exa 4.1	To find heat transferred per unit mass flow and temper-
	ature change
Exa 4.2	To calculate flow properties at the exit
Exa 4.3	To find mass flow rate per unit area Final temperature
	and heat added per kg of air flow
Exa 4.4	To calculate pressure and Mach number after combus-
	tion in combustion chamber
Exa 4.5	To find total temperature static pressure at exit Stag-
	nation pressure and exponent of polytropic equation .
Exa 4.6	To determine Mach number pressure temperature of gas
	at entry and amount of heat added and maximum heat
	can be added
Exa 4.7	To determine Mach number pressure temperature and
	velocity of gas at exit
Exa 4.8	To find Mach number pressure and temperature after
	cooling
Exa 4.9	To determine heat added per kg of air flow maximum
	possible heat transfer and heat transfer required to get
	maximum static temperature

Exa 4.10	To find exit properties Maximum stagnation tempera-	
	ture percentage of pressure loss and initial mach number	
		116
Exa 4.11	To find Mach number and percentage drop in pressure 1	118
Exa 4.12	To find inlet mach number and percentage loss in static	
		119
Exa 4.13		120
Exa 4.14	To find properties at exit and sonic condition and heat	
		121
Exa 5.1	To find Mach number before shock properties after shock	
	density increase loss of stagnation pressure and entropy	
		124
Exa 5.2		125
Exa 5.3		127
Exa 5.4	To find velocities across shock and stagnation pressure	
	change	128
Exa 5.5	To find properties downstream of shock	129
Exa 5.6	To find pressure acting on front of the body 1	130
Exa 5.7	To find mass flow rate and properties at exit of CD nozzle 1	130
Exa 5.8	To find properties upstream of wave front	133
Exa 5.9	To find properties downstream of shock total head pres-	
	sure ratio entropy change strength of shock 1	134
Exa 5.10	To determine Mach number across shock and area at	
	shock	135
Exa 5.11	To find Mach number across shock Static pressure and	
	area at shock	136
Exa 5.12	To find properties at various sections	137
Exa 5.13	To find mass flow rate and properties at throat and exit	
	at various sections of CD nozzle	139
Exa 5.14	To estimate the difference in mercury in limbs of U tube	
	manometer at various velocities	146
Exa 5.15	To estimate Mach number and properties across the nor-	
	mal shock of tube	147
Exa 5.16	To find Mach number and velocity in pitot tube 1	148
Exa 5.17	To find shock speed and air velocity inside the shock $$. $$ 1	149
Exa 5.18	To compute speed of wave pressure and temperature of	
	air at rest	150

Exa 5.19	To find Mach number pressure temperature at exit and diffuser efficiency	151
Exa 5.20	To find length of duct across shock mass flow rate en-	
	tropy change across and downstream of shock	153
Exa 5.21	To find length across the shock properties of air at exit	
	and mass flow rate through the duct	156
Exa 5.22	To find properties after shock and exit and exit Mach	
	number	158
Exa 5.23	To find length diameter of pipe and properties at pipe	
	exit	159
Exa 5.24	To estimate amount of heat added in two pipe section	
	and properties	161
Exa 5.25	To find deflection angle Downstream Mach number Static	
	pressure and total pressure loss through the shock	164
Exa 5.26	To determine static pressure temperature behind wave	
	Mach number and Wedge angle	165
Exa 5.27	To find property ratios at strong and weak shock at	
	wedge	166
Exa 5.28	To find deflection angle final Mach number and temper-	
_	ature of gas	168
Exa 6.1	To calculate thrust and specific thrust of jet propulsion	170
Exa 6.2	To find thrust developed thrust power and propulsive	
D	efficiency	172
Exa 6.3	To determine specific thrust and thrust specific fuel con-	1 = 0
D C 4	sumption for turbojet engine	173
Exa 6.4	To estimate properties at exit and propulsive efficiency	177
Exa 6.5	of a turbojet aircraft	175
Exa 0.5	To calculate absolute velocity drag overall and turbine efficiency of jet	176
Exa 6.6	efficiency of jet To Calculate propulsive and thrust power total fuel con-	176
Exa 0.0	sumption and propulsive thermal and overall efficiency	177
Exa 6.7	To find specific thrust jet velocity TSFC and propulsive	111
Exa 0.1	thermal and overall efficiency	179
Exa 6.8	To calculate fuel air and pressure ratios and Mach num-	113
LAG 0.0	ber of jet	180
Exa 6.9	To determine air flow rate thrust power thrust produced	100
	specific thrust and specific impulse	181

Exa 6.10	pressor and air standard efficiency of the engine	182
Exa 6.11	To estimate diameter power output AFR and absolute	102
Exa 0.11	velocity of the jet	184
Exa 6.12	To determine jet velocity thrust specific thrust TSFC	104
E/Xa 0.12	thrust power and efficiencies	185
Exa 6.13	To jet velocity fuel rate TSFC propulsive power and	100
LXa 0.10	efficiencies	186
Exa 6.14	To find absolute jet velocity volume of air compressed	100
LXa 0.14	diameter power output and air fuel ratio of the jet	187
Exa 6.15	To estimate AFR nozzle thrust propeller thrust and	101
LX4 0.10	mass flow rate	188
Exa 6.16	To find various parameters of ramjet engine through out	100
LAG 0.10	its operation	190
Exa 6.17	To find power input power output Fuel air ratio Exit	100
12.7cm 0.11	Mach number thrust and thrust power developed in the	
	jet	192
Exa 7.1	To find thrust of the motor of a rocket	195
Exa 7.2	To calculate area ratio thrust characteristic velocity thrust	
	coefficient exit velocity and possible maximum velocity	196
Exa 7.3	To estimate thrust per unit area and specific impulse	197
Exa 7.4	To find specific impulse specific propellant consumption	
	effective and absolute jet velocity of rocket	198
Exa 7.5	To find propulsive efficiency thrust and thrust power of	
	rocket	199
Exa 7.6	To find velocity and maximum height that rocket will	
	reach	200
Exa 7.7	To determine thrust coefficient propellant weight flow	
	coefficient SPC and characteristic velocity of rocket .	201
Exa 7.8	To find various parameters of rocket projectile during	
	its operation	202
Exa 7.9	To propulsive power engine output and efficiencies	203
Exa 7.10	To find thrust specific impulse and efficiencies	204
Exa 7.11	To find specific impulse SPC effective and actual jet	
	velocity and efficiencies	204
Exa 7.12	To find propellant flow rate thrust developed and height	
	attained during powered and coasting flights	206

Exa	7.13	To find effective jet velocity mass ratio and propellant	
		mass fraction maximum slight speed Altitude gain dur-	
		ing powered and coasting flights	207
Exa	7.14	To find orbital and escape velocities of a rocket	208
Exa	8.1.34	To find Mach angle	209
Exa	8.1.35	To find values of back pressure	210
Exa	8.1.37	To find temperature at nose of aircraft	210
Exa	8.1.38	To determine stagnation pressure and stagnation tem-	
		perature	211
Exa	8.1.39	To calculate bulk modulus of elasticity of a liquid	212
Exa	8.1.40	To find highest possible velocity	212
Exa	8.3.10	To find the length of the pipe	213
Exa	8.3.15	To find length of the pipe to achieve deceleration	213
Exa	8.3.31	To find maximum possible amount of heat transfer of	
		combustion chamber	214
Exa	8.3.32	To find increase in specific entropy of the fluid	214
Exa	8.3.33	To pipe maximum heat transfer in a pipe	215
Exa	8.5.16	To find pressure acting on the front of the body	216
Exa	8.5.17	To find strength of shock wave	216
Exa	8.5.20	To find irreversibility of duct	217
Exa	8.5.21	To find mach number and air velocity of pitot tube	217
Exa	8.5.22	To find properties downstream of the shock	218
Exa	8.6.41	To find propulsive efficiency for an optimum thrust power	
			219
Exa	8.6.42	To find propulsive efficiency	219
Exa	8.7.42	To find thrust of the rocket	220
Exa	8.7.44	To find the thrust developed	221
Exa	8.7.45	To find the jet velocity of a rocket	221
Exa	8.7.46	To calculate thrust propulsive efficiency and thrust power	
		of a rocket	222
Exa	8.7.47	To determine orbital velocity and escape velocity of a	
		rocket	222
Exa	8.7.48	To determine propulsive efficiency and propulsive power	
		of a rocket	223

Chapter 1

Compressible Flow Fundamentals

Scilab code Exa 1.1 To calculate the work done

```
1 clc
2 clear
4 //Input data
5 \text{ m=0.75} //Mass of air in kg
6 T1=800 //Intial Temperature in K
7 P1=400 //Initial Pressure in kPa
8 P2=150 //Final Pressure in kPa
9 k=1.4 // Adiabatic constant
10 R=0.287 //Specific Gas constant in J/kg-K
11
12 // Calculation
13 p1=P2/P1 //pressure ratio of process
14 T2=T1*p1^((k-1)/k) //Final temperature in K
15 W = ((m*R*(T1-T2))/(k-1)) / Workdone in kJ
16
17 //P-V Diagram
18 scf()
19 clf()
```

Scilab code Exa 1.2 To calculate heat transfer internal energy change and work done

```
1 clc
2 clear
4 //Input data
5 V1=0.35 //Volume of gas in m<sup>3</sup>
6 P1=110 //Initial Pressure in kPa
7 T1=300 //Intial Temperature in K
8 P2=600 //Final Pressure in kPa, missing data
9 k=1.4 //Adiabatic constant
10 Cv=718 //Specific heat at constant volume in J/kg-K
11 R=287 // Specific Gas constant in J/kg-K
12
13 // Calculation
14 dQ=0 //Heat transfer in J, Since Adiabatic process
15 m = (P1*10^3*V1)/(R*T1) //Mass of air in kg
16 p1=P2/P1 //Pressure ratio
17 T2=T1*p1^((k-1)/k) //Final temperature in K
18 dU=(m*Cv*(T2-T1))*10^-3 //Change in internal energy
     in kJ
```

```
19 dW=-dU //Workdone in kJ, Since dQ=0
20
21 //P–V Diagram
22 scf()
23 clf()
24 V1cc=V1*10^3 //Inlet volume in cc
25 V2cc=V1cc*(T2/T1)^(1/(k-1)) //Final volume in cc
26 \ V = V1cc:(V2cc-V1cc)/100:V2cc
                                    //Representing
      volume on graph, adiabatic expansion
27 P = P2*V1cc^k./V^k //Representing pressure on graph
28 plot(V, P) // Plotting
29 legend('P*V^k=C') // Defining curve
30 xtitle("PV Diagram", "V (cc)", "P (kPa)") // Titles
      of axes
31
32 //Output
33 printf('(A) Heat transfer is \%3i J\n (B) Change in
      internal energy is %3.3 f kJ\n (C) Workdone is %3.3
      f kJ \setminus n', dQ, dU, dW)
```

Scilab code Exa 1.3 To determine temperature enthalpy drop and internal energy change

```
1 clc
2 clear
3
4 //Input data
5 P1=3.2 //Initial Pressure in bar
6 P2=1 //Final Pressure in bar
7 T1=475 //Initial temperature in K
8 Mol=44 //Molecular weight of carbondioxide in kg/mol
9 Ri=8314 //Ideal gas constant in J/mol-K
10 k=1.3 //Adiabatic constant
11
12 //Calculation
```

```
13 R=Ri/Mol //Specific gas constant in J/kg-K
14 Cp=(k*R)/(k-1) // Specific heat capacity at constant
      pressure in J/kg-K
15 Cv=Cp/k // Specific heat capacity at constant volume
      in J/kg-K
16 p1=P2/P1 //Pressure ratio
17 T2=T1*p1^((k-1)/k) // Final Temperature
18 dh=Cp*(T1-T2)*10^-3 // Enthalpy drop in kJ/kg
19 dU=Cv*(T2-T1)*10^-3 //Change in internal energy in
      kJ/kg, -ve sign indicates loss
20
21 //Output
22 printf('(A) Temperature is \%3.3 f K\n (B) Enthalpy drop
       is \%3.3 \,\mathrm{f} \,\mathrm{kJ/kg} \,\mathrm{n} (C) Change in internal energy is
       \%3.2 \,\mathrm{f} kJ/kg i.e. \%3.2 \,\mathrm{f} kJ/kg(loss)',T2,dh,dU,abs
      (dU))
```

Scilab code Exa 1.4 To determine properties at outlet and area ratio of diffuser

```
1 clc
2 clear
3
4 //Input data
5 P1=0.5 //Initial Pressure in bar
6 T1=50+273 //Intial Temperature in K
7 C1=240 //Inlet velocity in m/s
8 C2=120 //Outlet velocity in m/s, missing data
9 Cp=1005 //Specific heat capacity at constant pressure in J/kg-K
10 k=1.4 //Adiabatic constant
11
12 //Calculation
13 T2=T1+((C1^2-C2^2)/(2*Cp)) //Final Temperature in K
14 t1=T2/T1 //Temperature ratio
```

Scilab code Exa 1.5 To determine static pressure and axial force of turbojet engine

```
1 clc
2 clear
4 //Input data
5 m=25 //Mass flow rate of air in kg/s
6 C2=115 //Outlet velocity in m/s
7 P1=100 ///Initial Pressure in kPa
8 T1=300 //Intial Temperature in K
9 C1=40 //Inlet velocity in m/s
10 R=0.287 //Specific gas constant in kJ/kg-K
11 Cp=1005 // Specific heat capacity at constant
     pressure in J/kg-K
12 k=1.4 //Adiabatic constant
13
14 // Calculation
15 T2=T1+((C1^2-C2^2)/(2*Cp)) //Final Temperature in K
16 t1=T2/T1 //Temperature ratio
17 P2=P1*t1^(k/(k-1)) //Final Pressure in bar
18 A1=(m*R*T1)/(P1*C1) //Area at inlet in m^2
19 A2=(m*R*T2)/(P2*C2) //Area at outlet in m^2
20 F = ((P1*A1) - (P2*A2)) + (m*(C1-C2))*10^-3 / Axial force
     on mouthpiece resulting from acceleration of air
     in kN
```

Scilab code Exa 1.6 To determine mach number at a point

```
1 clc
2 clear
3
4 //Input data
5 P=200 //Pressure in kPa
6 C=50 // Velocity of air in m/s
7 d=2.9 // Density in kg/m<sup>3</sup>
8 Mol=32 // Molecular weight of oxygen in kg/mol
9 k=1.4 //Adiabatic constant
10 Ri=8314 //Ideal gas constant in J/mol-K
11
12 // Calculator
13 R=Ri/Mol //Specific gas constant in J/kg-K
14 T=P*10^3/(R*d) // Temperature in K
15 a=sqrt(k*R*T) // Velocity of sound in m/s
16 M=C/a //Mach number
17
18 //Output
19 printf ('Mach number is %3.2 f', M)
```

Scilab code Exa 1.7 To find direction of flow

```
1 clc
2 clear
```

```
3
4 //Input data
5 Pa=1.3 // Pressure at section—A in bar
6 Ta=50+273 //Temperature at section—A in K
7 Pb=1 // Pressure at section -B in bar
8 Tb=13+273 //Temperature at section—B in K
  Cp=1005 // Specific heat capacity at constant
      pressure in J/kg-K
10 R=287 // Specific gas constant in J/kg-K
11
12 // Calculation
13 ds = ((Cp * log(Tb/Ta)) - (R* log(Pb/Pa)))*10^-3 //The
     change in the entropy is kJ/kg
14 //+ve sign indicates A to B
15 //-ve sign indicates B to A
16
17 //Output
18 printf ('The change in the entropy is \%3.4 f kJ/kg\n
      Since value is -ve, process must takes place from
      B to A', ds)
```

Scilab code Exa 1.8 To calculate the bulk modulus

```
1 clc
2 clear
3
4 //Input data
5 V1=8 //Intial volume in litre
6 V2=7.8 //Final volume in litre
7 P1=0.7 //Intial Pressure in MPa
8 P2=2.7 //Final Pressure in MPa
9
10 //Calculations
11 K=(P2-P1)/(log(V1/V2)) //Bulk modulus of liquid in kPa
```

```
12
13 //Output
14 printf('Bulk modulus of liquid is %3.3 f kPa',K)
```

Scilab code Exa 1.9 To calculate mass of water to be pumped to obtain desired pressure

```
1 clc
2 clear
4 //Input data
5 V1=0.5 //Voume of Water required to fill pressure
      vessel in m<sup>3</sup>
6 P=3000 //Test pressure in bar
7 dv=0.6 //Change of empty volume of container due to
      pressurisation in percentage
8 K=20000 //Bulk modulus of water in MPa
10 // Calculation
11 m1=V1*10^3 //Mass of water required to fill pressure
       vessel in kg
12 Vr = (P*V1)/K //Reduced volume of water due to
      compression in m<sup>3</sup>
13 Vi=dv*V1/100 //Increased volume of container in m<sup>3</sup>
14 V=Vr+Vi //Volume of additional water required in m<sup>3</sup>
15 m=V*10^3 //Mass of additional water required in kg
16 mt=m1+m // Total mass of water required in litre,
      Since 1kg=1Lit
17
18 //Output
19 printf ('Mass of water to be pumped into the vesel to
       obtain the desired pressure is %3i lit', mt)
```

Scilab code Exa 1.10 To find sonic velocity

```
1 clc
2 clear
3
4 //Input data
5 SG_oil=0.8 //Specific gravity of crude oil
6 K_oil=153036*10^4 //Bulk modulus of Oil in N/m^2
7 K_hg=2648700*10^4 //Bulk modulus of Mercury in N/m^2
8 d_steel=7860 //Density of steel in kg/m<sup>3</sup>
9 E_steel=200*10^9 //Modulus of elasticity in Pa
10 d_hg=13600 // Density of mercury in kg/m<sup>3</sup>
11 d_water=1000 //Density of water in kg/m^3
12
13 // Calculation
14 d_oil=SG_oil*d_water //Density of oil in kg/m^3
15 a_oil=sqrt(K_oil/d_oil) //Sonic velocity of crude
      oil in m/s
16 a_hg=sqrt(K_hg/d_hg) //Sonic velocity of mercury in
  a_steel=sqrt(E_steel/d_steel) //Sonic velocity of
      steel in m/s
18
19 //Output
20 printf('(A) Sonic velocity of crude oil is \%3.2 f m/s\
      n (B) Sonic velocity of mercury is \%3.2 \,\mathrm{f} m/s\n (A)
      Sonic velocity of steel is \%3.1 \,\mathrm{fm/s n'}, a_oil,
      a_hg,a_steel)
```

Scilab code Exa 1.11 To find velocity of sound

```
1 clc
2 clear
3
4 //Input data
```

```
5 T=20+273 //Temperarture of medium in K
6 Cp_fr=678 // Specific heat capacity at constant
      pressure of freon in J/kg-K
7 Cv_fr=543 // Specific heat capacity at constant
      volime of freon in J/kg-K
8 T_{air}=0+273 // Temperature of air in K
9 Ri=8314 //Ideal gas constant in J/mol-K
10 mol_h=2 // Molecular weight of Hydrogen in kg/mol
11 mol_water=18 //Molecular weight of water in kg/mol
12 R_air=287 //Specific gas constant of air in J/kg-K
13 k=1.4 //Adiabatic constant of hydrogen
14 k_water=1.3 //Adiabatic constant of water
15
16 // Calculation
17 R_h=Ri/mol_h //Specific gas constant of hydrogen in
     J/kg-K
18 a_h=sqrt(k*R_h*T) // Velocity of sound in hydrogen in
19 R_water=Ri/mol_water //Specific gas constant of
     water in J/kg-K
20 a_water=sqrt(k_water*R_water*T) // Velocity of sound
     in water vapour in m/s
21 k_fr=Cp_fr/Cv_fr //Adiabatic constant of feoan
22 R_fr=Cp_fr-Cv_fr //Specific gas constant of freon in
      J/kg-K
23 a_fr=sqrt(k_fr*R_fr*T) // Velocity of sound in freon
     in m/s
24 a_air=sqrt(k*R_air*T_air) //Sonic Velocity of air at
      in m/s
25
26 // Output
27 printf('(A) Velocity of sound in hydrogen is \%3.2 f m/
     s\n (B) Velocity of sound in water vapour is \%3.2 f
      m/s\n (C) Velocity of sound in freon is \%3.2 f m/s
     \n (D) Sonic Velocity of air at %3i K is %3.4 f m/s
      ',a_h,a_water,a_fr,T_air,a_air)
```

Scilab code Exa 1.12 To find highest pressure acting on surface of a body

```
1 clc
2 clear
3
4 //Input data
5 M=0.85 //Mach number
6 P=80 //Pressure in kPa
7 k=1.4 //Adiabatic Constant
8
9 //Calculation
10 Po=P*(1+(((k-1)/2)*M^2))^(k/(k-1)) //Pressure acting on the surface of the body in kPa
11
12 //Output
13 printf('The highest pressure acting on the surface of the body is %3.1 f kPa',Po)
```

Scilab code Exa 1.13 To find air velocity for different types of flow

```
1 clc
2 clear
3
4 //Input data
5 P=96 //Pressure in kPa
6 T=27+273 //Temperature in K
7 dP=32 //Difference between pivot and static pressure
8 k=1.4 //Adiabatic Constant
9 R=287 //Specific Gas constant in J/kg-K
10
11 //Calculation
12 d=(P*10^3)/(R*T) //Density in kg/m^3
```

Scilab code Exa 1.14 To find number of nozzles

```
1 clc
2 clear
4 //Input data
5 T1=200+273 //Intial Temperature in K
6 P1=1.7 //Initial Pressure in bar
7 P2=1 //Final Pressure in bar
8 C1=30 //Inlet velocity in m/s
9 m=1 //Mass flow rate in kg/s
10 D=0.025 //Nozzle diameter in m
11 k=1.4 // Adiabatic Constant
12 R=287 // Specific Gas constant in J/kg-K
13 Cp=1005 //Specific heat capacity at constant
      pressure in J/kg-K
14
15 // Calculation
16 p1=P2/P1 //Pressure ratio
17 T2=T1*p1^((k-1)/k) //Final temperature in K
18 E1=T1+(C1^2/(2*Cp)) //LHS of Steady flow energy
     equation
```

Scilab code Exa 1.15 To find properties of a gas in vessel at a point

```
1 clc
2 clear
4 //Input data
5 Po=300 //Pressure in the vessel in kPa
6 To=50+273 //Temperature in vessel in K
7 M=1 //Mach number
8 k=1.667 //Adiabatic constant
9 Ri=8314 // Ideal gas constant in J/mol-K
10 Mol=4 //Molecular weight of helium in kg/mol
11
12 // Calculation
13 R=Ri/Mol //Specific gas constant in J/kg-K
14 Cp=(k*R)/(k-1) // Specific heat capacity at constant
     pressure in J/kg-K
15 p1=(2/(k+1))^(k/(k-1)) // Pressure ratio
16 Pt=Po*p1 // Pressure at test condition in kPa
17 t1=(2/(k+1)) // Temperature ratio
18 Tt=To*t1 //Temperature at test condition in K
19 at=sqrt(k*R*Tt) //Velocity of sound in m/s
20 Ct=at //Velocity of gas at test condition in m/s
21 Cmax=sqrt(2*Cp*To) //Maximum velocity due to
     expanding of gases through nozzle system in m/s
```

```
22
23 //Output
24 printf('(A)At test point:\n Pressure is %3.2 f kPa
   \n Temperature is %3.2 f K\n Velocity is %3
   .1 f m/s\n (B)Maximum velocity due to expanding of gases through nozzle system is %3.2 f m/s',Pt,Tt,
        Ct,Cmax)
```

Scilab code Exa 1.16 To find mach number and velocity of flow

```
1 clc
2 clear
4 //Input data
5 T=40+273 // Temperature in K
6 p1=0.5 //Static to Stagnation pressure ratio
7 k=1.67 // Adiabatic constant
8 Ri=8314 //Ideal gas constant in J/mol-K
9 Mol=39.94 // Molecular weight of argon in kg/mol
10
11 // Calculation
12 R=Ri/Mol //Specific gas constant in J/kg-K
13 p2=1/p1 //Pressure ratio
14 M = sqrt(((p2^((k-1)/k)-1)*2)/(k-1)) //Mach number
15 C=M*sqrt(k*R*T) // Velocity in the flow in m/s
16
17 // Output
18 printf('(A) Mach number is %3.3 f\n (B) Velocity in the
       flow is \%3.1 \, \text{f m/s}, M,C)
```

Scilab code Exa 1.17 To find distance covered before sonic boom is heard on ground

Scilab code Exa 1.18 To calculate time elapsed to feel disturbance due to aircraft

```
1 clc
2 clear
3
4 //Input data
5 h=1100 //Height in m
6 M1=2.5 //Mach number of aircraft @h
7 T=280 //Temperature @h
8 M2=0.5 //Mach number of observer
9 k=1.4 //Adiabatic Constant
10 R=287 //Specific gas constant in J/kg-K
11
12 //Calculation
13 alp=asind(1/M1) //Mach cone angle in degree
14 a=sqrt(k*R*T) //Velocity of sound in m/s
15 C1=M1*a //Velocity of aircraft when the observer is stationary in m/s
```

```
16 t1=h/(C1*tand(alp)) //Time elapsed when the observer
       is stationary in sec
17 C2=(M1-M2)*a // Velocity of aircraft when the
      observer is moving in the direction of aircraft
      in m/s
18 t2=h/(C2*tand(alp)) //Time elapsed when the observer
       is moving in the direction of aircraft in sec
19 C3=(M1+M2)*a // Velocity of aircraft when the
      observer is moving in the opposite direction in m
20 t3=h/(C3*tand(alp)) //Time elapsed when the observer
       is moving in the opposite direction in sec
21
22 //Output
23 printf('(A) Time elapsed when the observer is
      stationary is %3.3f sec\n (B)Time elapsed when
      the observer is moving in the direction of
      aircraft with M=\%3.1 \, \text{f} is \%3.2 \, \text{f} sec\n (C) Time
      elapsed when the observer is moving in the
      opposite direction is \%3.2 \, \text{f} \, \sec \, \text{n',t1,M2,t2,t3}
```

Scilab code Exa 1.19 To find mach number at a point

```
1 clc
2 clear
3
4 //Input data
5 P=200 //Pressure in kPa
6 d=2.9 //Density in kg/m^3
7 C=50 //Velocity in m/s
8 mol=32 //Molecular weight of oxygen in kg/mol
9 k=1.4 //Adiabatic constant
10 Ri=8314 //Ideal gas constant in J/mol-K
11
12 //Calculation
```

```
13 R=Ri/mol //Specific gas Constant in J/kg-k
14 T=(P*10^3)/(R*d) //Temperature in K
15 a=sqrt(k*R*T) //Velocity of sound in m/s
16 M=C/a //Mach number
17
18 //Output
19 printf('Mach number is %3.4f',M)
```

Scilab code Exa 1.20 To find Mach number

```
1 clc
2 clear
4 //Input data
5 C=200 // Velocity of object in m/s
6 mol=4 //Molecular weight of helium in kg/mol
7 k=1.67 //Adiabatic constant
8 Ri=8314 // Ideal gas constant in J/mol-K
9 T=288 //Temperature in K
10
11 // Calculation
12 R=Ri/mol //Specific gas Constant in J/kg-k
13 a=sqrt(k*R*T) // Velocity of sound in m/s
14 M=C/a //Mach number
15
16 //Output
17 printf ('Mach number is %3.1f', M)
```

Scilab code Exa 1.21 To find speed of sound and Mach number

```
1 clc
2 clear
3
```

```
4 //Input data
5 Z1=0 //Height from sea level in m
6 Z2=11 //Height from sea level in m
7 T1=288 //Temperature @Z1 in K, from gas tables
8 T2=216.5 //Temperature @Z2 in K, from gas tables
9 C=1000*(5/18) // Velocity in m/s
10 k=1.4 //Adiabatic Constant
11 R=287 // Specific gas constant in J/kg-k
12
13 // Calculation
14 a1=sqrt(k*R*T1) //Sound velocity @Z1 in m/s
15 M1=C/a1 //Mach number @Z1
16 a2=sqrt(k*R*T2) //Sound velocity @Z2 in m/s
17 M2=C/a2 //Mach number @Z2
18
19 //Output
20 printf('(A) Speed of sound at:\n sea level is \%3.2
             an altitude of \%3i km is \%3.2 \text{ f m/s} \setminus n (B)
     Mach numbeer at:\n sea level is \%3.2 f\n
      altitude of %3i km is %3.2 f', a1, Z2, a2, M1, Z2, M2)
```

Scilab code Exa 1.22 To find maximum possible velocity of air

```
1 clc
2 clear
3
4 //Input data
5 T=300+273 //Static Temperature in K
6 C=200 //Velocity in m/s
7 Cp=1005 //Specific heat capacity at constant pressure in J/kg-K
8
9 //Calculation
10 To=T+(C^2/(2*Cp)) //Stagnation Temperature in K
11 C_max=sqrt(2*Cp*To) //Maximum possible velocity
```

```
obtained by air in m/s

12
13 //Output
14 printf('Maximum possible velocity obtained by air is %3.2 f m/s', C_max)
```

Scilab code Exa 1.23 To find exit velocity of air

Scilab code Exa 1.24 To find static conditions and Flight Mach number

```
1 clc
2 clear
3
4 //Input data
5 C=800*(5/18) //Velocity in m/s
6 Po=105 //Stagnation pressure in kPa
7 To=35+273 //Stagnation temperature in K
```

```
8 Cp=1005 //Specific heat capacity at constant
      pressure in J/kg-K
9 k=1.4 //Adiabatic Constant
10 R=287 // Specific gas constant in J/kg-k
11
12 // Calculation
13 T=To-(C^2/(2*Cp)) // Static temperature in K
14 P=Po*(T/To)^(k/(k-1)) // Static pressure in kPa
15 a=sqrt(k*R*T) //Sound Velocity in m/s
16 M=C/a //Mach number
17
18 //Output
19 printf('(A) Static conditions:\n Pressure is \%3.2 f
                Temperature is \%3.2 \text{ f K}\n
      Velocity is %3.2 f m/s\n (B) Mach number is %3.2 f',
      P, T, a, M)
```

Scilab code Exa 1.25 To find stagnation pressure and mach number

```
1 clc
2 clear
3
4 //Input data
5 C=215 //Velocity in m/s
6 T=30+273 //Static temperature in K
7 P=5 //Static pressure in bar
8 R=287 //Specific gas constant in J/kg-k
9 k=1.4 //Adiabatic Constant
10
11 //Calculations
12 a=sqrt(k*R*T) //Sound Velocity in m/s
13 M=C/a //Mach number
14 To=T*(1+(((k-1)/2)*M^2)) //Stagnation temperature in K
15 Po=P*(To/T)^(k/(k-1)) //Stagnation pressure in kPa
```

Scilab code Exa 1.26 To determine different velocities stagnation enthalpy and crocco number

```
1 clc
2 clear
4 //Input data
5 T=400 //Static temperature in K
6 k=1.4 //Adiabatic Constant
7 Cp=1005 // Specific heat capacity at constant
      pressure in J/kg-K
  R=287 // Specific gas constant in J/kg-k
10 // Calculation
11 a=sqrt(k*R*T) //Sound velocity in m/s
12 C=a //Velocity of jet in m/s, Since jet has sonic
      velocity
13 To=T+(C^2/(2*Cp)) //Stagnation temperature in K
14 ao=sqrt(k*R*To) //Sound velocity at Stagnation
      condition in m/s
15 ho=(Cp*To)*10^-3 //Stagnation enthalpy in kJ/kg
16 C_max=sqrt(2*Cp*To) //Maximum velocity of jet in m/s
17 cr=C/C_max //Crocco number
18
19 //Output
20 printf('(A) Velocity of sound at \%3i K is \%3.3 f m/s\n
       (B) Velocity of sound at stagnation condition is
      \%3.3 \, \text{f m/s/n} (C) Maximum velocity of jet is \%3.3 \, \text{f m}
      /s \ (D) Stagnation enthalpy is %3.3 f kJ/kg \ (E)
      Crocco number is %3.4 f', T, C, ao, C_max, ho, cr)
```

Scilab code Exa 1.27 To find stagnation conditions and mass flow rate

```
1 clc
2 clear
4 //Input data
5 C=250 // Velocity of air in m/s
6 D=10 //Diameter in duct in cm
7 T=5+273 //Static temperature in K
8 P=40 //Static pressure in kPa
9 k=1.4 // Adiabatic constant
10 Cp=1005 //Specific heat capacity at constant
      pressure in J/kg-K
11 R=287 // Specific gas constant in J/kg-k
12
13 // Calculation
14 To=T+(C^2/(2*Cp)) //Stagnation temperature in K
15 Po=P*(To/T)^(k/(k-1)) //Stagnation pressure in kPa
16 d=(P*10^3)/(R*T) //Density in kg/m^3
17 A = (\%pi*D^2/4)*10^-4 //Area in m^2
18 m=d*A*C //Mass flow rate in kg/s
19
20 //Output
21 printf('(A) Stagnation pressure is \%3.2 \text{ f kPa} \setminus n (B)
      Stagnation temperature is \%3.2 f K\n (C) Mass flow
      rate is \%3.4 \, \text{f} \, \text{kg/s}, Po, To, m)
```

Scilab code Exa 1.28 To find stagnation conditions and velocity at dynamic condition

```
1 clc
```

```
2 clear
4 //Input data
5 C=300 // Velocity of air in m/s
6 P=1 //Static pressure in kPa
7 T=290 //Static temperature in K
8 k=1.4 // Adiabatic constant
9 R=287 // Specific gas constant in J/kg-k
10 Cp=1005 // Specific heat capacity at constant
      pressure in J/kg-K
11
12 // Calculation
13 To=T+(C^2/(2*Cp)) //Stagnation temperature in K
14 Po=P*(To/T)^(k/(k-1)) //Stagnation pressure in kPa
15 a=sqrt(k*R*T) //Sound velocity in m/s
16 Co=sqrt(k*R*To) //Sound velocity at Stagnation
      condition in m/s
17
18 //Output
19 printf('(A) Stagnation pressure and temperature are
      \%3.4 \text{ f} bar and \%3.2 \text{ f} K\n (B) Velocity of sound in
      the dynamic and stagnation conditions are \%3.2 f m
      /s and \%3.2 \,\mathrm{f} m/s', Po, To, a, Co)
```

Scilab code Exa 1.29 To find flow velocity for compressible and incompressible flow

```
1 clc
2 clear
3
4 //Input data
5 dP=490*(1.01325/760) //Pressure in pivot tube in bar
6 P=0.3546+1.01325 //Static pressure(absolute) in bar
7 To=25+273 //Stagnation temperature in K
8 k=1.4 //Adiabaatic constant
```

```
9 R=287 //Specific gas constant in J/kg-k
10 Cp=1005 // Specific heat capacity at constant
      pressure in J/kg-K
11
12 // Calculation
13 Po=dP+P //Stagnation pressure in bar
14 T=To*(P/Po)^((k-1)/k) // Static temperature
15 C1=sqrt(2*Cp*(To-T)) //Flow velocity for
      Compressible flow in m/s
16 di=Po/(R*To) // Density in kg/m^3
17 C2=sqrt((2*dP)/di) //Flow velocity for
      incompressible flow in m/s
18
19 //Output
20 printf ('Flow velocity for:\n (A) Compressible flow is
       \%3.2 \text{ f m/s} \land \text{n} (B) Incompressible flow is \%3.2 \text{ f m/s}
      ,C1,C2)
```

Scilab code Exa 1.30 To find Mach number velocity and area at a point

```
1 clc
2 clear
3
4 //Input data
5 To=27+273 //Stagnation temperature in K
6 Po=8 //Stagnation Pressure in bar
7 P=5.6 //Static pressure in bar, taken from diagram given
8 m=2 //Mass flow rate in kg/s
9 k=1.4 //Adiabaatic constant
10 Cp=1005 //Specific heat capacity at constant pressure in J/kg-K
11 R=287 //Specific gas constant in J/kg-k
12
13 //Calculation
```

Scilab code Exa 1.31 To find velocity and mass flow rate

```
1 clc
2 clear
3
4 //Input data
5 Po=1.8 //Stagnation pressure in atm
6 To=20+273 //Stagnation temperature in K
7 P=1 //Surrounding pressure in atm
8 k=1.4 //Adiabatic constant
9 R=287 // Specific gas constant in J/kg-k
10
11 // Calculation
12 p1=0.528 //Static to Stagnation pressure ratio @Mach
      number=1, from gas tables
13 Pt=p1*Po //Critical pressure in atm, Since Pt<P the
     flow is not chocked
14 di=(Po*10^5)/(R*To) // Density in kg/m^3
15 ao=sqrt(k*R*To) //Sound velocity at Stagnation
     condition in m/s
16 Cp=(k*R)/(k-1) // Specific heat capacity at constant
      pressure in J/kg-K
17 C = sqrt(2*Cp*To*(1-(P/Po)^((k-1)/k))) / Velocity of
```

```
air flow which will take place from chamber to
    the outside through a unit area hole in m/s

18 G=di*ao*sqrt(2/(k-1))*(P/Po)^(1/k)*sqrt((1-(P/Po)^((
    k-1)/k))) //Mass flow rate per unit area in kg/s-
    m^2

19
20 //Output
21 printf('(A) Velocity of air flow which will take
    place from chamber to the outside through a unit
    area hole is %3.3 f m/s\n (B) Mass flow rate per
    unit area is %3.3 f kg/s-m^2',C,G)
```

Scilab code Exa 1.32 To find various properties at one section in duct

```
1 clc
2 clear
3
4 //Input data
5 A1=465.125 //Cross sectional area at entry in cm<sup>2</sup>
6 T1=26.66+273 //Static temperature at section -1 in K
7 P1=3.4473 //Static Pressure at section-1 in bar
8 C1=152.5 // Velocity at section -1 in m/s
9 P2=2.06838 //Static Pressure at section -2 in bar
10 T2=277.44 //Static temperature at section -2 in K
11 C2=260.775 // Velocity at section -2 in m/s
12 Cp=1005 //Specific heat capacity at constant
      pressure in J/kg-K
13 k=1.4 // Adiabatic constant
14 R=287 // Specific gas constant in J/kg-k
15
16 // Calculations
17 To1=T1+(C1^2/(2*Cp)) //Stagnation temperature at
      entry in K
18 To2=T2+(C2^2/(2*Cp)) //Stagnation temperature at
      exit in K
```

```
19 //here To1=To2 from answers
20 d1=(P1*10^5)/(R*T1) //Density at section -1
21 d2=(P2*10^5)/(R*T2) // Density at section -2
22 ar=(d2*C2)/(d1*C1) //Ratio of inlet to outlet area
23 A2=A1/ar //Cross sectional area at exit in cm<sup>2</sup>
24 C_max=sqrt(2*Cp*To1) //Maximum velocity at exit in m
      /s
25 m=d1*A1*C1*10^-4 //Mass flow rate in kg/s
26 F = ((P1*10^5*A1*10^-4) - (P2*10^5*A2*10^-4)) + (m*(C1-C2))
      ) //Force acting on the duct wall between two
      sections in N
27
28 //Output
29 printf('(A) Maximum velocity and stagnation
      temperature at exit are \%3.2 \,\mathrm{f} m/s and \%3.2 \,\mathrm{f} K\n (
      B) Since Stagnation temperature %3i K at entry and
       %3i K at exit are equal, the flow is adiabatic\n
       (C) Cross sectional area at exit is %3.2 f cm^2\n
      (D) Force acting on the duct wall between two
      sections is \%3.2 \, \text{f} \, \text{N}', \text{C_max}, \text{To2}, \text{To1}, \text{To2}, \text{A2}, \text{F})
```

Scilab code Exa 1.33 To find various properties at one section in duct

```
1 clc
2 clear
3
4 //Input data
5 P1=250 //Static Pressure at section-1 in kPa
6 T1=26+273 //Static temperature at section-1 in K
7 M1=1.4 //Mach number at entry
8 M2=2.5 //Mach number at exit
9 k=1.4 //Adiabatic constant
10 R=287 //Specific gas constant in J/kg-k
11
12 //Calculation
```

```
13 C1=sqrt(k*R*T1)*M1 //Air velocity at entry in m/s
14 To=T1*(1+(((k-1)/2)*M1^2)) //Stagnation temperature
15 t1 = (1 + (((k-1)/2) * M2^2)) / Stagnation to exit
      Temperature ratio
16 T2=To/t1 //Exit temperature in K
17 C2=sqrt(k*R*T2)*M2 //Air velocity at exit in m/s
18 P2=P1*(T2/T1)^(k/(k-1)) //Exit static pressure in
     kPa
19 d2=(P2*10^3)/(R*T2) // Density at section -2 in kg/m<sup>3</sup>
20 G=d2*C2 //) Mass flow rate through the duct per
      square metre in kg/s-m<sup>2</sup>
21
22 //Output
23 printf('(A)At second section:\n
                                      Temperature is \%3
      . 2 f K\n
                Pressure is %3.2 f kPa\n
                                            Velocity is
      %3.4 f m/s\n (B) Mass flow rate through the duct
      per square metre is \%3.1 \, \text{f kg/s-m^2}, T2, P2, C2, G)
```

Scilab code Exa 1.34 To find maximum temperature encountered by skin

```
14 a=sqrt(k*R*Ta) //Sound velocity in m/s
15 C=M*a //Velocity of flight in m/s
16 To=Tc+(C^2/(2*Cp)) //The maximum temperature
        encountered is %3.1 f degree Centigrade
17
18 //Output
19 printf('The maximum temperature encountered is %3.1 f
        degree Centigrade', To)
```

Scilab code Exa 1.35 To find rate of heat transfer

```
1 clc
2 clear
3
4 //Input data
5 W=20000 //Power developed in kW
6 m=12 //Mass flow rate in kg/s
7 C1=50 // Velocity of air entering in m/s
8 T1=700+273 //Temperature of air entering in K
9 T2=298 //Temperature of air leaving in K
10 C2=125 // Velocity of air leaving in m/s
11 Cp=1.005 //Specific heat capacity at constant
      pressure in kJ/kg-K
12
13 // Calculation
14 dh=Cp*(T2-T1) //Change in enthalpy in kJ/kg
15 Q = ((m*dh) + W - (m*(1/2000)*(C2^2 - C1^2))) //The rate of
      heat transfer in kJ/s
16
17 //Output
18 printf ('The rate of heat transfer is \%3.2 \,\mathrm{f}\,\mathrm{kJ/s}',Q)
```

Scilab code Exa 1.36 To find various properties in a nozzle

```
1 clc
2 clear
4 //Input data
5 mol=39.9 //Molecular weight of gas in kg/mol
6 k=1.67 // Adiabatic constant
7 Po=500 // Pressure in chamber in kPa
8 To=30+273 //Temperature in chamber in K
9 P1=80 //Pressure of nozzle at given section in kPa
10 D=0.012 //Cross section diameter of nozzle in m
11 Ri=8314 //Ideal gas constant in J/mol-K
12
13 // Calculation
14 R=Ri/mol //Specific gas constant in J/kg-K
15 p1=Po/P1 //Stagnation to static pressure ratio
16 M1 = sqrt((((p1^((k-1)/k))-1)*2)/(k-1)) //Mach number
      at section
  T1=To*((1+(((k-1)/2)*M1^2))^(-1)) // Temperature at
      section in K
18 a=sqrt(k*R*T1) //Sound Velocity in m/s
19 C1=M1*a //Gas Velocity at section in m/s
20 d=(P1*10^3)/(R*T1) //Density in kg/m^3
21 A1 = \%pi *D^2/4 //Cross - sectional Area
22 m=d*A1*C1 //Mass flow rate through nozzle in kg/s
23
24 //Output
25 printf('(A)At section:\n
                                Mach number is \%3.1 \text{ f} \setminus \text{n}
         Temperature is %3.1 f K\n Velocity is %3.3 f
     m/s n (B) Mass flow rate through nozzle is \%3.3 f
     kg/s', M1, T1, C1, m)
```

Scilab code Exa 1.37 To find Mach number velocity and pressure at a section in duct

1 clc

```
2 clear
4 //Input data
5 mol=4 //Molecular weight of gas in kg/mol
6 k=1.3 // Adiabatic constant
7 C1=150 //Gas Velocity at section -1 in m/s
8 P1=100 // Pressure of duct at section -1 in kPa
9 T1=15+273 //Temperature at section -1 in K
10 T2=-10+273 //Temperature at section -2 in K
11 Ri=8314 //Ideal gas constant in J/mol-K
12
13 // Calculation
14 R=Ri/mol //Specific gas constant in J/kg-K
15 a1=sqrt(k*R*T1) //Sound velocity at section -1 in m/s
16 M1=C1/a1 //Mach number at section -1
17 t1=0.9955 //Static to Stagnation temperature ratio
      at entry from gas tables @M1, k=1.3
18 To=T1/t1 //Stagantion temperature in K
19 p1=0.9815 //Static to Stagnation pressure ratio at
      entry from gas tables @M1, k=1.3
20 Po=P1/p1 //Stagnation pressure in kPa
21 t2=T2/To //Static to Stagnation temperature ratio at
       exit
22 M2=0.82 //Amch number at section -2 from gas tables
     @t2, k=1.3
23 p2=0.659 //Static to Stagnation pressure ratio at
      exit from gas tables @M2, k=1.3
24 P2=Po*p2 // Pressure at section -2 in kPa
25 a2=sqrt(k*R*T2) //Sound velocity at section -2 in m/s
26 C2=M2*a2 //Gas Velocity at section -2 in m/s
27
28 //Output
29 printf('At the second point:\n Mach number is \%3
             Pressure is %3.3 f kPa\n Velocity is
     \%3.2 \text{ f m/s}, M2, P2, C2)
```

Scilab code Exa 1.38 To find mass flow rate and velocity at exit

```
1 clc
2 clear
4 //Input data
5 A1=10 //Inlet area in cm<sup>2</sup>
6 C1=80 //Inlet Air velocity in m/s
7 T1=28+273 //Inlet temperature in K
8 P1=700 //Inlet Pressure in kPa
9 P2=250 //Exit pressure in kPa
10 k=1.4 //Adiabatic constant
11 R=287 // Specific gas constant in J/kg-K
12
13 // Calculation
14 a1=sqrt(k*R*T1) //Sound velocity at inlet in m/s
15 M1=C1/a1 //Mach number at inlet
16 t1=0.989 //Static to Stagnation temperature ratio at
       entry from gas tables @M1, k=1.4
17 To=T1/t1 //Stagantion temperature in K
18 p1=0.964 //Static to Stagnation pressure ratio at
     entry from gas tables @M1, k=1.4
19 Po=P1/p1 //Stagnation pressure in kPa
20 p2=P2/Po //Static to Stagnation pressure ratio
21 M2=1.335 //Mach number at exit
22 t2=0.737 //Static to Stagnation temperature ratio at
       exit from gas tables @M2, k=1.4
23 T2=To*t2 //Stagnation temperatur in K
24 a2=sqrt(k*R*T2) //Sound velocity at exit in m/s
25 C2=M2*a2 //Exit Air velocity in m/s
26 d1=(P1*10^3)/(R*T1) //Density at inlet in kg/m^3
27 m=d1*A1*C1*10^-4 //Mass flow rate in kg/s
28
29 //Output
```

```
30 printf('(A) Mass flow rate is \%3.3 \,\mathrm{f} \,\mathrm{kg/s/n} (B) Velocity at the exit is \%3.2 \,\mathrm{f} \,\mathrm{m/s}',m,C2)
```

Scilab code Exa 1.39 To find time required for a value of pressure decrease

```
1 clc
2 clear
3
4 //Input data
5 V=5 //Volume of air in m<sup>3</sup>
6 Ae=10*10^-4 //Exit area in cm^2
7 To=60+273 //Temperature inside in the tank in K
8 Po1=40 //Intial total pressure in bar
9 Po2=2 //Final total pressure in bar
10 P=1 //Discharge pressure in bar
11 R=287 //Specific gas constant in J/kg-K
12
13 // Calculation
14 //Here pressure ratios P/Po1 and P/Po2 are always
     less than critical pressure ratio therefore flow
     is choked i.e. M=1 at exit
15 Gp = (0.0404184 * Ae)/sqrt(To) //Mass flow rate by
     Stagnation pressure i.e. m/Po
16 // Differentiating m=(P*V)/(R*To) w.r.t. time and
     intrgrating resulting equation we get following
     expression.
17 t=-(V/(R*To*Gp))*log(Po2/Po1) //The time required
     for tank pressure to decrease from Po1 to Po2 in
     sec
18
19 //Output
20 printf ('The time required for tank pressure to
      decrease from %i bar to %i bar is %3.2f sec', Po1,
     Po2,t)
```

Chapter 2

Flow through Variable Area Ducts

Scilab code Exa 2.1 To find mass flow rate temperature and pressure at throat

```
1 clc
2 clear
4 //Input data
5 do1=1.12 //Density of air i reservoir in kg/m<sup>3</sup>
6 ao1=500 //Velocity of sound in reservoir in m/s
7 d=0.01 //Throat diameter in m
8 k=1.4 //Adiabatic Constant
9 R=287 //Specific gas constant in J/kg-K
10
11 // Calculation
12 To1=ao1^2/(k*R) //Stagnation temperature in K
13 Po1=do1*R*To1 //Stagnation pressure in Pa
14 p1=0.528 //Ratio of critical pressure to Stagnation
     pressure from gas tables @M=1
15 Pt=(Po1*p1)*10^-5 //Throat pressure in bar
16 t1=0.834 //Ratio of critical temperature to
     Stagnation temperature from gas tables @M=1
```

Scilab code Exa 2.2 To find properties at throat and exit in Convergent Divergent nozzle

```
1 clc
2 clear
4 //Input data
5 P1=2 //Intial pressure in bar
6 C1=170 //Initial velocity of air in m/s
7 T1=473 //Intial temperature in K
8 A1=1000 //Inlet area in mm^2
9 P2=0.95 //Exit pressure in bar
10 k=1.4 //Adiabatic Constant
11 R=287 // Specific gas constant in J/kg-K
12
13 // Calculation
14 a_1=sqrt(k*R*T1) // Velocity of sound at inlet in m/s
15 M1=C1/a_1 //Inlet mach number
16 t1=0.970 //Ratio of inlet temperature to Stagnation
     temperature from gas tables @M=1
17 To1=T1/t1 //Stagnation temperature in K
18 p1=0.900 //Ratio of inlet pressure to Stagnation
```

```
pressure from gas tables @M=1
19 Po1=P1/p1 //Stagnation pressure in bar
20 a1=1.623 //Ratio of inlet area to critical area from
       isentropic gas tables @M=1
21 At=A1/a1 //critical area in mm<sup>2</sup>
22 p2=0.528 //Pressure ratio at critical state from
      isentropic gas tables @M=1
23 Pt=Po1*p2 //Throat pressure in bar
24 t2=0.834 //Temperature ratio at critical state from
      isentropic gas tables @M=1
25 Tt=To1*t2 //Throat temperature in K
26 a_t=sqrt(k*R*Tt) // Velocity of sound at throat in m/
27 C_t=a_t // Critical velocity of air in m/s
28 p3=P2/Po1 //Pressure ratio at exit
29 M2=1.17 //Mach number at exit from isentropic gas
      tables @p3
30 t3=0.785 //Temperature ratio at exit from isentropic
       gas tables @M2
31 T2=To1*t3 //Exit temperature in K
32 a3=1.022 //Area ratio at exit from isentropic gas
      tables @M2
33 A2=At*a3 //Exit area in mm<sup>2</sup>, wrong answer in
      textbook
34 C2=M2*sqrt(k*R*T2) //Exit velocity in m/s
35
36 // Output
37 printf('(A) Stagnation temperature and pressure are
      \%3.2 f K and \%3.3 f bar\n (B) Sonic velocity and
      mach number at entry are \%3.2 \,\mathrm{f} \,\mathrm{m/s} and \%3.2 \,\mathrm{f} \,\mathrm{n} (C
      Velocity, Mach number and flow area at outlet
      section are \%3.2 \text{ f m/s}, \%3.2 \text{ f and } \%3.2 \text{ f mm}^2 \text{ n} (D)
      Pressure, area at throat of the nozzle are %3.5f
      bar and %3.3 f mm<sup>2</sup>, To1, Po1, a_1, M1, C2, M2, A2, Pt, At
```

Scilab code Exa 2.3 To find properties at throat and exit maximum possible velocity of gas and type of nozzle

```
1 clc
2 clear
3
4 //Input data
5 Po1=10 //Stagnation pressure in bar
6 To1=798 //Stagnation temperature in K
7 Pt=7.6 //Throat pressure in bar
8 m=1.5 //Mass flow rate in kg/s
9 k=1.4 //Adiabatic Constant
10 R=287 // Specific gas constant in J/kg-K
11 Cp=1005 //Specific heat capacity at constant
      pressure in J/kg-K
12
13 // Calculation
14 p1=0.528 //Ratio of critical pressure to Stagnation
     pressure from isentropic gas tables @M=1,k=1.4
15 Pc=p1*Po1 // Critical pressure in bar
16 P2=Pt //Exit pressure in bar, Since Pc<P2
17 p2=P2/Po1 //Pressure ratio
18 M2=0.64 //Exit mach number from isentropic gas
      tables @p2
19 t1=0.924 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2
20 T2=t1*To1 //exit temperature in K
21 C2=sqrt(k*R*T2)*M2 //Exit velocity in m/s
22 C_max=sqrt(2*Cp*To1) //Maximum possible velocity in
     m/s
23 d2=(P2*10^5)/(R*T2) // Density at exit in kg/m^3
24 At=(m/(d2*C2))*10^6 //Throat area in mm<sup>2</sup>
25
26 // Output
```

27 printf('(A)At the nozzle throat/exit:\n Pressure
 is %3.2 f bar\n Temperature is %3.2 f K\n
 Velocity is %3.2 f\n (B)Maximum possible velocity
 is %3.2 f m/s\n (C)Type of the nozzle is a
 convergent nozzle and its throat area is %3.3 f mm
 ^2',P2,T2,C2,C_max,At)

Scilab code Exa 2.4 To find properties at exit in Convergent Divergent nozzle

```
1 clc
2 clear
4 //Input data
5 Po1=3.344 //Stagnation pressure in bar
6 To1=900 //Stagnation temperature in K
7 P2=1.05 //Exit pressure in bar
8 k=1.4 //Adiabatic Constant
9 R=287 // Specific gas constant in J/kg-K
10 Cp=1005 //Specific heat capacity at constant
     pressure in J/kg-K
11
12 // Calculation
13 p1=P2/Po1 //Pressure ratio
14 M2=1.40 //Exit mach number from gas tables @p1, k=1.4
15 t1=0.718 //Ratio of exit temperature to Stagnation
     temperature from isentropic gas tables @M2, k=1.4
16 T2=To1*t1 //exit temperature in K
17 C2=sqrt(k*R*T2)*M2 //Exit velocity in m/s
18 d2=(P2*10^5)/(R*T2) // Density at exit in kg/m^3
19 a1=1.115 //Ratio of exit area to critical area from
     isentropic gas tables @M2
20 M_2=0.6733 //Exit mach number when it acts as
     diffuser
21 t2=0.91633 //Ratio of exit temperature to Stagnation
```

```
temperature from isentropic gas tables @M2
22 T_2=t2*To1 //exit temperature in K
23 C_2 = sqrt(k*R*T_2)*M_2 //Exit velocity in m/s
24 p2=0.738 //Ratio of exit pressure to Stagnation
       pressure from isentropic gas tables @M2
25 P_2=Po1*p2 //exit pressure in bar
26 d_2=(P_2*10^5)/(R*T_2) //Density at exit in kg/m^3
27
28 //Output
29 printf('(A)At exit:\n Temperaure is %3i K\n
       Velocity is \%3.2\,\mathrm{f} m/s\n Density is \%3.3\,\mathrm{f} kg/m ^3\n (B)At diffuser:\n Temperaure is \%3.3\,\mathrm{f} K\n
                                       Temperaure is %3.3 f K\n
            Velocity is \%3.3 \, \text{f m/s} \setminus \text{n}
                                            Density is %3.4 f
                    Pressure is \%3.4 \,\mathrm{f} bar\n', T2, C2, d2, T_2
       kg/m^3 n
       ,C_2,d_2,P_2)
```

Scilab code Exa 2.5 To find mass flow rate and pressure of a CD nozzle

```
1 clc
2 clear
4 //Input data
5 Po1=8 //Stagnation pressure in bar
6 To1=273+15 //Stagnation temperature in K
7 At=25 //Throat area in cm<sup>2</sup>
8 A2=100 //Exit area in cm<sup>2</sup>
9 k=1.4 //Adiabatic Constant
10 R=287 //Specific gas constant in J/kg-K
11
12 // Calculation
13 a1=A2/At //Area ratio
14 M2=2.94 //Exit mach number from gas tables @a1, k=1.4
15 p1=0.0298 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
16 P2=Po1*p1 //exit pressure in bar
```

```
17 M_2=0.146 //Exit mach number when it acts as
      diffuser
18 p2=0.9847 // Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2
19 P_2=Po1*p2 //exit pressure in bar
20 p3=0.528 //Ratio of critical pressure to Stagnation
      pressure from isentropic gas tables @M=1,k=1.4
21 Pc=(Po1*p3) // Critical pressure in bar
22 t1=0.834 //Ratio of critical temperature to
      Stagnation temperature from isentropic gas tables
      @M=1, k=1.4
23 Tt=To1*t1 //critical temperature in K
24 d_t=(Pc*10^5)/(R*Tt) / Density at critical state in
      kg/m^3
  a_t=sqrt(k*R*Tt) // Velocity of sound at critical
      state in m/s
26 Ct=a_t // Velocity of air at critical state in m/s
27 m=d_t*At*Ct*10^-4 //Mass flow rate in kg/s
28
29 //Output
30 printf('(A)Maximum mass flow rate is \%3.3 \text{ f kg/s/n} (B
                       Pressure is %3.4 f bar\n
      ) As nozzle: \ n
                                             Pressure is
      number is \%3.2 \text{ f} \setminus n As diffuser:\n
                     Mach number is \%3.3 \, \text{f}', m, P2, M2, P_2,
      \%3.4 f bar n
      M_2
```

Scilab code Exa 2.6 To find exit properties and force exerted on diffuser walls

```
1 clc
2 clear
3
4 //Input data
5 D1=15 //Entry diameter in cm
6 D2=30 //Exit diamater in cm
```

```
7 P1=0.96 //Inlet pressure in bar
8 T1=340 //Inlet temperature in K
9 C1=185 //INlet velocity in m/s
10 k=1.4 //Adiabatic Constant
11 R=287 // Specific gas constant in J/kg-K
12
13 // Calculation
14 A1=\%pi*D1^2/4 //Entry area in cm^2
15 A2=\%pi*D2^2/4 //Exit area in cm<sup>2</sup>
16 a_1=sqrt(k*R*T1) //Sound velocity in m/s
17 M1=C1/a_1 //Inlet mach number
18 p1=0.843 //Ratio of inlet pressure to Stagnation
      pressure from gas tables @M1, k=1.4
19 Po1=P1/p1 //Stagnation pressure in bar
20 t1=0.952 //Ratio of inlet temperature to Stagnation
      temperature from gas tables @M1, k=1.4
21 To1=T1/t1 //Stagnation temperature in K
22 a1=1.34 //Ratio of inlet area to critical area from
      isentropic gas tables @M1, k=1.4
23 At=A1/a1 //critical area in cm^2
24 a2=A2/At //Area ratio
25 M2=0.1088 //Exit mach number from gas tables @a2,k
      =1.4
26 p2=0.992 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
27 P2=Po1*p2 //exit pressure in bar
28 t2=0.9976 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2, k=1.4
29 T2=To1*t2 //exit temperature in K
30 C2=sqrt(k*R*T2)*M2 //Exit velocity in m/s
31 F1=P1*10^5*A1*10^-4*(1+(k*(M1^2))) // Force exerted
      at entry in kN
32 \text{ F2=P2*10^5*A2*10^-4*(1+(k*(M2^2)))} // \text{Force exerted}
      at exit in kN
33 F=(F2-F1)*10^-3 //Force exerted on the diffuser
      walls in kN, wrong answer in textbook
34
35 // Output
```

```
36 printf('(A) Exit pressure is %3.3 f bar\n (B) Exit velocity is %3.2 f m/s\n (C) Force exerted on the diffuser walls is %3.3 f kN', P2, C2, F)
```

Scilab code Exa 2.7 To find properties at inlet and exit of diffuser

```
1 clc
2 clear
4 //Input data
5 M1=3.6 //Inlet mach number
6 M2=2 //Exit mach number
7 m=15 //Mass flow rate in kg/s
8 P1=1.05 //Inlet pressure in bar
9 T1=313 //Inlet temperature in K
10 k=1.4 // Adiabatic Constant
11 R=287 // Specific gas constant in J/kg-K
12
13 // Calculation
14 p1=11.38*10^-3 //Ratio of inlet pressure to
     Stagnation pressure from gas tables @M1, k=1.4
15 Po=P1/p1 //Stagnation pressure in bar
16 t1=0.278 //Ratio of inlet temperature to Stagnation
     temperature from gas tables @M1, k=1.4
17 To=T1/t1 //Stagnation temperature in K
18 C1=sqrt(k*R*T1)*M1 //Inlet velocity in m/s
19 d1=(P1*10^5)/(R*T1) // Density at inlet in kg/s, P1
20 A1=(m/(d1*C1))*10^4 //Inlet area in cm<sup>2</sup>
21 p2=0.128 //Ratio of exit pressure to Stagnation
     pressure from isentropic gas tables @M2, k=1.4
22 P2=Po*p2 //exit pressure in bar
23 t2=0.555 //Ratio of exit temperature to Stagnation
     temperature from isentropic gas tables @M2, k=1.4
24 T2=To*t2 //exit temperature in K
```

```
25 C2=sqrt(k*R*T2)*M2 //Exit velocity in m/s
26 d2=(P2*10^5)/(R*T2) // Density at exit in kg/s
27 \text{ A2=(m/(d2*C2))*10^4} // \text{Exit area in cm^2}
28
29 //Output
30 printf('(A)At Inlet:\n
                                 Area is \%3.1 \text{ f cm}^2 \text{ n}
      Total pressure \%3.2 f bar\n
                                          Total temperature
      is \%3.1 f K\n (B)At Exit:\n
                                         Area is \%3.1 \text{ f cm}^2
            Total pressure \%3.2 f bar\n
                                                Total
      temperature is \%3.2 \text{ f K}\n
                                       Static temperature is
       \%3.2 f K n
                       Static pressure is %3.2f bar', A1, Po
      ,To,A2,Po,To,T2,P2)
```

Scilab code Exa 2.8 To find properties at throat and exit and maximum possible velocity of nozzle

```
1 clc
2 clear
4 //Input data
5 Po=6.91 //Stagnation pressure in bar
6 To=325+273 //Stagnation temperature in K
7 P2=0.98 //exit pressure in bar
8 m=3600/3600 //Mass flow rate in kg/s
9 k=1.4 //Adiabatic Constant
10 R=287 //Specific gas constant in J/kg-K
11 Cp=1005 //Specific heat capacity at constant
     pressure in J/kg-K
12
13 // Calculation
14 p1=0.528 //Ratio of critical pressure to Stagnation
     pressure from gas tables @M=1
15 Pt=Po*p1 //critical pressure in bar
16 t1=0.834 //Ratio of critical temperature to
     Stagnation temperature from gas tables @M=1
```

```
17 Tt=To*t1 //critical temperature in K
18 at=sqrt(k*R*Tt) //Sound velocity at throat in m/s
19 Ct=at //Air velocity t throat in m/s, Since M=1
20 dt=(Pt*10^5)/(R*Tt) // Density of air at throat in kg
      /m<sup>3</sup>, Pt in Pa
21 At=(m/(dt*Ct))*10^4 //Throat area in m^2 x10^-4
22 p2=P2/Po //Pressure ratio
23 M2=1.93 //Exit mach number from gas tables @p2, k=1.4
24 t2=0.573 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2, k=1.4
25 T2=To*t2 //exit temperature in K
26 a2=1.593 //Ratio of exit area to critical area from
      isentropic gas tables @M2, k=1.4
  A2=a2*At // Exit area in m<sup>2</sup>, At in m<sup>2</sup> x10<sup>-4</sup>
27
   C_max=sqrt(2*Cp*To) //Maximum possible velocity in m
29
30 //Output
31 printf('(A)At throat:\n
                               Area is \%3.2 \text{ fx}10^-4 \text{ m}^2 \text{ n}
           Pressure is \%3.2 f bar\n
                                          Velocity is %3.1 f
      m/s \setminus n (B) At Exit:\n
                                 Area is \%3.3 \text{ fx} 10^-4 \text{ m}^2 \text{ n}
          Mach number is %3.2 f\n (C)Maximum possible
      velocity is \%3.2 \, \text{f m/s}, At, Pt, Ct, A2, M2, C_max)
```

Scilab code Exa 2.9 To find Stagnation temperature properties at exit and mass flow rate

```
1 clc
2 clear
3
4 //Input data
5 P1=2.45 //Inlet pressure in bar
6 T1=26.5+273 //Inlet temperature in K
7 M1=1.4 //Inlet mach number
8 M2=2.5 //Exit mach number
```

```
9 k=1.3 //Adiabatic Constant
10 R=469 //Specific gas constant in J/kg-K
11
12 // Calculation
13 t1=0.773 //Ratio of inlet temperature to Stagnation
      temperature from gas tables @M1, k=1.3
14 To=T1/t1 //Stagnation temperature in K
15 t2=0.516 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2, k=1.3
16 T2=To*t2 //exit temperature in K
17 C2=sqrt(k*R*T2)*M2 //Exit velocity in m/s
18 a1=sqrt(k*R*T1) //Sound velocity at inlet in m/s
19 G=(P1*10^5*a1*M1)/(R*T1) //) Flow rate per square
      meter of the inlet cross section in kg/s-m<sup>2</sup>
20
21 // Output
22 printf('(A) Stagnation temperature is \%3.2 \text{ f K} \setminus n (B) At
       Exit: \ n
                  Temperature is %3.3 f K\n
      is %3.2 f m/s\n (C) Flow rate per square meter of
      the inlet cross section is \%3.2 f kg/s-m^2', To, T2,
      C2,G)
```

Scilab code Exa 2.10 To determine throat and exit conditions mass flow rate through nozzle

```
1 clc
2 clear
3
4 //Input data
5 Po=1000 //Stagnation pressure in kPa
6 To=800 //Stagnation temperature in K
7 k=1.4 //Adiabatic Constant
8 M2=2 //Exit mach number
9 At=20 //Throat area in cm^2
10 R=287 //Specific gas constant in J/kg-K
```

```
11
12 // Calculation
13 t1=0.834 //Ratio of critical temperature to
      Stagnation temperature from isentropic gas tables
      @M=1, k=1.4
14 Tt=To*t1 //critical temperature in K
15 at=sqrt(k*R*Tt) // Velocity of sound at critical
      state in m/s
16 Ct=at //Velocity of air at critical state in m/s,
      Since M=1
17 p1=0.528 //Ratio of critical pressure to Stagnation
      pressure from isentropic gas tables @M=1,k=1.4
18 Pt=Po*p1 // Critical pressure in bar
19 dt=(Pt*10^3)/(R*Tt) //Density at critical state in
     kg/m<sup>3</sup>, Pt in Pa
20 m=dt*At*10^-4*Ct //Mass flow rate in kg/s, At in m^2
21 p2=0.128 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
22 P2=Po*p2 //exit pressure in kPa
23 t2=0.555 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2, k=1.4
24 T2=To*t2 //exit temperature in K
25 a2=1.687 //Ratio of exit area to critical area from
      isentropic gas tables @M2, k=1.4
26 A2=At*a2 //Exit area in cm<sup>2</sup>
27 C2=sqrt(k*R*T2)*M2 //Exit velocity in m/s
28 d2=P2*10^3/(R*T2) //Density at exit in kg/m^3, P2 in
      Pa
29
30 //Output
31 printf('(A)At throat:\n
                               Temperature is \%3.1 f \text{ K}\n
         Velocity is %3.2 f m/s\n
                                    Pressure is %3i kPa
      \n (B) At Exit: \n
                           Temperature is %3i K\n
      Pressure is %3i kPa\n Area is %3.2 f m^2\n
     Mass flow rate is \%3.4 \,\mathrm{f} kg/s', Tt, Ct, Pt, T2, P2, A2, m
     )
```

Scilab code Exa 2.11 To find properties at throat and test section mass flow rate and Power required in nozzle of wind tunnel

```
1 clc
2 clear
3
4 //Input data
5 M2=2 //Exit mach number
6 At=1000 //Throat area in cm<sup>2</sup>
7 Po=0.69 //Stagnation pressure in bar
8 To=310 //Stagnation temperature in K
9 k=1.4 //Adiabatic Constant
10 R=287 // Specific gas constant in J/kg-K
11 Cp=1.005 //Specific heat capacity at constant
      pressure in kJ/kg-K
12
13 // Calculation
14 t1=0.834 //Ratio of critical temperature to
      Stagnation temperature from isentropic gas tables
      @M=1, k=1.4
15 Tt=To*t1 //critical temperature in K
16 at=sqrt(k*R*Tt) // Velocity of sound at critical
      state in m/s
17 Ct=at //Velocity of air at critical state in m/s,
      Since M=1
18 p1=0.528 //Ratio of critical pressure to Stagnation
      pressure from isentropic gas tables @M=1,k=1.4
19 Pt=Po*p1 // Critical pressure in bar
20 dt=(Pt*10^5)/(R*Tt) //Density at critical state in
     kg/m<sup>3</sup>, Pt in Pa
21 m=dt*At*10^-4*Ct //Mass flow rate in kg/s, At in m^2
22 p2=0.128 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
23 P2=Po*p2 //exit pressure in bar
```

```
24 t2=0.555 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2, k=1.4
25 T2=To*t2 //exit temperature in K
26 C2=sqrt(k*R*T2)*M2 //Exit velocity in m/s
27 d2=(P2*10^5)/(R*T2) //Density at exit in kg/m^3, P2
28 A2=(m/(d2*C2))*10^4 //Exit area in cm^2
29 P=m*Cp*(To-T2) //Power required to drive the
      compressor in kW
30
31 //Output
32 printf('(A)At throat:\n Temperature is \%3.2 \text{ f K} \setminus \text{n}
         Velocity is \%3.2 \,\mathrm{f} m/s\n Pressure is \%3.3 \,\mathrm{f}
                                      Temperature is %3
                At Test section:\n
      bar\n
                  Velocity is %3.3 f m/s\n
                                                Pressure is
       %3.3 f bar\n (B) Area of cross section at test
      section is %3i cm<sup>2</sup>\n (C) Mass flow rate is %3.3 f
      kg/s n (D) Power required to drive the compressor
      is \%3.2 \text{ f kW}', Tt, Ct, Pt, T2, C2, P2, A2, m, P)
```

Scilab code Exa 2.12 To find cross section at throat and exit

```
clc
clear

//Input data
Po=10 //Stagnation pressure in bar
To=100+273 //Stagnation temperature in K
m=15 //mass flow rate in kg/s
P2s=1 //Back pressure in isentropic state in bar
eff=0.95 //efficiency of diverging nozzle
k=1.4 //Adiabatic Constant
R=287 //Specific gas constant in J/kg-K
Cp=1005 //Specific heat capacity at constant
pressure in J/kg-K
```

```
13
14 // Calculation
15 //case I: isentropic
16 t1=0.834 //Ratio of critical temperature to
      Stagnation temperature from isentropic gas tables
      @M=1, k=1.4
17 Tt=To*t1 //critical temperature in K
18 at=sqrt(k*R*Tt) // Velocity of sound at critical
      state in m/s
19 Ct=at //Velocity of air at critical state in m/s,
      Since M=1
20 p1=0.528 //Ratio of critical pressure to Stagnation
      pressure from isentropic gas tables @M=1,k=1.4
21 Pt=Po*p1 //Critical pressure in bar
22 dt=(Pt*10^5)/(R*Tt) //Density at critical state in
     kg/m<sup>3</sup>, Pt in Pa
23 At=(m/(dt*Ct))*10^4 //Throat area in cm<sup>2</sup>
24 p2=P2s/Po //Pressure ratio
25 M2s=2.15 //Exit mach number from gas tables (
      isentropic state) @p2, k=1.4
26 t2=0.519 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2s, k=1.4
27 T2s=t2*To //exit temperature in K
28 a2s=sqrt(k*R*T2s) //Velocity of sound at exit in m/s
29 C2s=M2s*a2s //Exit air velocity in m/s
30 d2s=(P2s*10^5)/(R*T2s) // Density at exit in kg/m^3,
     P2 in Pa
31 A2s=(m/(d2s*C2s))*10^4 //Exit area in cm<sup>2</sup>
32 //case II: isentropic upto throat
33 T2=To-(eff*(To-T2s)) //Exit tempareture in K
34 C2=sqrt(2*Cp*(To-T2)) // Exit air velocity in m/s
35 P2=P2s //Exit pressure in bar, Since it is diffuser
36 d2=(P2*10^5)/(R*T2) // Density at exit in kg/m^3, P2
     in Pa
37 A2=(m/(d2*C2))*10^4 //Exit area in cm^2
38
39 //Output
40 printf('(A)The nozzle cross section at throat in
```

both cases is $\%3.2\,\mathrm{f}$ cm^2\n (B)The nozzle cross section at exit in case I is $\%3.3\,\mathrm{f}$ cm^2 and in case II is $\%3.2\,\mathrm{f}$ cm^2', At, A2s, A2)

Scilab code Exa 2.13 To find ratio of areas velocity and back pressure in CD nozzle

```
1 clc
2 clear
4 //Input data
5 Po=600 //Stagnation pressure in kPa
6 To=40+273 //Stagnation temperature in K
7 P2=100 //exit pressure in kPa
8 k=1.4 //Adiabatic Constant
9 R=287 // Specific gas constant in J/kg-K
10
11 // Calculation
12 p1=P2/Po //pressure ratio
13 M2=1.82 //Exit mach number from gas tables @p2, k=1.4
14 ar=1.461 //Ratio of nozzle exit area to nozzle
      throat area from gas tables @M2
15 t1=0.602 //Ratio of exit temperature to Stagnation
      temperature from isentropic gas tables @M2, k=1.4
16 T2=To*t1 //exit temperature in K
17 C2=sqrt(k*R*T2)*M2 //Exit air velocity in m/s
18 p2=3.698 //Ratio of static pressures after shock to
      before shock from normal shock gas tables @M2
19 Py=p2*P2 //The back pressure at which normal shock
      acts at the exit plane of the nozzle in kPa
20
21 // Output
22 printf('(A) Ratio of nozzle exit area to nozzle
      throat area is \%3.3 f\n (B) The discharge velocity
      from nozzle is \%3.2 \, \text{f m/s} \setminus \text{n} (C) The back pressure
```

at which normal shock acts at the exit plane of the nozzle is %3.1f kPa',ar,C2,Py)

Scilab code Exa 2.14 To find how duct acts

```
1 clc
2 clear
4 //Input data
5 ar=2 //Ratio of nozzle exit area to nozzle throat
6 Po=700 //Stagnation pressure in kPa
7 P2=400 //exit pressure in kPa
9 // Calculation
10 p1=0.528 //Ratio of critical pressure to Stagnation
     pressure from gas tables @M=1
11 Pt=Po*p1 //critical pressure in bar
12 p2=P2/Po //Pressure ratio
13 M2=0.93 //Exit mach number from gas tables @p2, k=1.4
14
15 //Output
16 printf ('Since pressure decreases from %3i kPa to %3
      .1f kPa from inlet to throat, it acts as nozzle\n
      Since exit pressure %3i kPa is above critical
     pressure %3.1f kPa, it acts as diffuser with №%3
     .2 f\n Hence the duct acts as Venturi', Po, Pt, P2, Pt
      ,M2)
```

Scilab code \mathbf{Exa} 2.15 To find mass flow rate static and stagnation conditions and entropy change of subsonic diffuser

```
1 clc
```

```
2 clear
4 //Input data
5 A1=0.15 //Inlet area in m<sup>2</sup>
6 C1=240 //Inlet velocity in m/s
7 T1=300 //Inlet temperature in K
8 P1=0.7 //Inlet pressure in bar
9 C2=120 //Exit velocity in m/s
10 k=1.4 //Adiabatic Constant
11 R=287 //Specific gas constant in J/kg-K
12 Cp=1005 //Specific heat capacity at constant
     pressure in J/kg-K
13
14 // Calculations
15 a1=sqrt(k*R*T1) // Velocity of sound at inlet in m/s
16 M1=C1/a1 //Inlet mach number
17 d1=(P1*10^5)/(R*T1) // Density at inlet in kg/s, P1
     in Pa
18 m=d1*A1*C1 //Mass flow rate in kg/s
19 t1=0.913 //Ratio of inlet temperature to Stagnation
     temperature from gas tables @M1, k=1.4
20 To=T1/t1 //Stagnation temperature in K
21 p1=0.727 //Ratio of inlet pressure to Stagnation
     pressure from gas tables @M1, k=1.4
22 Po=P1/p1 //Stagnation pressure in bar
23 T2=To-(C2^2/(2*Cp)) //Exit temperature in K
24 t2=T2/To //Temperature ratio
25 M2=0.33 //Exit mach number from gas tables 0t2, k=1.4
26 p2=0.927 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
27 P2=Po*p2 //exit pressure in bar
28 d2=(P2*10^5)/(R*T2) // Density at exit in kg/s, P2 in
      Pa
29 A2=(m/(d2*C2)) //Exit area in m^2
30 ds=0 //Entropy change in kJ/kg-K, since process is
     isentropic
31
32 // Output
```

33 printf('(A) Mass flow rate is $\%3.3\,\mathrm{f}\ \mathrm{kg/s}\ \mathrm{n}\ (B)$ Stagnation pressure at exit is $\%3.4\,\mathrm{f}\ \mathrm{bar}\ \mathrm{n}\ (C)$ Stagnation Temperature at exit is $\%3.3\,\mathrm{f}\ \mathrm{K}\ \mathrm{n}\ (D)$ Static exit pressure is $\%3.3\,\mathrm{f}\ \mathrm{bar}\ \mathrm{n}\ (E)\,\mathrm{Entropy}$ change is $\%3\mathrm{i}\ \mathrm{kJ/kg-K}\ \mathrm{n}\ (F)\,\mathrm{Exit}\ \mathrm{area}\ \mathrm{is}\ \%3.3\,\mathrm{f}\ \mathrm{m}^2$ ',m,Po,To,P2,ds,A2)

Scilab code Exa 2.16 To find throat area reservoir conditions and mass flow rate

```
1 clc
2 clear
3
4 //Input data
5 A2=645 //Exit area in mm<sup>2</sup>
6 M2=2 //Exit mach number
7 P2=1 //exit pressure in bar
8 T2=185 //Exit temperature in K
9 k=1.4 //Adiabatic Constant
10 R=287 // Specific gas constant in J/kg-K
11
12 // Calculation
13 t1=0.555 //Ratio of exit temperature to Stagnation
      temperature from gas tables @M2, k=1.4
14 To=T2/t1 //Stagnation temperature in K
15 p1=0.128 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
16 Po=P2/p1 //Stagnation pressure in bar
17 a1=1.687 //Ratio of exit area to critical area from
      isentropic gas tables @M2, k=1.4
18 At=A2/a1 //Critical area in mm<sup>2</sup>
19 d2=(P2*10^5)/(R*T2) // Density at exit in kg/s, P2 in
      Pa
20 C2=sqrt(k*R*T2)*M2 //Exit air velocity in m/s
21 m=d2*A2*C2*10^-6 //Mass flow rate in kg/s, A2 in m^2
```

```
22
23 //Output
24 printf('(A)Throat area is %3.2 f mm^2\n (B) Reservoir
    pressure is %3.4 f bar\n (C) Reservoir temperature
    is %3.2 f K\n (D) Mass flow rate is %3.4 f kg/s', At,
    Po,To,m)
```

Scilab code Exa 2.17 To find throat conditions ratio of velocities and mass flow rate

```
1 clc
2 clear
3
4 //Input data
5 Po=20 //Stagnation pressure in kPa
6 To=1000 //Stagnation temperature in K
7 P2=3 //exit pressure in bar
8 A2=100 //Exit area in cm^2
9 k=1.4 //Adiabatic Constant
10 R=287 // Specific gas constant in J/kg-K
11 Cp=1005 // Specific heat capacity at constant
     pressure in J/kg-K
12
13 // Calculations
14 p1=P2/Po //Pressure ratio
15 M2=1.9 //Exit mach number from gas tables @p1,k=1.4
16 t1=0.581 //Ratio of exit temperature to Stagnation
     temperature from isentropic gas tables @M2, k=1.4
17 T2=To*t1 //exit temperature in K
18 C2=M2*sqrt(k*R*T2) //Exit velocity in m/s
19 a1=1.555 //Ratio of exit area to critical area from
     isentropic gas tables @M2, k=1.4
20 At=A2/a1 //critical area in cm<sup>2</sup>
21 p1=0.528 //Ratio of critical pressure to Stagnation
     pressure from gas tables @M=1
```

```
22 Pt=Po*p1 //critical pressure in bar
23 t1=0.834 //Ratio of critical temperature to
      Stagnation temperature from gas tables @M=1
24 Tt=To*t1 //critical temperature in K
25 at=sqrt(k*R*Tt) //Sound velocity at throat in m/s
26 Ct=at //Air velocity t throat in m/s, Since M=1
27 dt=(Pt*10^5)/(R*Tt) // Density of air at throat in kg
      /m<sup>3</sup>, Pt in Pa
28 m=dt*At*10^-4*Ct //Mass flow rate in kg/s, At in m^2
29 C_max=sqrt(2*Cp*To) //Maximum possible velocity in m
30 cr=C2/C_max //Ratio of velocities
31
32 // Output
33 printf('(A)At Throat:\n Area is \%3.2 \text{ f cm}^2 \text{ n}
      Pressure is %3.2 f bar\n
                                    Temperature is %3i K\n
       (B) Exit velocity is \%3.4 \,\mathrm{f} times C<sub>max</sub> in m/s\n (
      C) Mass flow rate is \%3.2 \, \text{f} \, \text{kg/s}, At, Pt, Tt, cr, m)
```

Scilab code Exa 2.18 To find mass flow rate and exit conditions

```
1 clc
2 clear
3
4 //Input data
5 Po=7 //Stagnation pressure in bar
6 To=100+273 //Stagnation temperature in K
7 At=12 //Critical area in cm^2
8 A2=25.166 //Exit area in cm^2
9 k=1.4 //Adiabatic Constant
10 R=287 //Specific gas constant in J/kg-K
11
12 //Calculation
13 a1=A2/At //Ratio of areas
14 //subsonic
```

```
15 M2=0.29 //Exit mach number from gas tables @a1, k=1.4
16 p1=0.943 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
17 P2=Po*p1 //exit pressure in bar
18 t1=0.983 //Ratio of exit temperature to Stagnation
      temperature from gas tables @M2, k=1.4
19 T2=To*t1 //Exit temperature in K
20 C2=M2*sqrt(k*R*T2) //Exit air velocity in m/s
21 //supersonic
22 M_2=2.25 //Exit mach number from gas tables @al,k
      =1.4
23 p2=0.0865 //Ratio of exit pressure to Stagnation
      pressure from isentropic gas tables @M2, k=1.4
24 P_2=Po*p2 //exit pressure in bar
25 t2=0.497 //Ratio of exit temperature to Stagnation
      temperature from gas tables @M2, k=1.4
26 T_2=To*t2 //Exit temperature in K
27 C_2=M_2*sqrt(k*R*T_2) //Exit air velocity in m/s
28 d2=(P2*10^5)/(R*T2) // Density at exit in kg/s, P2 in
       Pa
29 m=d2*A2*10^-4*C2 //Mass flow rate in kg/s, A2 in m^2
30
31 //Output
32 printf('(A)Maximum mass flow rate is \%3.3 f kg/s\n (B
      )Subsonic exit condition:\n
                                         Temperature is %3
      .3 f K\n
                  Velocity is \%3.2 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n}
                                                 Pressure is
       \%3.3 f bar n
                        Mach number is \%3.2 \text{ f} \ \text{n}
      Supersonic exit condition:\n
                                          Temperature is %3
                  Velocity is \%3.2 \, \text{f m/s} \setminus \text{n}
      .3 f K\n
                                                 Pressure is
                        Mach number is \%3.2 \text{ f} \text{ n}, m, T2, C2,
       \%3.4 f bar n
      P2, M2, T_2, C_2, P_2, M_2)
```

Scilab code Exa 2.19 To find mach number change in stagnation pressure entropy change and static temperature and efficiency of nozzle

```
1 clc
2 clear
4 //Input data
5 T1=335 //Inlet temperature in K
6 P1=655 //Inlet pressure in kPa
7 C1=150 //Inlet velocity in m/s
8 P2=138 //Exit pressure in kPa
9 T2=222 //Exit temperature in K
10 m=9 //Mass flow rate in kg/s
11 Mol=32 //Molar mass of oxygen in kg/mol
12 Ri=8314 // Ideal gas constant in J/kg-k
13 k=1.4 //Adiabatic Constant
14 Cp=915 // Specific heat capacity at constant pressure
      in J/kg-K
15
16 // Calculation
17 R=Ri/Mol //Specific gas constant in J/kg-K
18 a1=sqrt(k*R*T1) //Sound velocity at inlet in m/s
19 M1=C1/a1 //Inlet mach number
20 t1=0.964 //Ratio of inlet temperature to Stagnation
     temperature from gas tables @M1, k=1.4
21 To1=T1/t1 //Stagnation temperature at inlet in K
22 p1=0.881 //Ratio of inlet pressure to Stagnation
      pressure at entry from gas tables @M1, k=1.4
23 Po1=P1/p1 //Stagnation pressure at entry in kPa
24 t2=0.834 //Ratio of critical temperature to
     Stagnation temperature from gas tables @M=1
25 Tt=To1*t2 //critical temperature in K
26 C2=sqrt(C1^2+(2*Cp*(T1-T2))) // Exit velocity in m/s,
27 a2=sqrt(k*R*T2) //Sound velocity at exit in m/s
28 M2=C2/a2 //Exit mach number
29 p2=0.208 //Ratio of exit pressure to Stagnation
     pressure at exit from isentropic gas tables @M2,k
30 Po2=P2/p2 //Stagnation pressure at exit in kPa
31 SPC=(Po1-Po2) //Change in the stagnation pressure
     between inlet and exit in kPa
```

```
32 ds=R*log(Po1/Po2) //Change in entropy in J/kg-K
33 T2s=T1*((P2/P1)^((k-1)/k)) //Exit temperature at
        isentropic state in K
34 eff=((T1-T2)/(T1-T2s))*100 //Nozzle efficiency in
        percent
35
36 //Output
37 printf('(A)Exit mach number is %3.2 f\n (B)Change in
        the stagnation pressure between inlet and exit is
        %3.2 f kPa\n (C)Change in entropy is %3.3 f J/kg-K
        \n (D)Static temperature at throat is %3.1 f K\n (E)Nozzle efficiency is %3.2 f percent', M2,SPC,ds,
        Tt,eff)
```

Scilab code Exa 2.20 To find pressure rise coefficient and ratio of area

```
1 clc
2 clear
4 //Input data
5 C1=200 //Inlet velocity in m/s
6 Po1=400 //Stagnation pressure at entry in kPa
7 To1=500 //Stagnation temperature at inlet in K
8 C2=100 //Exit velocity in m/s
9 eff=0.9 //Nozzle efficiency
10 k=1.4 //Adiabatic Constant
11 Cp=1005 //Specific heat capacity at constant
     pressure in J/kg-K
12
13 // Calculation
14 T1=To1-(C1^2/(2*Cp)) //Inlet temperature in K
15 t1=T1/To1 //Temperature ratio
16 P1=Po1*t1^(k/(k-1)) //Inlet pressure in kPa
17 To2s=(eff*(To1-T1))+T1 //Exit Stagnation temperature
      at isentropic state in K
```

```
18 To2=To2s // Exit Stagnation temperature in K, Since
    adiabatic
19 T2=To2-(C2^2/(2*Cp)) // Exit temperature in K
20 t2=To2s/T1 // Temperature ratio
21 Po2=P1*t2^(k/(k-1)) // Stagnation pressure at exit in
    kPa
22 t3=T2/To2 // Temperature ratio
23 P2=Po2*t3^(k/(k-1)) // Exit pressure in kPa
24 Cpr=(P2-P1)/(Po1-P1) // Pressure raise coefficient
25 ar=(P1*T2*C1)/(P2*T1*C2) // Ratio of exit to inlet
    area
26
27 // Output
28 printf('(A) Pressure raise coefficient is %3.3 f\n (B)
    Ratio of exit to inlet area is %3.3 f', Cpr, ar)
```

Scilab code Exa 2.21 To find area at throat and exit Mach number total pressure loss and entropy change

```
1 clc
2 clear
3
4 //Input data
5 Po1=4.9 //Stagnation pressure at entry in bar
6 P2=1.4 //Exit pressure in bar
7 To=810 //Stagnation temperature in K
8 m=1 //Mass flow rate in kg/s
9 eff=0.9 //Nozzle efficiency
10 k=1.4 //Adiabatic Constant
11 R=287 //Specific gas constant in J/kg-K
12 Cp=1005 //Specific heat capacity at constant pressure in J/kg-K
13
14 //Calculations
15 t1=0.834 //Ratio of critical temperature to
```

```
Stagnation temperature from gas tables @M=1
16 Tt=To*t1 //critical temperature in K
17 at=sqrt(k*R*Tt) //Sound velocity at critical state
      in m/s
18 Ct=at //Air velocity t throat in m/s, Since M=1
19 p1=0.528 //Ratio of critical pressure to Stagnation
      pressure from gas tables @M=1
20 Pt=Po1*p1 //critical pressure in bar
21 dt=(Pt*10^5)/(R*Tt) //Density of air at throat in kg
      /m<sup>3</sup>, Pt in Pa
22 At=(m/(dt*Ct))*10^4 //Throat area in cm<sup>2</sup>
23 p2=P2/Po1 //Pressure ratio
24 T2s=To*p2^((k-1)/k) //Exit temperature in K (at
      isentropic state)
25 T2=To-(eff*(To-T2s)) //Exit temperature in K
26 d2=(P2*10^5)/(R*T2) //Density at exit in kg/m<sup>3</sup>, P2
      in Pa
27 C2=sqrt(2*Cp*(To-T2)) // Exit air velocity in m/s
28 A2=(m/(d2*C2))*10^4 //Exit area in cm^2
29 a2=sqrt(k*R*T2) //Sound velocity at exit in m/s
30 M2=C2/a2 //Exit mach number
31 p3=0.332 //Static to stagnation pressure ratio at
      exit from isentropic gas tables @M2, k=1.4
32 Po2=P2/p3 //stagnation pressure in bar
33 TPL=Po1-Po2 //Loss in total pressure is \%3.3f bar
34 ds=R*log(Po1/Po2) //Increase in entropy in kJ/kg-K
35
36 //Output
37 printf('(A)Throat and exit area are \%3.2f cm^2 and
      \%3.3 \text{ f cm}^2 \ln (B) \text{ Exit mach number is } \%3.2 \text{ f} \ln (C)
      Loss in total pressure is %3.3f bar\n (D) Increase
       in entropy is \%3.2 \, \text{f} \, \text{kJ/kg-K'}, At, A2, M2, TPL, ds)
```

Scilab code Exa 2.22 To find required throat and exit area of nozzle

```
1 clc
2 clear
4 //Input data
5 Po=3.5 //Stagnation pressure in bar
6 To=425+273 //Stagnation temperature in K
7 P2=0.97 //Exit pressure in bar
8 m=18 //Mass flow rate in kg/s
9 Kd=0.99 // Coefficient of discharge
10 eff=0.94 //Nozzle efficiency
11 k=1.33 //Adiabatic Constant
12 Cp=1110 //Specific heat capacity at constant
      pressure in J/kg-K
13
14 // Calculations
15 Pt=Po*(2/(k+1))^(k/(k-1)) // critical pressure in bar
16 Tt=To*(2/(k+1)) //critical temperature in K
17 R=Cp/(k/(k-1)) // Specific gas constant in J/kg-K
18 m_s=m/Kd //Isentropic mass
19 at=sqrt(k*R*Tt) //Sound velocity at throat in m/s
20 Ct=at //Air velocity t throat in m/s, Since M=1
21 dt=(Pt*10^5)/(R*Tt) // Density of air at throat in kg
      /m<sup>3</sup>, Pt in Pa
22 At=(m_s/(dt*Ct))*10^4 //Throat area in cm<sup>2</sup>
23 p2=P2/Po //Pressure ratio
24 T2s=To*p2^(1/(k/(k-1))) //Exit temperature in K (at
      isentropic state)
25 T2=To-(eff*(To-T2s)) //Exit temperature in K
26 d2=(P2*10^5)/(R*T2) // Density at exit in kg/m^3, P2
      in Pa
27 C2=sqrt(2*Cp*(To-T2)) // Exit air velocity in m/s
28 A2=(m_s/(d2*C2))*10^4 //Exit area in cm<sup>2</sup>
29
30 //Output
31 printf('Throat area and Exit area of nozzle are %3.1
      f cm<sup>2</sup> and \%3.1 f cm<sup>2</sup>, At, A2)
```

Chapter 3

Flow Through Constant Area Duct Adiabatic Flow

Scilab code Exa 3.1 To find length of pipe

```
1 clc
2 clear
4 //input data
5 M1=0.25 //Mach number at entrance
6 M2=1 //Mach number at exit
7 D=0.04 //inner tude diameter in m
8 f=0.002 //frictional factor
10 //calculation
11 X1=8.537 //frictional constant fanno parameter at
     entry from gas tables @M1=0.25
12 X2=0 //frictional constant fanno parameter at exit
     from gas tables @M2=1
13 X=X1-X2 //overall frictional constant fanno
     parameter i.e. (4*f*L)/D
14 L=(X*D)/(4*f) //Length of the pipe in m
15
16 //output
```

Scilab code Exa 3.2 To find length of required duct and length required to obtain critical condition

```
1 clc
2 clear
4 //input data
5 M1=0.1 //Mach number at entrance
6 M2=0.5 //Mach number at a section
7 M3=1 //Mach number at critical condition
8 D=0.02 //Diameter of duct in m
9 f=0.004 //Frictional factor
10
11 //calculation
12 X1=66.922 //frictional constant fanno parameter from
      gas tables @M1=0.1
13 X2=1.069 //frictional constant fanno parameter from
     gas tables @M2=0.5
14 X3=0 //frictional constant fanno parameter from gas
     tables @M3=1
15 X4=X1-X3 ///frictional constant fanno parameter
     from M2=0.1 to M3=1
16 L1=(X4*D)/(4*f) //Length of the pipe in m
17 X5=X2-X3 //frictional constant fanno parameter from
     M2=0.5 to M3=1
 L2=(X5*D)/(4*f) //Addition length of the pipe
     required to accelerate into critical condition in
      m
19 L=L1-L2 //Length of the pipe required to accelerate
     the flow from M1=0.1 to M2=0.5 in m
20
21 //output
22 printf('(A)Length of the pipe required to accelerate
```

the flow from M1=%3.1 f to M2=%3.1 f is %3.3 f m\n (B) Additional length required to accelerate into critical condition is %3.5 f m', M1, M2, L, L2)

Scilab code Exa 3.3 To find length of pipe and mass flow rate

```
1 clc
2 clear
4 //input data
5 D=0.05 //inner pipe diameter in m
6 Po=10 //Stagnation Pressure at reservoir in bar
7 To=400 //Stagnation temperature at reservoir in K
8 f=0.002 //frictional factor
9 M1=3 //Mach number at entrance
10 M2=1 //Mach number at end of pipe
11 R=287 //Gas constant in J/kg-K
12 k=1.4 // Adiabatic constant
13
14 //calculation
15 X1=0.522 //frictional constant fanno parameter from
     gas tables @M1=3
16 X2=0 //frictional constant fanno parameter from gas
     tables @M2=1
17 X=X1-X2 //overall frictional constant fanno
     parameter
18 L=(X*D)/(4*f) //Length of the pipe in m
19 p1=0.0272 // Pressure ratio from gas tables (M=3,k)
     =1.4, isentropic)
20 P1=p1*Po //Static pressure at entrance in bar
21 t1=0.3571 //Temperature ratio from gas tables (M=3,k
     =1.4, isentropic)
22 T1=t1*To //Static temperature at entrance in K
23 d1=(P1*10^5)/(R*T1) //Density of air in kg/m^3, P1
     in Pa
```

```
24 a1=sqrt(k*R*T1) //Sound velocity in m/s
25 C1=a1*M1 //air velocity in m/s
26 A1=(%pi*D^2)/4 //Cross sectional area of pipe in m^2
27 m=d1*A1*C1 //Mass flow rate in kg/s
28
29 //output
30 printf('(A)Length of the pipe is %3.2 f m\n (B)Mass
flow rate is %3.4 f kg/s',L,m)
```

Scilab code Exa 3.4 To find temperature velocity at a section and distance between two sections

```
1 clc
2 clear
4 //input data
5 C1=235 // Velocity at entrance in m/s
6 P1=13 //Static Pressure at entry in bar
7 P2=10 //Static Pressure at a point in duct in bar
8 T1=543 //Static temperature at entry in Kelvin
9 D=0.15 //inner duct diameter in m
10 f=0.005 //frictional factor
11 k=1.4 //Adiabatic constant
12 R=287 //Gas constant in J/kg-K
13
14 //calculation
15 a1=sqrt(k*R*T1) //Sound velocity in m/s
16 M1=C1/a1 //Mach number at entry
17 p1=2.138 //Static Pressure ratio from gas tables (
     fanno flow tables, k=1.4, M=0.5)
18 Pt=P1/p1 //Static critical pressure in bar
19 t1=1.143 //Static temperature ratio from gas tables
     (fanno flow tables, k=1.4, M=0.5)
20 Tt=T1/t1 //Static critical temperature in K
21 c1=0.534 //Velocity ratio from gas tables (fanno
```

```
flow tables, k=1.4, M=0.5)
22 Ct=C1/c1 // Critical velocity in m/s
23 p2=1.644 //Pressure ratio from gas tables (fanno
      flow tables, k=1.4)
24 M2=0.64 //Mach number from gas tables (fanno flow
      tables, k = 1.4, p2)
  c2=0.674 //Velocity ratio from gas tables (fanno
25
      flow tables, k=1.4, p2)
26 C2=Ct*c2 //Air velocity at P2 in m/s
27 t2=1.109 //Temperature ratio from gas tables (fanno
      flow tables, k=1.4, p2)
28 T2=t2*Tt //Satic temperature at P2 is K
29 X1=1.06922 //frictional constant fanno parameter
      from gas tables @M1
30 X2=0.353 //frictional constant fanno parameter from
      gas tables @M2
31 X=X1-X2 //overall frictional constant fanno
      parameter
32 L=(X*D)/(4*f) //Length of the pipe in m
33
34 //output
35 printf('(A) Temperature and velocity at section of
      the duct where the pressure has dropped to %3i
      bar due to friction are \%3.1 \,\mathrm{f} K and \%3.2 \,\mathrm{f} m/s\n (
     B) The distance between two section is \%3.3 f m', P2
      ,T2,C2,L)
```

Scilab code Exa 3.5 To find length of pipe and properties of air at exit

```
1 clc
2 clear
3
4 //input data
5 P1=120 //Static pressure at entrance in bar
6 T1=313 //Static temperature at entry in Kelvin
```

```
7 M1=2.5 //Mach number at entrance
8 M2=1.8 //Mach number at exit
9 D=0.2 //inner pipe diameter in m
10 f=0.01/4 //frictional factor
11 k=1.4 //Adiabatic constant
12 R=287 //Gas constant in J/kg-K
13
14 //calculation
15 a1=sqrt(k*R*T1) //Sound velocity in m/s
16 C1=a1*M1 //air velocity in m/s
17 p1=0.292 //Static Pressure ratio from gas tables (
     fanno flow tables, k=1.4, M=2.5)
18 Pt=P1/p1 //Static critical pressure in kPa
19 t1=0.533 //Static temperature ratio from gas tables
     (fanno flow tables, k=1.4, M=2.5)
20 Tt=T1/t1 //Static critical temperature in K
21 c1=1.826 // Velocity ratio from gas tables (fanno
     flow tables, k=1.4, M=2.5)
22 Ct=C1/c1 // Critical velocity in m/s
23 X1=0.432 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M1=3
24 X2=0 //frictional constant fanno parameter from gas
     tables @M2=1
  X3=X1-X2 //overall frictional constant fanno
      parameter
26 L1=(X3*D)/(4*f) //Maximum length of the pipe in m
27 p2=0.474 //Static Pressure ratio from gas tables (
     fanno flow tables, k=1.4, M=1.8)
28 P2=Pt*p2 //Static pressure in kPa
29 t2=0.728 //static temperature ratio from gas tables
     (fanno flow tables, k=1.4, M=1.8)
30 T2=Tt*t2 //Static temperature in K
31 c2=1.536 //Velocity ratio from gas tables (fanno
     flow tables, k=1.4, M=1.8)
32 C2=c2*Ct // Critical velocity in m/s
33 X4=0.242 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M=1.8
34 X5=X4-X2 //overall frictional constant fanno
```

```
parameter
35 L2=(X5*D)/(4*f) //Length between sonic and oulet
       section
36 L=L1-L2 //Length of the pipe in m
37
38 //output
39 printf('(A)Maximum length of the pipe is \%3.2 \text{ f m/n} (
      B) Properties of air at sonic condition:\n
       Pressure is %3i kPa\n
                                     Temperature is \%3.2 f \text{ K}\n
            Velocity is \%3.1 \text{ f m/s} \setminus n (C) Length of the pipe
        is \%3.1 \text{ f m/n} (D) Properties of air at M2=\%3.1 \text{ f}:\ n
            Pressure is %3i kPa\n
                                          Temperature is \%3.2 f
       K \setminus n
                Velocity is \%3.2 \, \text{f m/s/n}, L1, Pt, Tt, Ct, L, M2
       ,P2,T2,C2)
```

Scilab code Exa 3.6 To find mach number properties at a section and critical section and length of the duct

```
1 clc
2 clear
3
4 //input data
5 M1=0.25 //Mach number at entrance
6 ds=0.124 //Change in entropy in kJ/kg-K
7 P1=700 //Static pressure at entrance in bar
8 T1=333 //Static temperature at entry in Kelvin
9 D=0.05 //inner pipe diameter in m
10 f=0.006 //frictional factor
11 k=1.4 //Adiabatic constant
12 R=0.287 //Gas constant in kJ/kg-K
13
14 //calculation
15 p1=exp(ds/R) //Ratio of Stagnation pressure at inlet
      to outlet
16 t1=0.987 //Ratio of Static Temperature to Stagnation
```

```
temperature at entry from gas tables @M1
17 To1=T1/t1 //Stagnation temperature at entry in K
18 p2=0.957 //Ratio of Static pressure to Stagnation
     pressure at entry from gas tables @M1
19 Po1=P1/p2 //Stagnation pressure at entry in kPa
20 Po2=Po1/p1 //Stagnation pressure at exit in kPa
21 a1=sqrt(k*R*10^3*T1) //Sound velocity in m/s, R in J
     /kg
22 C1=a1*M1 //air velocity in m/s
23 p3=4.3615 //Static Pressure ratio from gas tables (
     fanno flow tables, k=1.4, M=0.25)
24 Pt=P1/p3 //Static critical pressure in kPa
25 t1=1.185 //Static temperature ratio from gas tables
     (fanno flow tables, k=1.4, M=0.25)
26 Tt=T1/t1 //Static critical temperature in K
27 c1=0.272 //Velocity ratio from gas tables (fanno
     flow tables, k=1.4, M=0.25)
28 Ct=C1/c1 // Critical velocity in m/s
29 p4=2.4065 //Pressure ratio at entry from gas tables
     @M1, k
30 Pot=Po1/p4 //Stagnation pressure at critical state
     in kPa
31 X1=8.537 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M1, k
32 p5=Po2/Pot //Pressure ratio
33 M2=0.41 //Mach number at exit from gas tables @p5
34 p6=2.629 //Pressure ratio at exit from gas tables
     @p5
35 P2=Pt*p6 //Exit pressure in kPa
36 t2=1.161 //Temperature ratio at exit from gas tables
37 T2=Tt*t2 //Exit temperature in K
38 c2=0.4415 // Velocity ratio at exit from gas tables
     @p5
39 C2=Ct*c2 // Exit velocity in m/s
40 X2=2.141 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M2, k
41 X3=X1-X2 //overall frictional constant fanno
```

```
parameter
42 L=(X3*D)/(4*f) //Length of the pipe in m
43
44 //output
45 printf('(A)Mach number at exit(section 2) is %3.2f \
    n (B)Properties at exit(section 2):\n Pressure
    is %3.2f kPa\n Temperature is %3i K\n
    Velocity is %3.3f m/s\n (C)Length of the duct is
    %3.3f m',M2,P2,T2,C2,L)
```

Scilab code Exa 3.7 TO find final pressure and velocity of duct

```
1 clc
2 clear
4 //input data
5 M1=0.25 // Initial Mach number
6 M2=0.75 //Final mach number
7 P1=1.5 //Inlet pressure in bar
8 T1=300 //Inlet temperature in K
9 k=1.4 // Adiabatic constant
10 R=0.287 //Gas constant in kJ/kg-K
11
12 //calculation
13 a1=sqrt(k*R*10^3*T1) //Sound velocity in m/s, R in J
14 C1=a1*M1 //air velocity in m/s
15 p1=4.3615 // Pressure ratio at entry from gas tables
     @M1, k
16 Pt=P1/p1 //Static critical pressure in kPa
17 c1=0.272 //Velocity ratio from gas tables (fanno
     flow tables, k=1.4,M1)
18 Ct=C1/c1 // Critical velocity in m/s
19 p2=1.385 //Pressure ratio at exit from gas tables
     @M2, k
```

```
20 P2=Pt*p2 //Exit pressure in bar
21 c2=0.779 //Velocity ratio at exit from gas tables
        @M2,k
22 C2=Ct*c2 //Exit velocity in m/s
23
24 //output
25 printf('Final pressure and velocity are %3.4 f bar
        and %3.2 f m/s',P2,C2)
```

Scilab code Exa 3.8 To find inlet mach number mass flow rate and exit temperature

```
1 clc
2 clear
4 //input data
5 T1=333 //Inlet temperature in K
6 D=0.05 //inner duct diameter in m
7 f=0.005/4 //frictional factor
8 L=5 //Length of the pipe in m
9 Pt=101 //Exit pressure in kPa, Pt=P2 Since flow is
     choked
10 M2=1 //Mach number at exit since pipe is choked
11 k=1.4 // Adiabatic constant
12 R=0.287 //Gas constant in kJ/kg-K
13
14 //calculation
15 X=(4*f*L)/D //frictional constant fanno parameter
16 M1=0.6 //Inlet mach number
17 t1=1.119 //Temperature ratio at entry from fanno
     flow gas tables @M1, k
18 Tt=T1/t1 //Static critical temperature in K
19 at=sqrt(k*R*10^3*Tt) //Sound velocity in m/s, R in J
20 Ct=at //air velocity in m/s
```

```
21 d_t=Pt/(R*Tt) // Density at exit in kg/m^3
22 At=%pi*D^2/4 // Critical area in m^2
23 m=d_t*At*Ct // Mass flow rate in kg/s
24
25 // output
26 printf('(A) Mach number at inlet is %3.1 f \n (B) Mass flow rate is %3.5 f kg/s\n (C) Exit temperature is %3.3 f K', M1, m, Tt)
```

Scilab code Exa 3.9 To find length diameter of the duct pressure at exit Stagnation pressure lose and to verify exit mach number

```
1 clc
2 clear
4 //input data
5 m=8.25 //Mass flow rate in kg/s
6 M1=0.15 //Mach number at entrance
7 M2=0.5 //\mathrm{Mach} number at exit
8 P1=345 //Static pressure at entrance in kPa
9 T1=38+273 //Static temperature at entry in Kelvin
10 f=0.005 //frictional factor
11 k=1.4 //Adiabatic constant
12 R=0.287 //Gas constant in kJ/kg-K
13
14 //calcu; ation
15 d1=(P1*10^3)/(R*10^3*T1) // Density of air in kg/m<sup>3</sup>,
      P1 in Pa
16 a1=sqrt(k*R*10^3*T1) //Sound velocity in m/s, R in J
     /kg
17 C1=a1*M1 //air velocity in m/s
18 A1=m/(d1*C1) //Inlet area in m^2
19 D=(\sqrt{4*A1})/(\sqrt{pi}))*10^3 //inner duct diameter in
20 p1=7.3195 //Static Pressure ratio from gas tables (
```

```
fanno flow tables, k=1.4, M=0.15)
21 Pt=P1/p1 //Static critical pressure in kPa
22 t1=1.1945 //Static temperature ratio from gas tables
      (fanno flow tables, k=1.4, M=0.15)
23 Tt=T1/t1 //Static critical temperature in K
24 c1=0.164 //Velocity ratio from gas tables (fanno
     flow tables, k=1.4, M=0.15)
25 Ct=C1/c1 // Critical velocity in m/s
26 p2=0.984 //Pressure ratio at entry from gas tables (
     fanno flow tables, k=1.4, M=0.15)
27 Po1=P1/p2 //Stagnation pressure at entry in kPa
28 p3=3.928 //Stagnation pressure ratio at entry from
      gas tables (fanno flow tables, k=1.4, M=0.15)
29 Pot=Po1/p3 //Stagnation pressure at critical state
     in kPa
  X1=28.354 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k
31 p5=2.138 //Pressure ratio at exit from gas tables (
     fanno flow tables, k=1.4,M2)
32 P2=Pt*p5 //Exit pressure in kPa
33 t2=1.143 //Temperature ratio at exit from gas tables
      (fanno flow tables, k=1.4,M2)
34 T2=Tt*t2 //Exit temperature in K
35 c2=0.534 //Velocity ratio at exit from gas tables (
     fanno flow tables, k=1.4,M2)
36 C2=Ct*c2 //Exit velocity in m/s
37 p6=1.34 //Stagnation pressure ratio at exit from gas
       tables (fanno flow tables, k=1.4,M2)
38 Po2=Pot*p6 //Stagnation pressure at exit in kPa
39 SPL=Po1-Po2 //Stagnation Pressure lose in kPa
40 X2=1.069 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M2, k
41 X3=X1-X2 //overall frictional constant fanno
     parameter
42 L=(X3*D*10^-3)/(4*f) //Length of the duct in m
43
44 //verification
45 a2=sqrt(k*R*10^3*T2) //Sound velocity in m/s, R in J
```

```
/kg
46 M2_v=C2/a2 //air velocity in m/s
47
48 //output
49 printf('(A)Length of the duct is %3.2 f m\n (B)
Diameter of the duct is %3i mm\n (C)Pressure and diameter at exit are %3.2 f kPa, and %3i mm
respectively\n (D)Stagnation Pressure lose is %3i kPa\n (E)Using exit velocity %3.2 f m/s,
temperature %3.2 f K Mach number is found to be %3.2 f',L,D,P2,D,SPL,C2,T2,M2_v)
```

Scilab code Exa 3.10 To find length of the pipe Mach number percent of stagnation pressure loss and length required to reach choking condition

```
1 clc
2 clear
4 //input data
5 M1=0.25 //Mach number at entrance
6 f=0.01/4 //frictional factor
7 D=0.15 //inner pipe diameter in m
8 p1=0.8 //Stagnation pressure ratio at exit to entry
     when loss in stagnation pressure is 20%
9 M3=0.8 //Mach number at a section
10
11 //calculation
12 p2=2.4065 //Ratio of Stagnation pressure at entry
     from gas tables @M1, k=1.4
13 X1=8.537 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M1
14 p3=p1*p2 //Ratio of Stagnation pressure at exit
15 M2=0.32 //Exit mach number at p1=0.8
16 X2=4.447 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M2
```

Scilab code Exa 3.11 To find length of the pipe and mass flow rate

```
1 clc
2 clear
4 //input data
5 D=0.3 //inner duct diameter in m
6 P1=10 //Static pressure at entrance in bar
7 T1=400 //Static temperature at entry in Kelvin
8 M1=3 //Mach number at entrance
9 M2=1 //Mach number at exit
10 k=1.3 //Adiabatic constant
11 R=287 //Specific Gas constant in J/kg-K, wrong
     printing in question
12 f=0.002 //frictional factor
13
14 //calculation
15 p1=0.233 //Pressure ratio from gas tables (M=3,k
     =1.4, is entropic)
```

```
16 Pt=P1/p1 //Static pressure at entrance in bar
17 t1=0.489 //Temperature ratio from gas tables (M=3,k)
      =1.4, is entropic)
18 Tt=T1/t1 //Static temperature at entrance in K
19 X1=0.628 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.3
20 L1=(X1*D)/(4*f) //Length of the pipe in m
21 d_t=(Pt*10^5)/(R*Tt) //Density at critical state in
      kg/m<sup>3</sup>, Pt in Pa
22 at=sqrt(k*R*Tt) //Sound velocity in m/s, R in J/kg
23 Ct=at //air velocity in m/s
24 At=(\%pi*D^2)/4 //Critical area in m^2
25 m=d_t*At*Ct //Mass flow rate in kg/s
26
27 //output
28 printf('(A) Length of the pipe is \%3.2 \text{ f m/n} (B) Mass
      flow rate is \%3.3 \, f \, kg/s', L1, m)
```

Scilab code Exa 3.12 To find length and Mach number of given pipe and at required section

```
1 clc
2 clear
3
4 //input data
5 M1=0.25 //Mach number at entrance
6 f=0.04/4 //frictional factor
7 D=0.15 //inner duct diameter in m
8 p1=0.9 //Stagnation pressure ratio at exit to entry
        when loss in stagnation pressure is 10%
9 ds=190 //Change in entropy in J/kg-K
10 k=1.3 //Adiabatic constant
11 R=287 //Specific Gas constant in J/kg-K, wrong
        printing in question
```

```
13 //calculation
14 p2=2.4064 //Ratio of stagnation pressures at inlet
      to critical state from gas tables fanno flow
      tables @M1, k=1.3
15 X1=8.537 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.3
16 p3=p1*p2 //Ratio of stagnation pressures at exit to
      critical state from gas tables fanno flow tables
     @M1. k = 1.3
17 M2=0.28 //Mach number at p1=0.9 from gas tables @p3
18 X2=6.357 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M2, k=1.3
  X3=X1-X2 //overall frictional constant fanno
      parameter
20 L1=(X3*D)/(4*f) //Length of the pipe in m
21 p4=exp(ds/R) //Ratio of Stagnation pressure at entry
       to Stagnation pressure where ds=190
22 p5=p1/p4 //Ratio of Stagnation pressures where ds
      =190 to critical state
23 M3=0.56 //Mach number where ds=190
24 X4=0.674 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M3, k=1.3
  X5=X1-X4 //overall frictional constant fanno
25
      parameter
26 L2=(X5*D)/(4*f) //Length of the pipe in m
27
28 //output
29 printf('(A) Length of the pipe is \%3.3 \text{ fm} \setminus \text{n} (B) Length
       of the pipe would require to rise entropy by %3i
       J/kg-K is \%3.5 f m\n (C) Mach number is \%3.2 f, L1,
     ds, L2, M3)
```

Scilab code Exa 3.13 To find length of the pipe percent of stagnation pressure change and entropy change

```
1 clc
2 clear
4 //input data
5 Po1=200 //Stagantion pressure at inlet in kPa
6 To1=303 //Stagnation temperature at inlet in K
7 M1=0.2 //Inlet Mach number from diagram
8 D=0.025 //inner tude diameter in m(missing data)
9 M2=0.8 //Outlet Mach number
10 f=0.005/4 //frictional factor
11 R=287 //Gas constant in J/kg-K
12
13 //calculation
14 t1=0.992 //Static to Stagnation temperature ratio at
      entry from gas tables (M1, k=1.4, isentropic)
15 T1=To1*t1 //Static temperature in K
16 p1=0.973 //Static to Stagnation pressure ratio at
      entry from gas tables (M1, k=1.4, isentropic)
17 P1=Po1*p1 //Static pressure in kPa
18 p2=2.964 //Stagnation pressure ratio at inlet to
      critical state from gas tables (M1, k=1.4, fanno
     flow)
19 Pot=Po1/p2 //Stagnation pressure at critical state
     in kPa
20 X1=14.533 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.4
21 p3=1.038 //Stagnation pressure ratio at outlet to
      critical state from gas tables (M1, k=1.4, fanno
      flow)
22 Po2=Pot*p3 //Stagnation pressure at exit in kPa
23 X2=0.073 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M2, k=1.4
24 X3=X1-X2 //overall frictional constant fanno
     parameter
25 L1=(X3*D)/(4*f) //Length of the pipe in m
26 SPL=(1-(p3/p2))*100 // Percentage decrease in
      stagnation pressure in percent
27 ds=R*log(Po1/Po2) //Change of entropy in kJ/kg-K
```

```
28
29 //output
30 printf('(A)Length of the pipe is %3.1 f m\n (B)
Percentage decrease in stagnation pressure is %3
.2 f percent\n (C)Change of entropy is %3.3 f kJ/kg
-K',L1,SPL,ds)
```

Scilab code Exa 3.14 To find maximum length of pipe and conditions of air at exit

```
1 clc
2 clear
3
4 //input data
5 D1=0.03 //Inlet duct diameter in m
6 D2=0.015 //Throat diameter of
                                  duct in m
7 Po1=750 //Stagantion pressure at inlet in kPa
8 To1=450 //Stagnation temperature at inlet in K
9 f=0.02/4 //frictional factor
10 L=0.25 //Length of the duct in m
11 k=1.4 //Adiabatic constant
12 R=287 //Gas constant in J/kg-K
13
14 //calculation
15 ar=(D1/D2)^2 // Ratio of areas
16 M1=2.94 //Mach number at inlet from gas tables (ar,k
     =1.4, isentropic)
17 p1=0.0298 //Static to Stagnation pressure ratio at
     entry from gas tables (M1, k=1.4, isentropic)
18 P1=Po1*p1 //Static pressure at inlet in kPa
19 t1=0.367 //Static to Stagnation temperature ratio at
      entry from gas tables (M1, k=1.4, isentropic)
20 T1=To1*t1 //Static temperature at inlet in K
21 a1=sqrt(k*R*T1) //Sound velocity in m/s
22 C1=a1*M1 //Air velocity at inlet in m/s
```

```
23 X1=0.513 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.4
24 p2=0.226 //Static to Critical pressure ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
25 Pt=P1/p2 //Critical pressure in kPa
26 c1=1.949 //Static to Critical velocity ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
27 Ct=C1/c1 // Critical velocity in m/s
28 t2=0.439 //Static to Critical temperature ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
29 Tt=T1/t2 //Critical temperature in K
30 L1=(X1*D1)/(4*f) //Length of the pipe from inlet to
      critical state in m
31 L2=L1-L //Length of the pipe from required point to
      critical state in m
32 X2=(4*f*L2)/D2 //frictional constant fanno parameter
33 M2=2.14 //Mach number at inlet from gas tables (X2,k)
      =1.4, fanno flow)
34 p3=0.369 //Static to Critical pressure ratio at
      outlet from gas tables, fanno flow tables @M2, k
      =1.4
35 P2=Pt*p3 //Exit pressure in kPa
36 c2=1.694 //Static to Critical velocity ratio at
      outlet from gas tables, fanno flow tables @M2, k
      =1.4
37 C2=Ct*c2 //Exit velocity in m/s
38 t3=0.623 //Static to Critical temperature ratio at
      outlet from gas tables, fanno flow tables @M2, k
39 T2=t3*Tt //Exit temperature in K
40
41 //output
42 printf('(A)Maximum length of the pipe is \%3.4 \text{ f m/n} (
     B) Condition of air at exit:\n
                                        Pressure is %3.2
                 Velocity is \%3.2 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n}
                                              Temperature
       is \%3.2 \text{ f K/n', L1, P2, C2, T2)}
```

Scilab code Exa 3.15 To find Maximum and required length of the pipe and properties of air at a section

```
1 clc
2 clear
3
4 //input data
5 f=0.002 //frictional factor
6 C1=130 //Air velocity at inlet in m/s
7 T1=400 //Inlet temperature at inlet in K
8 P1=250 //Inlet pressure at inlet in kPa
9 D=0.16 //Inlet duct diameter in m
10 p1=0.8 //Stagnation pressure ratio at exit to entry
     when loss in stagnation pressure is 20%
11 L1=35 //Length of duct from inlet to required
     section
12 k=1.4 // Adiabatic constant
13 R=287 //Gas constant in J/kg-K
14
15 //calculation
16 a1=sqrt(k*R*T1) //Sound velocity in m/s
17 M1=C1/a1 //Mach number at inlet
18 p2=0.9295 //Static to Stagnation pressure ratio at
     entry from gas tables (M1, k=1.4, isentropic)
19 Po1=P1/p2 //Stagantion pressure at inlet in kPa
20 Po2=0.8*Po1 //Stagantion pressure at outlet in kPa
21 p3=1.89725 //Stagnation pressure ratio at inlet to
      critical state from gas tables (M1, k=1.4, fanno
     flow)
22 Pot=Po1/p3 //Stagnation pressure at critical state
     in kPa
23 X1=4.273 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M1, k=1.4
24 p4=3.33725 //Static Pressure ratio from gas tables (
```

```
fanno flow tables, k=1.4, M=0.5)
25 Pt=P1/p4 //Static critical pressure in kPa
26 t1=1.175 //Static temperature ratio from gas tables
     (fanno flow tables, k=1.4, M=0.5)
27 Tt=T1/t1 //Static critical temperature in K
28 c1=0.347 // Velocity ratio from gas tables (fanno
     flow tables, k=1.4, M=0.5)
29 Ct=C1/c1 // Critical velocity in m/s
30 p5=Po2/Pot //Pressure ratio
31 M2=0.43 //Mach number at p1=0.8
32 X2=1.833 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M2, k=1.4
33 X3=X1-X2 //overall frictional constant fanno
     parameter
34 L2=(X3*D)/(4*f) //Length of the pipe in m, (from
      required section to critical state)
35 L3=(X1*D)/(4*f) //Length of the pipe in m, (from
     required inlet to critical state)
36 L4=L3-L1 //Length of the pipe in m
37 X4=(4*f*L3)/D //frictional constant fanno parameter
38 M3=0.39 //Mach number at L1=35m
39 p6=2.767 //Static to Critical pressure ratio at
      outlet from gas tables, fanno flow tables @M3, k
      =1.4
40 P2=Pt*p6 //Exit pressure in kPa
41 t2=1.1645 //Static to Critical temperature ratio at
      outlet from gas tables, fanno flow tables @M3, k
     =1.4
42 T2=Tt*t2 //Exit temperature in K
43 c2=0.42087 //Static to Critical velocity ratio at
      outlet from gas tables, fanno flow tables @M3, k
44 C2=Ct*c2 //Exit velocity in m/s
45
46 //output
47 printf('(A) Length of pipe required for p=\%3.1 f m is
     %3.3 f m\n (B) Properties of air at section %3i
     from inlet:\n Temperature is \%3.3 f K\n
```

Pressure is $\%3.2 \text{ f kPa}\$ n Velocity is $\%3.1 \text{ f m/s}\$ n (C)Maximum length of the pipe is %3.2 f m',p1,L2, L1, T2, P2, C2, L3)

Scilab code Exa 3.16 To find exit mach number and inlet temperature and pressure

```
1 clc
2 clear
4 //input data
5 D=0.3 //inner pipe diameter in m
6 Q=1000 //Discharge in m<sup>3</sup>/min
7 P2=150 //Exit pressure in kPa
8 T2=293 //Exit temperature in K
9 L1=50 //Length of the pipe in m
10 f=0.005 //frictional factor
11 k=1.4 //Adiabatic constant
12 R=287 //Gas constant in J/kg-K
13
14 //calculation
15 A=\%pi*D^2/4 //Area of duct in m^2
16 C2=Q/(A*60) //Exit air velocity in m/s
17 a2=sqrt(k*R*T2) //Sound velocity in m/s
18 M2=C2/a2 //Exit mach number
19 p1=1.54 ///Static to Critical pressure ratio at
     outlet from gas tables, fanno flow tables @M2, k
20 Pt=P2/p1 // Critical pressure in kPa
21 t1=1.10 //Static to Critical temperature ratio at
     outlet from gas tables, fanno flow tables @M2, k
     =1.4
22 Tt=T2/t1 // Critical temperature in K
23 X1=0.228 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M2, k=1.4
```

```
24 L2=(X1*D)/(4*f) //Length of the pipe in m
25 L2=L1+L2 //Overall length of pipe from inlet to
      critical state in m
26 X2=(4*f*L2)/D //frictional constant fanno parameter
      for M1
27 M1=0.345 //Inlet Mach number from gas tables fanno
      flow tables @X2, k=1.4
  p2=3.14 //Static to Critical pressure ratio at inlet
       from gas tables, fanno flow tables @M1, k=1.4
29 P1=Pt*p2 //Static pressure at inlet in kPa
30 t2=1.17 //Static to Critical temperature ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
31 T1=Tt*t2 //Static temperature at inlet in K
32
33 //output
34 printf('(A) Mach number at the exit is \%3.3 \text{ f} \setminus n (B)
      Inlet pressure and temperature are %3.3 f kPa and
     \%3.2 \text{ f K}', M2, P1, T1)
```

Scilab code Exa 3.17 To find Static and Stagnation conditions velocity length and mass flow rate of air in pipe

```
1 clc
2 clear
3
4 //input data
5 D=0.0254 //inner pipe diameter in m
6 f=0.003 //frictional factor
7 M1=2.5 //Inlet Mach number
8 To1=310 //Stagnation temperature at inlet in K
9 P1=0.507 //Static pressure at inlet in kPa
10 M2=1.2 //Exit mach number
11 k=1.4 //Adiabatic constant
12 R=287 //Gas constant in J/kg-K
```

- 14 //calculation
- 15 t1=0.4444 //Static to Stagnation temperature ratio at entry from gas tables (M1, k=1.4, isentropic)
- 16 T1=To1*t1 //Static temperature at inlet in K
- 17 p1=0.05853 //Static to Stagnation pressure ratio at entry from gas tables (M1, k=1.4, isentropic)
- 18 Po1=P1/p1 //Stagantion pressure at inlet in kPa
- 19 a1=sqrt(k*R*T1) //Sound velocity at inlet in m/s, R in J/kg
- 20 C1=a1*M1 //air velocity at inlet in m/s
- 21 c1=2.95804 //Static to Critical velocity ratio at inlet from gas tables, isothermal tables @M1, k=1.4
- 22 Ctt=C1/c1 // Critical velocity at isothermal state in m/s
- 23 p2=0.33806 //Static to Critical pressure ratio at inlet from gas tables, isothermal @M1, k=1.4
- 24 Ptt=P1/p2 // Critical pressure at isothermal state in bar
- 25 p3=3.61691 //Stagnation pressure ratio at inlet to isothermal state from gas tables, isothermal tables @M1, k=1.4
- 26 Pott=Po1/p3 // Critical pressure at isothermal state in ${\rm K}$
- 27 t2=1.968748 //Stagnation temperature ratio at inlet to isothermal state from gas tables , isothermal tables @M1, k=1.4
- 28 Tott=To1/t2 // Critical temperature at isothermal state in K
- 29 X1=1.28334 // frictional constant fanno parameter from gas tables, fanno flow tables @M1, k=1.4
- 30 c2=1.4186 // Static to Critical velocity ratio at exit from gas tables, isothermal tables @M2, k=1.4
- 31 C2=Ctt*c2 //Exit velocity in m/s
- 32 p4=0.7043 //Static to Critical pressure ratio at inlet from gas tables, isothermal @M2, k=1.4
- 33 P2=Ptt*p4 //Exit pressure in bar
- 34 p5=1.07026 //Stagnation pressure ratio at inlet to isothermal state from gas tables, isothermal

```
tables @M2, k=1.4
35 Po2=Pott*p5 //Stagnation pressure at exit in bar
36 t3=1.127 //Stagnation temperature ratio at inlet to
      isothermal state from gas tables, isothermal
      tables @M2, k=1.4
37 To2=Tott*t3 //Stagnation temperature at exit in bar
38 T2=T1 //Exit temperature in K, Since isothermal flow
39 X2=0.19715 //frictional constant fanno parameter
      from gas tables, fanno flow tables @M2, k=1.4
40 X3=X1-X2 //Overall frictional constant fanno
      parameter
41 L1=(X3*D)/(4*f) //Length of the pipe in m
42 d1=(P1*10^5)/(R*T1) //Density of air in kg/m^3, P1
      in Pa
43 A1=(\%pi*D^2)/4 //Cross sectional area of pipe in m^2
44 m=d1*A1*C1 //Mass flow rate in kg/s
45
46 //output
47 printf('At M=%3.1f:\n (A) Static pressure and static
       temperature are %3.5f bar and %3.3f K
      respectively \n (B) Stagnation pressure and
      temperature are %3.4 f bar and %3.3 f K
      respectively \n (C) Velocity of air is \%3.3 \, \text{f m/s} \n
      (D) Distance of the section from innlet is \%3.3 f m
      \n (E) Mass flow rate is \%3.5 \, \text{f} \, \text{kg/s}, M2, P2, T2, Po2,
      To2,C2,L1,m)
```

Scilab code Exa 3.18 To find length of pipe and properties of air at a section and limiting mach number

```
1 clc
2 clear
3
4 //input data
5 D=0.12 //inner duct diameter in m
```

```
6 f=0.004 //frictional factor
7 M1=0.4 //Inlet Mach number
8 P1=300 //Static pressure at inlet in kPa
9 T1=310 //Static temperature at inlet in K
10 M2=0.6 //Exit mach number
11 k=1.4 //Adiabatic constant
12
13 //calculation
14 p1=2.118 //Static to Critical pressure ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
15 Pt=P1/p1 // Critical pressure in kPa
16 X1=1.968 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M1, k=1.4
17 p2=1.408 //Static to Critical pressure ratio at
     outlet from gas tables, fanno flow tables @M2, k
18 P2=Pt*p2 //Exit pressure in kPa
19 X2=0.299 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M2, k=1.4
20 X3=X1-X2 //Overall frictional constant fanno
     parameter
21 L1=(X3*D)/(4*f) //Length of the pipe in m
22 T2=T1 //Exit temperature in K, Since isothermal flow
23 Ttt=T1 // Critical temperature at critical state,
      Since isothermal flow
24 Mtt=1/sqrt(k) //Limiting Mach number
25 L2=(X1*D)/(4*f) //Length of the duct required to
      attain limiting mach number in m
26
27 //output
28 printf('(A) Length of the duct required to change the
      mach number to %3.1 f is %3.4 f m\n (B) Pressure
     and temperature at M=\%3.1f is \%3i kPa and \%3i K
      respectively\n (C) Length of the duct required to
      attain limiting mach number is \%3.3 f m\n (D) State
       of air at limiting mach number \%3.3f is subsonic
      ', M2, L1, M2, P2, T2, L2, Mtt)
```

Scilab code Exa 3.19 To find diameter of pipe

```
1 clc
2 clear
4 //input data
5 m=0.32 //Mass flow rate in kg/s
6 L=140 //Length of the pipe in m
7 P1=800 //Inlet pressure in N/m<sup>2</sup>, wrong units in
      textbook
  T1=288 //Inlet temperature in K
9 P2=600 //Outlet pressure in N/m<sup>2</sup>, wrong units in
      textbook
10 f=0.006 //frictional factor
11 R=287 //Gas constant in J/kg-K
12
13 //calculation
14 //Using Adiabatic Equation d=1/(((((\%pi*(d/2)^2)^2))
      /(2*m^2*R*T))*(P1^2-P2^2))-(log(P1/P2)))/(2*f*L))
       and converting into 5th degree polynomial of d
15 a = (\%pi^2*(P1^2-P2^2))/(32*m^2*R*T1) //Coefficient of
      power 5
16 b = log(P1/P2) // Coefficient of power 1
17 c=2*f*L //Coefficient of constant
18 p5=poly([-c -b 0 0 0 a], 'd', 'coeff') //Solving
      polynomial of degree 5
19 d=roots(p5, "e") //Command to find roots
20
21 //output
22 disp("Possible values for diameter of pipe are:\n")
     //Displays whatever within paranthesis
23 disp([d]) //To display roots
24 printf('\nTherefore Diameter of the pipe is 0.7 m')
```

Scilab code Exa 3.20 To determine required inlet conditions

```
1 clc
2 clear
4 //input data
5 Q=225/60 // Discharge in m<sup>3</sup>/s
6 T2=293 //Exit temperature in K
7 P2=1.25 //Exit pressure in bar
8 L1=30 //Length of the pipe in m
9 D=0.15 //Duct diameter in m
10 f=0.02/4 //frictional factor
11 k=1.4 // Adiabatic constant
12 R=287 //Gas constant in J/kg-K
13
14 //calculation
15 A = \text{pi} * D^2 / 4 / \text{area in } m^2
16 C2=Q/A //Exit air velocity in m/s
17 a2=sqrt(k*R*T2) //Exit sound velocity in m/s
18 M2=C2/a2 //Exit mach number
19 p1=1.703 //Static to Critical pressure ratio at
      outlet from gas tables, fanno flow tables @M2, k
      =1.4
20 Pt=P2/p1 // Critical pressure in bar
21 c1=0.654 //Static to Critical velocity ratio at
      outlet from gas tables, fanno flow tables @M2, k
      =1.4
22 Ct=C2/c1 // Critical velocity in m/s
23 t1=1.114 //Static to Critical temperature ratio at
      outlet from gas tables, fanno flow tables @M2, k
      =1.4
24 Tt=T2/t1 // Critical temperature in K
25 X1=0.417 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.4
```

```
26 X2=(4*f*L1)/D //frictional constant fanno parameter
27 X3=X1+X2 //overall frictional constant fanno
      parameter
28 M1=0.32 //Mach number at entrance
29 p2=3.385 //Static to Critical pressure ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
30 P1=Pt*p2 //Static pressure at inlet in bar
31 c2=0.347 //Static to Critical velocity ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
32 C1=Ct*c2 //Air velocity at inlet in m/s
33 t2=1.176 //Static to Critical temperature ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
34 T1=Tt*t2 //Static temperature at inlet in K
35
36 //output
37 printf('Required Inlet Condition:\n
                                            Pressure is
     \%3.4 \text{ f bar}  Velocity is \%3.3 \text{ f m/s} 
     Temperature is %3.1 f K',P1,C1,T1)
```

Scilab code Exa 3.21 To find mach number at sections and mean value of friction

```
1 clc
2 clear
3
4 //input data
5 D1=0.134 //Inlet duct diameter in m
6 Po1=7 //Stagnation pressure at inlet in bar
7 P1=0.245 //Static pressure at 5*D1 i.e. L1 in bar
8 P2=0.5 //Static pressure at 33*D1 i.e. L2 in bar
9 D2=0.0646 //throat diameter in m
10 L1=5*D1 //Length of nozzle till section-1 in m
11 L2=33*D1 //Length of nozzle till section-2 in m
12
13 //calculation
```

```
14 ar=(D1/D2)^2 //Ratio of areas
15 p1=P1/Po1 //Pressure ratio
16 APR1=p1*ar //Area Pressure ratio i.e. (A1*P1)/(At*
     Po1)
17 M1=2.54 //Mach number at inlet from isentropic gas
      tables @APR1
  X1=0.44 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.4
19 APR2=0.3073 //Area Pressure ratio i.e. (A2*P2)/(At*
     Po1)
20 M2=1.54 // Exit mach number
21 X2=0.151 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M2, k=1.4
22 X3=X1-X2 //overall frictional constant fanno
      parameter
  L3=L2-L1 //Length of the nozzle (Section-1 to
      Section -2) in m
24 f = (X3*D1)/(4*L3) // frictional factor
25
26 //output
27 printf('(A) Mach number at %3.3 f m and %3.3 f m are %3
      .2 f and \%3.2 f respectively \n (B) Mean value of
      friction between two sections is %3.5 f', L1, L2, M1,
     M2,f)
```

Chapter 4

Flow Through Constant Area Ducts Rayleigh Flow

Scilab code Exa 4.1 To find heat transferred per unit mass flow and temperature change

```
1 clc
2 clear
4 //input data
5 Pa=1*10^5 //Pressure of dry air in Pa
6 To1=288 //Total stagnation temperature at inlet in K
7 M1=1 //Mach number at inlet of pipe
8 M2=0.8 //Mach number at exit o pipe
9 Cp=1.005 // Specific heat of dry air in kJ/kg-K
10
11 //calculation
12 t1=0.834 //Temperature ratio at entry, i.e.entry
     static temperature to total temperature from gas
     tables at isentropic, M1=1 & adiabatic constant
     =1.4
13 T1=t1*To1 //Static temperature at entry in Kelvin
14 t2=0.964 //Temperature ratio at critical state, i.e.
      exit stagnation temperature to critical state
```

```
temperature from gas tables at Rayleigh, M2=0.8 &
       adiabatic constant=1.4
15 To2=t2*To1 //Total stagnation temperature at exit in
      K
16 t3=1.025 //Temperature ratio at exit, i.e. exit
      static temperature to total temperature from gas
      tables at isentropic, M1=1 & adiabatic constant
      =1.4
17 T2=t3*T1 //Static temperature at exit in Kelvin
18 q=Cp*(To1-To2) //The heat transferred per unit mass
      flow in kJ/kg
19 dT=To1-T2 //Change in temperature in K
20
21 //output
22 printf('(A)The heat transferred per unit mass flow
      is \%3.3 \, \text{f kJ/kg (rejected)} \setminus \text{n (B)} \text{ Change in}
      temperature is \%3.3 \, \text{f K}, q, dT)
```

Scilab code Exa 4.2 To calculate flow properties at the exit

```
1 clc
2 clear
3
4 //input data
5 M1=3 //Mach number at entry
6 P1=1 //Static Pressure at entry in atm
7 T1=300 //Static Temperature at entry in K
8 q=300 //The heat transferred per unit mass flow in kJ/kg
9 R=287 //Gas constant in J/kg-K
10 Cp=1.005 //Specific heat of dry air in kJ/kg-K
11 // calculation
12 t1=2.8 //Temperature ratio at entry from gas tables (M=3,k=1.4,isentropic)
```

```
14 To1=t1*T1 //Total stagnation temperature at inlet in
15 p1=0.0272 // Pressure ratio
                                at entry from gas tables
       (M=3, k=1.4, isentropic)
16 Po1=P1/p1 //Stagnation Pressure at entry in atm
17 p2=0.176 //Static Pressure ratio at critical state
      from gas tables (Rayleigh, k=1.4,M=3)
18 Pt=P1/p2 //Static critical pressure in atm
19 p3=3.424 //Stagnation Pressure ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=3)
20 Pot=Po1/p3 //Stagnation critical pressure in atm
21 t2=0.281 //Static temperature ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=3)
22 Tt=T1/t2 //Static critical temperature in K
23 t3=0.654 //Stagnation temperature ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=3)
24 Tot=To1/t3 //Stagnation critical temperature in K
25 To2=(q/Cp)+To1 //Stagnation exit temperation in K
26 t4=(To2/Tot) //Stagnation Temperature ratio at exit
27 M2=1.6 //Mack number at exit from gas tables (
      Rayleigh, t4)
28 p4=0.524 //Static Pressure ratio at exit from gas
      tables (Rayleigh, t4 = 0.866, M = 1.6)
29 P2=p4*Pt //Static Pressure at exit in atm
30 p5=1.176 //Stagnation Pressure ratio at exit from
      gas tables (Rayleigh, t4=0.866, M=1.6)
31 Po2=p5*Pot //Stagnation Pressure at exit in atm
32 t5=0.702 //Static temperature ratio at exit from gas
       tables (Rayleigh, t4 = 0.866, M = 1.6)
33 T2=t5*Tt //Static exit temperature in K
34 d2=P2*101325/(R*T2) //density of air at exit in kg/m
      ^3, P2 in N/m^2
35
36 //outpur
37 printf('(A)The Mach numer at exit is \%3.1 \text{ f} \setminus n (B)
      Static Pressure at exit is %3.3f atm\n (C) Static
      exit temperature is \%3.2 f K\n (D) density of air
      at exit is \%3.4 \text{ f kg/m}^3 \ln \text{ (E) Stagnation exit}
```

Scilab code Exa 4.3 To find mass flow rate per unit area Final temperature and heat added per kg of air flow

```
1 clc
2 clear
3
4 //input data
5 M1=2 //Mach number at entry
6 P1=1.4 //Static Pressure at entry in bar
7 T1=323 //Static Temperature at entry in K
8 Cp=1.005 //Specific heat of dry air in kJ/kg-K
9 k=1.4 //Adiabatic constant
10 R=287 //Gas constant in J/kg-K
11
12 //calculation
13 t1=0.555 //Temperature ratio at entry from gas
     tables (M=2,k=1.4,isentropic)
14 To1=T1/t1 //Total stagnation temperature at inlet in
      \mathbf{K}
15 p1=0.364 // Pressure ratio
                             at entry from gas tables
     (M=2, k=1.4, isentropic)
16 Po1=P1/p1 //Stagnation Pressure at entry in bar
17 t2=0.529 //Static temperature ratio at critical
     state from gas tables (Rayleigh, k=1.4,M=2)
18 Tt=T1/t2 //Static critical temperature in K
19 t3=0.793 //Stagnation temperature ratio at critical
     state from gas tables (Rayleigh, k=1.4,M=2)
20 Tot=To1/t3 //Stagnation critical temperature in K
21 To2=Tot //Stagnation exit temperation in K
22 q=Cp*(To2-To1) //The heat transferred per unit mass
     flow in kJ/kg
23 a1=sqrt(k*R*T1) //Sound velocity in m/s
```

```
24 C1=M1*a1 //Air velocity in m/s
25 d1=(P1*10^5)/(R*T1) //density of air in kg/m^3
26 ma=d1*C1 //Mass flow rate per unit area in kg/s-m^3
27
28 //output
29 printf('(A) Mass flow rate per unit area is %3.2 f kg/s-m^2\n (B) Final temperarure is %3.3 f K\n (C) Heat added is %3.2 f kJ/kg', ma, Tt, q)
```

Scilab code Exa 4.4 To calculate pressure and Mach number after combustion in combustion chamber

```
1 clc
2 clear
4 //input data
5 C1=100 // Air velocity into combustion chamber in m/s
6 P1=3 //Static Pressure at entry in bar
7 T1=318 //Static Temperature at entry in K
8 q=630 //The heat transferred per unit mass flow in
     kJ/kg
9 Cp=1.005 //Specific heat of dry air in kJ/kg-K
10 k=1.4 //Adiabatic constant
11 R=287 //Gas constant in J/kg-K
12
13 //calculation
14 a1=sqrt(k*R*T1) //Sound velocity in m/s
15 M1=C1/a1 //Mach number at entry
16 t1=0.985 //Temperature ratio at entry from gas
     tables (M1, k=1.4, isentropic)
17 To1=T1/t1 //Total stagnation temperature at inlet in
      K
18 p1=0.947 // Pressure ratio
                             at entry from gas tables
     (M1, k=1.4, isentropic)
19 Po1=P1/p1 //Stagnation Pressure at entry in bar
```

```
20 To2=(q/Cp)+To1 //Stagnation exit temperation in K
21 p2=2.163 //Static Pressure ratio at critical state
     from gas tables (Rayleigh, k=1.4, M=0.28)
22 Pt=P1/p2 //Static critical pressure in bar
23 p3=2.206 //Stagnation Pressure ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=0.28)
24 Pot=Po1/p3 //Stagnation critical pressure in bar
25 t2=0.310 //Stagnation temperature ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=0.28)
  Tot=To1/t2 //Stagnation critical temperature in K
27 t3=(To2/Tot) //Stagnation Temperature ratio at exit
28 M2=0.7 //Mack number at exit from gas tables (
     Rayleigh, t3)
  p4=1.423 //Static Pressure ratio at exit from gas
     tables (Rayleigh, t3, M2)
  P2=p4*Pt //Static Pressure at exit in bar
31
32 //output
33 printf('(A) Pressure after combustion is \%3.3 f bar\n
     (B) Mach number after combustion is %3.1f', P2, M2)
```

Scilab code Exa 4.5 To find total temperature static pressure at exit Stagnation pressure and exponent of polytropic equation

```
1 clc
2 clear
3
4 //input data
5 M1=3 //Mach number at entry
6 To1=295 //Total stagnation temperature at inlet in K
7 P1=0.5 //Static Pressure at entry in bar
8 M2=1.5 //Mack number at exit
9 Cp=1.005 //Specific heat of dry air in kJ/kg-K
10 R=287 //Gas constant in J/kg-K
```

```
12 //calculation
13 p1=0.0272 // Pressure ratio
                              at entry from gas tables
      (M=3, k=1.4, isentropic)
14 Po1=P1/p1 //Stagnation Pressure at entry in bar
15 t1=0.357 //Temperature ratio at entry from gas
     tables (M=3,k=1.4,isentropic)
16 T1=t1*To1 //Static temperature at entry in Kelvin
17 p2=0.176 //Static Pressure ratio
                                    at critical state
     from gas tables (Rayleigh, k=1.4,M=3)
18 Pt=P1/p2 //Static critical pressure in bar
19 p3=3.424 //Stagnation Pressure ratio at critical
     state from gas tables (Rayleigh, k=1.4,M=3)
20 Pot=Po1/p3 //Stagnation critical pressure in bar
21 t2=0.654 //Stagnation temperature ratio at critical
     state from gas tables (Rayleigh, k=1.4,M=3)
22 Tot=To1/t2 //Stagnation critical temperature in K
23 t3=0.280 //Static temperature ratio at critical
     state from gas tables (Rayleigh, k=1.4,M=3)
24 Tt=T1/t3 //Static critical temperature in K
25 p4=0.578 ///Static Pressure ratio at exit from gas
      tables (Rayleigh, M=1.5)
26 P2=p4*Pt //Static Pressure at exit in bar
27 p5=1.122 //Stagnation Pressure ratio at exit from
     gas tables (Rayleigh, M=1.5)
28 Po2=p5*Pot //Stagnation Pressure at exit in bar
29 t4=0.753 ///Static temperature ratio at exit from
     gas tables (Rayleigh, M=1.5)
30 T2=t4*Tt //Static exit temperature in K
31 t5=0.909 //Stagnation temperature ratio at exit from
      gas tables (Rayleigh, M=1.5)
  To2=t5*Tot //Total stagnation temperature at exit in
33 q=Cp*(To1-To2) //The heat transferred per unit mass
     flow in kJ/kg
34 SPC=Po1-Po2 //Change in stagnation pressure in bar
n = \log(Po1/Po2)/(\log(Po1/Po2) - \log(To1/To2)) //
     Exponent of polytropic equation
36 qmax=Cp*(Tot-To1) //Maximum possible heat transfer
```

```
in kJ/kg
37 ds=Cp*log(T2/T1)-(R*log(P2/P1)) //Change in entropy
    in kJ/kg-K
38
39 //output
40 printf('(A) Total temperature at exit is %3.2 f K\n (B
    ) Static pressure at exit is %3.3 f bar \n (C)
    Change in stagnation pressure is %3.2 f bar\n (D)
    Exponent of polytropic equation is %3.2 f', To2, P2,
    SPC,n)
```

Scilab code Exa 4.6 To determine Mach number pressure temperature of gas at entry and amount of heat added and maximum heat can be added

```
1 clc
2 clear
3
4 //input data
5 M2=0.9 //Mack number at exit
6 P2=2.5 //Static Pressure at exit in bar
7 T2=1273 //Static exit temperature in K
8 t1=3.74 //ratio of stagnation temperatures at and
     exit entry
9 Cp=1.218 //Specific heat of dry air in kJ/kg-K
10 k=1.3 //Adiabatic constant
11
12 //calculation
13 t2=0.892 //Temperauture ratio at exit from gas
     tables (isentropic, k=1.3, M=0.9)
14 To2=T2/t2 //Total stagnation temperature at exit in
  To1=To2/t1 //Total stagnation temperature at inlet
     in K
16 p1=1.12 //Static pressure ratio at critical state
     from gas tables (Rayleigh, k=1.3, M=1.5)
```

```
17 Pt=P2/p1 //Static critical pressure in bar
18 t3=1.017 //Static temperature ratio at critical
      state from gas tables (Rayleigh, k=1.3, M=1.5)
19 Tt=T2/t3 //Static critical temperature in K
20 t4=0.991 //Stagnation temperature ratio at critical
      state from gas tables (Rayleigh, k=1.3, M=1.5)
  Tot=To2/t4 //Stagnation critical temperature in K
21
22 t5=To1/Tot //Ratio of stagnation temperature at
      entry and critical state
  M1=0.26 //Mach number at entry from gas tables (
      Rayleigh, t5, k=1.3)
24 p2=2.114 //Static Pressure ratio
                                      at entry from gas
      tables (Rayleigh, t5, k=1.3)
25 P1=Pt*p2 //Static Pressure at entry in bar
26 t6=0.302 //Static temperature ratio at entry from
      gas tables (Rayleigh, t5, k=1.3)
  T1=Tt*t6 //Static temperature at entry in Kelvin
27
28 q=Cp*(To2-To1) //The heat transferred per unit mass
      flow in kJ/kg
  qmax=Cp*(Tot-To1) //Maximum possible heat transfer
      in kJ/kg
30
31 //output
32 printf('(A) Mach number at entry is \%3.2 \text{ f} \setminus \text{n} (B)
      Pressure at entry is %3.3f bar \n (C) Temperature
      of gas is %3i K\n (D) Amount of heat added is %3.2
      f kJ/kg\n (E)Maximum heat that can be heated is
     \%3.3 \, \text{f} \, \text{kJ/kg}, M1, P1, T1, q, qmax)
```

Scilab code Exa 4.7 To determine Mach number pressure temperature and velocity of gas at exit

```
1 clc
2 clear
3
```

```
4 //input
5 P1=0.343 //Static Pressure at entry in bar
6 T1=310 //Static temperature at entry in Kelvin
7 C1=60 // Velocity at entrance in m/s
8 q=1172.5 //The heat transferred per unit mass flow
      in kJ/kg
  Cp=1.005 //Specific heat of dry air in kJ/kg-K
10 k=1.4 // Adiabatic constant
11 R=287 //Gas constant in J/kg-K
12
13 //calculation
14 a1=sqrt(k*R*T1) //Sound velocity in m/s
15 M1=C1/a1 //Mach number at entry
16 t1=0.9943 //Temperature ratio at entry from gas
      tables (M=0.17, k=1.4, isentropic)
  To1=T1/t1 // Total stagnation temperature at inlet in
      K
18 p1=2.306 //Static Pressure ratio at critical state
     from gas tables (Rayleigh, k=1.4, M=0.17)
19 Pt=P1/p1 //Static critical pressure in bar
20 t2=0.154 //Static temperature ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=0.17)
21 Tt=T1/t2 //Static critical temperature in K
22 t3=0.129 //Stagnation temperature ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=0.17)
23 Tot=To1/t3 //Stagnation critical temperature in K
24 c1=0.0665 // Velocity ratio at critical state from
      gas tables (Rayleigh, k=1.4, M=0.17)
25 Ct=C1/c1 // Critical velocity in m/s
26 To2=(q/Cp)+To1 //Stagnation exit temperation in K
27 t4=To2/Tot //Ratio of stagnation temperature at exit
      and critical state
28 M2=0.45 //Mach number at exit from gas tables (
     Rayleigh, t4, k=1.4)
29 p2=1.87 //Static Pressure ratio
                                   at exit from gas
      tables (Rayleigh, t4, k=1.4)
30 P2=p2*Pt //Static Pressure at exit in bar
31 t5=0.7075 //Static temperature ratio at exit from
```

```
gas tables (Rayleigh, t4, k=1.4)

32 T2=t5*Tt //Static exit temperature in K

33 c2=0.378 //Velocity ratio at critical state from gas tables (Rayleigh, k=1.4, t4)

34 C2=Ct*c2 //exit velocity in m/s

35 //output

37 printf('At exit conditions:\n (A)Mach number is %3

.2 f\n (B) Pressure is %3.3 f bar\n (C) Temperature is %3.2 f K\n (D) Exit velocity is %3.2 f m/s', M2, P2

,T2,C2)
```

Scilab code Exa 4.8 To find Mach number pressure and temperature after cooling

```
1 clc
2 clear
4 //input data
5 M1=2 //Mach number at entry
6 To1=523 //Total stagnation temperature at inlet in K
7 Po1=6 //Stagnation Pressure at entry in bar
8 To2=423 //Stagnation exit temperation in K
10 //calculation
11 t1=0.555 //Temperature ratio at entry from gas
     tables (M=2,k=1.4,isentropic)
12 T1=t1*To1 //Static temperature at entry in Kelvin
13 p1=0.128 //Pressure ratio at entry from gas tables
     (M=2,k=1.4, isentropic)
14 P1=Po1*p1 //Static Pressure at entry in bar
15 p2=0.364 //Static pressure ratio at critical state
     from gas tables (Rayleigh, k=1.4,M=2)
16 p3=1.503 ///Stagnation pressure ratio at critical
     state from gas tables (Rayleigh, k=1.4,M=2),
```

```
printing mistake in textbook
17 t2=0.529 //Static Temperature ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=2)
18 t3=0.793 //Stagnation temperature ratio at critical
      state from gas tables (Rayleigh, k=1.4,M=2)
19 t4=(To2/To1)*t3 //Ratio of stagnation temperature at
       exit and critical state
20 M2=3.15 //Mach number at exit from gas tables (
      Rayleigh, t4, k=1.4)
  p4=0.161 //Static Pressure ratio at exit from gas
      tables (Rayleigh, t4, k=1.4), printing mistake in
      textbook
22
  t5=0.258 //Static temperature ratio
                                           at exit from
      gas tables (Rayleigh, t4, k=1.4)
23 P2=(p4/p2)*P1 //Static Pressure at exit in bar
24 T2=(t5/t2)*T1 //Static exit temperature in K
25
26 //output
27 printf ('After Cooling :\n (A) Mach number is \%3.2 \text{ f} \setminus \text{n}
      (B) Pressure is \%3.4 \,\mathrm{f} bar\n (C) Temperature is \%3.2
      f K', M2, P2, T2)
```

Scilab code Exa 4.9 To determine heat added per kg of air flow maximum possible heat transfer and heat transfer required to get maximum static temperature

```
1 clc
2 clear
3
4 //input data
5 M2=0.8 //Mack number at exit
6 t1=4 //Ratio of stagnation temperature at exit and entry
7 T1=288 //Atmospheric temperature in K
8 P1=1 //Atmospheric Pressure in atm
```

```
9 Cp=1.005 //Specific heat of dry air in kJ/kg-K
10
11 //calculation
12 t2=0.964 //Ratio of stagnation temperature at exit
     and critical state from gas tables
13 t3=t2/t1 //Ratio of stagnation temperature at entry
     and critical state
14 M1=0.24 ///Mach number at entry from gas tables (
     Rayleigh, t3, k=1.4)
  t5=0.988 //Temperature ratio at entry from gas
      tables (M1, k=1.4, isentropic)
16 To1=T1/t5 //Total stagnation temperature at inlet in
      K
17 To2=t1*To1 //Stagnation exit temperation in K
18 Tot=To1/t3 //Stagnation critical temperature in K
19 q=Cp*(To2-To1) //The heat transferred per unit mass
      flow in kJ/kg
20 qmax=Cp*(Tot-To1) //Maximum possible heat transfer
     in kJ/kg
21 t6=0.9775 //Ratio of stagnation temperature for
     maximum static temperature (M=1/sqrt(k), Rayleigh)
22 To3=Tot*t6 //maximum stagnation temperature in K
23 q_req=Cp*(To3-To1) //Heat transfer required to get
     maximum static temperature in kJ/kg
24
25 //output
26 printf('(A) Heat added per kg of air flow is %3.2 f kJ
     /kg\n (B) Maximum possible heat transfer is %3.2 f
     kJ/kg\n (C) Heat transfer required to get maximum
      static temperature is \%3.1 \, \text{f kJ/kg',q,qmax,q_req}
```

Scilab code Exa 4.10 To find exit properties Maximum stagnation temperature percentage of pressure loss and initial mach number

1 clc

```
2 clear
4 //input data
5 T1=560 //Static Temperature at entry in K
6 P1=0.6 //Static Pressure at entry in bar
7 C1=75 //Air velocity into combustion chamber in m/s
8 mp=30 //air fuel ratio
9 CV=92000 // Calorific value of fuel in kJ/kg
10 Cp=1.005 //Specific heat of dry air in kJ/kg-K
11 k=1.4 //Adiabatic constant
12 R=287 //Gas constant in J/kg-K
13
14 //calculation
15 a1=sqrt(k*R*T1) //Sound velocity in m/s
16 M1=C1/a1 //Mach number at entry
17 t1=0.9949 //Temperature ratio at entry from gas
     tables (M1, k=1.4, isentropic)
18 To1=T1/t1 //Total stagnation temperature at inlet in
19 p1=0.982 //Pressure ratio at entry from gas tables
     (M1, k=1.4, isentropic)
20 Po1=P1/p1 //Stagnation Pressure at entry in bar
21 q=CV/(mp+1) //The heat transferred per unit mass
     flow in kJ/kg of gas, mp+1=total amount of fuel=
     mf+ma
22 p2=2.317 //Static Pressure ratio at critical state
     from gas tables (Rayleigh, k=1.4,M1)
23 Pt=P1/p2 //Static critical pressure in bar
24 p3=1.246 //Stagnation Pressure ratio at critical
     state from gas tables (Rayleigh, k=1.4,M1)
25 Pot=Po1/p3 //Stagnation critical pressure in bar
26 t2=0.137 //Static temperature ratio at critical
     state from gas tables (Rayleigh, k=1.4,M1)
27 Tt=T1/t2 //Static critical temperature in K
28 t3=0.115 //Stagnation temperature ratio at critical
     state from gas tables (Rayleigh, k=1.4,M1)
29 Tot=To1/t3 //Stagnation critical temperature in K
30 To2=(q/Cp)+To1 //Stagnation exit temperation in K
```

```
31 t4=To2/Tot //Ratio of stagnation temperature at exit
       and critical state
32 M2=0.33 //Mach number at exit from gas tables (
      Rayleigh, t4, k=1.4)
33 p4=2.0825 //Static Pressure ratio at exit from gas
      tables (Rayleigh, t4, k=1.4)
34 P2=p4*Pt //Static Pressure at exit in bar,
      miscalculation in textbook
35 p5=1.186 //Stagnation Pressure ratio at exit from
      gas tables (Rayleigh, t4, k=1.4)
36 Po2=Pot*p5 //Stagnation Pressure at exit in bar
37 t5=0.472 //Static temperature ratio
                                        at exit from
      gas tables (Rayleigh, t4, k=1.4)
38 T2=t5*Tt //Static exit temperature in K
39 C2=M2*sqrt(k*R*T2) //exit velocity in m/s
40 SPL=((Po1-Po2)/Po1)*100 //Percentage of pressure
      loss in combustion chamber in %
41
42 //output
43 printf('(A)At exit:\n Pressure is \%3.5 f bar \n
         Temperature is %3i K \n
                                     Velocity is %3.2 f m
               Mach number is %3.2 f \n (B) Maximum
      stagnation temperature available is \%3.2 f K\n (C)
      Percentage of pressure loss in combustion chamber
       is \%3.1f percent\n (D) Intial Mach number is \%3.2
      f \setminus n, P2, T2, C2, M2, Tot, SPL, M1)
```

Scilab code Exa 4.11 To find Mach number and percentage drop in pressure

```
1 clc
2 clear
3
4 //input data
5 To1=473 //Total stagnation temperature at inlet in K
```

```
6 To2=673 //Stagnation exit temperation in K
7 M1=0.5 //Mach number at entry
9 //calculation
10 t1=0.6914 //Stagnation temperature ratio at critical
       state from gas tables (Rayleigh, k=1.4,M1)
11 p1=1.7778 //Static pressure ratio at critical state
     from gas tables (Rayleigh, k=1.4,M1)
12 t2=(To2/To1)*t1 //Stagnation temperature ratio at
      exit
13 M2=0.867 //Mach number at exit from gas tables (
     Rayleigh, t2, k=1.4)
14 p2=1.16 //Static pressure ratio at exit from gas
      tables (Rayleigh, k=1.4, M2)
15 p=p2/p1 //ratio of static pressures at oulet and
16 PL=(1-p)*100 //pressure loss in %
17
18 //output
19 printf('(A) Mach number is %3.3 f\n (B) Percentage drop
      in pressure is %3.1f percent', M2, PL)
```

Scilab code Exa 4.12 To find inlet mach number and percentage loss in static pressure

```
10 p1=1.266 //Static Pressure ratio at exit from gas
      tables (Rayleigh, M2, k=1.4)
11 t3=t2/t1 //Stagnation temperature ratio at critical
      state
12 M1=0.29 //Mach number at entry from gas tables (
      Rayleigh, t3, k=1.4)
13 p2=2.147 //Static pressure ratio at critical state
      from gas tables (Rayleigh, k=1.4,M1)
14 p=p1/p2 //ratio of static pressures at exit and
      entry
15 PL=(1-p)*100 //Percentage loss in static pressure in
16
17 //output
18 printf('(A) Mach number at entry is \%3.2 \text{ f} \setminus \text{n} (B)
      Percentage loss in static pressure is %3i percent
      ',M1,PL)
```

Scilab code Exa 4.13 To find inlet and exit mach number

```
1 clc
2 clear
3
4 //input data
5 To1=300 //Total stagnation temperature at inlet in K
6 To2=310 //Stagnation exit temperation in K
7 G=1300 //Mass velocity in kg/m^2-s
8 P1=105*10^3 //Static Pressure at entry in Pa
9 Cp=1.005 //Specific heat of dry air in kJ/kg-K
10 R=287 //Gas constant in J/kg-K
11
12 //calculation
13 T1=(((-2*P1^2*Cp)+sqrt(((-2*P1^2*Cp)^2)+(8*G^2*R^2*P1^2*Cp*To1)))/(2*G^2*R^2)) //Static temperature in K
```

```
14 t1=T1/To1 //Temperature ratio at entry
15 M1=1.4 //Mach number at entry from gas tables (
        isentropic, t1, k=1.4)
16 t2=0.934 //Stagnation temperature ratio at critical
        state from gas tables (Rayleigh, k=1.4,M1)
17 Tot=To1/t2 //Stagnation critical temperature in K
18 t3=To2/Tot //Stagnation temperature ratio at exit
        from gas tables (Rayleigh, k=1.4,M1)
19 M2=1.26 //Mach number at exit from gas tables (
        Rayleigh, t3, k=1.4)
20
21 //output
22 printf('(A)The inlet mach number is %3.2 f \n (B)The
        exit mach number is %3.2 f',M1,M2)
```

Scilab code Exa 4.14 To find properties at exit and sonic condition and heat required to accelerate gas from inlet to sonic condition

```
1 clc
2 clear
4 //input data
5 k=1.3 //Adiabatic constant
6 R=466 //Gas constant in J/kg-K
7 P1=0.345 //Static Pressure at entry in Pa
8 T1=312 //Static Temperature at entry in K
9 C1=65.5 //Entry velocity in m/s
10 q=4592 //The heat transferred per unit mass flow in
     kJ/kg
11
12 //calculation
13 a1=sqrt(k*R*T1) //Sound velocity in m/s
14 M1=C1/a1 //Mach number at entry
15 t1=0.9965 //Temperature ratio at entry from gas
      tables (M1, k=1.3, isentropic)
```

```
16 To1=T1/t1 //Total stagnation temperature at inlet in
17 p1=2.235 //Static Pressure ratio at critical state
      from gas tables (Rayleigh, k=1.3, M1)
18 Pt=P1/p1 //Static critical pressure in bar
19 c1=0.051 // Velocity ratio at critical state from gas
       tables (Rayleigh, k=1.3,M1)
20 Ct=C1/c1 // Critical velocity in m/s
21 t2=0.112 //Static temperature ratio at critical
      state from gas tables (Rayleigh, k=1.3,M1)
22 Tt=T1/t2 //Static critical temperature in K
23 t3=0.098 //Stagnation temperature ratio at critical
      state from gas tables (Rayleigh, k=1.3,M1)
24 Tot=To1/t3 //Stagnation critical temperature in K
25 Cp=(k*R)/(k-1) //Specific heat of dry air in kJ/kg-K
26 To2=(q/Cp)+To1 //Stagnation exit temperation in K
27 t4=(To2/Tot) //Stagnation Temperature ratio at exit
28 M2=0.60 //Mack number at exit from gas tables (
      Rayleigh, t4)
29 p2=1.567 //Static Pressure ratio at exit from gas
      tables (Rayleigh, t4, k=1.4)
30 P2=p2*Pt //Static Pressure at exit in bar
31 t5=0.884 //Static temperature ratio at exit from
      gas tables (Rayleigh, t4, k=1.4)
32 T2=t5*Tt //Static exit temperature in K
33 c2=0.564 //Velocity ratio at critical state from gas
       tables (Rayleigh, k=1.4, t4)
34 C2=Ct*c2 //exit velocity in m/s
35 qmax=Cp*(Tot-To1)/10^3 //Maximum possible heat
      transfer in kJ/kg
36
37 //output
38 printf('(A) Heat required to accelerate the gas from
      the inlet condition to sonic condition is \%3.2 f
      kJ/kg\n (B) The pressure and temperature at sonic
      condition are \%3.3 f bar and \%3.2 f K respectively\
      n (C) The properties at exit are:\n
                                           Pressure is
      \%3.3 \, \text{f} \, \text{bar} \, \text{n} Temperature is \%3.2 \, \text{f} \, \text{K} \, \text{n}
```

Chapter 5

Normal and Oblique Shock

Scilab code Exa 5.1 To find Mach number before shock properties after shock density increase loss of stagnation pressure and entropy change of air in pipe

```
1 clc
2 clear
4 //Input data
5 Px=150 // Pressure before the shock in kPa
6 Tx=25+273 //Temperature before the shock in K
7 Py=350 // Pressure just after the shock in kPa
8 k=1.4 //Adiabatic constant
9 R=287 // Specific gas constant in J/kg-K
10
11 // Calculations
12 p1=Py/Px //Pressure ratio
13 Mx=1.4638 //Mach number before the shock
14 \text{ My=0.716} //Mach number after the shock from gas
      tables @Mx
15 t1=1.294 //Temperature ratio after and before the
     shock from gas tables @p1
16 Ty=t1*Tx //Temperature ratio after the shock in K
17 ax=sqrt(k*R*Tx) //Velocity of sound before the shock
```

```
in m/s
18 Cx=ax*Mx // Velocity of gas before the shock in m/s
19 ay=sqrt(k*R*Ty) // Velocity of sound after the shock
      in m/s
20 Cy=ay*My //Velocity of gas after the shock in m/s
21 p2=0.942 //Stagnation pressure ratio after and
      before the shock from gas tables @p1
22 ds=R*log(1/p2) //Change in entropy in J/kg-K
23 p3=3.265 //Stagnation pressure after shock to Static
       pressure before shock from gas tables @p1
24 Poy=p3*Px //Stagnation pressure after shock in kPa
25 Pox=Poy/p2 //Stagnation pressure before shock in kPa
26 pr_loss=Pox-Poy //Loss of stagnation pressure of air
       in kPa
  dd = (1000/R) * ((Py/Ty) - (Px/Tx)) / Increase in density
      of air in kg/m<sup>3</sup>
28
29 // Output
30 printf('(A) Mach number before shock is \%3.4 \text{ f} \setminus \text{n} (B)
      After shock:\n
                          Mach number is \%3.3 \text{ f} \ 
      Static temperature is \%3.3 f \text{ K}\n
                                             Velocity is %3
      .2 \text{ f m/s/n} (C) Increase in density of air is \%3.2 \text{ f}
      kg/m<sup>3</sup>\n (D) Loss of stagnation pressure of air is
       %3.2 f kPa\n (E) Change in entropy is %3.3 f J/kg-K
      ', Mx, My, Ty, Cy, dd, pr_loss, ds)
```

Scilab code Exa 5.2 To find properties across normal shock and entropy change

```
1 clc
2 clear
3
4 //Input data
5 Tx=350 //Temperature before the shock in K
6 Px=137.8 //Pressure before the shock in kPa
```

```
7 Cx=750 // Velocity before the shock in m/s
8 k=1.4 //Adiabatic constant
9 R=287 //Specific gas constant in J/kg-K
10
11 // Calculation
12 ax=sqrt(k*R*Tx) //Velocity of sound before the shock
      in m/s
13 Mx=Cx/ax //Mach number before the shock
14 My=0.577 //Mach number after the shock from gas
     tables @Mx
15 p1=4.5 //Static pressure ratio after and before the
     shock from gas tables @My
16 Py=Px*p1 //Static pressure after shock in kPa
17 t1=1.687 //Temperature ratio after and before the
     shock from gas tables @My
18 Ty=Tx*t1 //Temperature ratio after the shock in K
19 p2=5.641 //Stagnation pressure after shock to Static
      pressure before shock from gas tables @My
20 Poy=Px*p2 //Stagnation pressure after shock in kPa
21 p3=0.721 //Stagnation pressure ratio after and
     before the shock from gas tables @My
22 Pox=Poy/p3 //Stagnation pressure before shock in kPa
23 ds=R*log(1/p3) //Change in entropy in J/kg-K
24 t2=0.555 //Static to Stagnation temperature ratio
     before shock from isentropic gas tables @Mx, k=1.4
25
  Tox=Tx/t2 //Stagnation temperature before shock in
     K
26 p4=0.128 //Static to Stagnation pressure ratio from
     isentropic gas tables @Mx, k=1.4
27 Pox=Px/p4 //Stagnation pressure in kPa
28 t4=0.937 //Static to Stagnation temperature ratio
     before shock from normal shock gas tables @Mx,k
     =1.4 (Tox=Toy Checked)
29 Toy=Ty/t4 //Stagnation temperature after shock in K
30 ay=sqrt(k*R*Ty) //Velocity of sound after the shock
     in m/s
31 Cy=(My*ay) // Velocity of gas after the shock in m/s
32
```

```
33 //Output
34 printf('(A)At inlet to shock:\n
                                              Stagnation
       pressure is %3.1 f kPa\n
                                        Stagnation temperature
        is \%3.2 \text{ f K} \setminus \text{n}
                          Mach number is %3.0 f\n (B) After
       shock:\n
                     Stagnation pressure is %3.2 f kPa\n
          Stagnation temperature is \%3.2 f K\n
       pressure is %3.1 f kPa\n
                                      Static temperature is
                      Mach number is \%3.3 \text{ f} \setminus \text{n}
      \%3.2 f K n
       is \%3.2 f m/s\n (C) Change in entropy across the
      shock is \%3.2 \text{ f} J/kg-K', Pox, Tox, Mx, Poy, Toy, Py, Ty,
      My, Cy, ds)
```

Scilab code Exa 5.3 To find properties downstream of shock

```
1 clc
2 clear
3
4 //Input data
5 Tx=0+273 //Temperature before the shock in K
6 Px=60 //Pressure before the shock in kPa
7 Cx=497 // Air Velocity before the shock in m/s
8 k=1.4 //Adiabatic constant
9 R=287 //Specific gas constant in J/kg-K
10
11 // Calculation
12 ax=sqrt(k*R*Tx) //Velocity of sound before the shock
      in m/s
13 Mx=Cx/ax //Mach number before the shock
14 My=0.70109 //Mach number after the shock from gas
     tables @Mx
15 p1=2.45833 //Static pressure ratio after and before
     the shock from gas tables @My
16 Py= p1*Px //Static pressure after shock in kPa
17 t1=1.32022 //Temperature ratio after and before the
     shock from gas tables @My
```

```
18 Ty=Tx*t1 //Temperature ratio after the shock in K
19 p2=3.41327 //Stagnation pressure after shock to
      Static pressure before shock from gas tables @My
20 Poy=p2*Px //Stagnation pressure after shock in kPa
21 p3=0.92979 //Stagnation pressure ratio after and
      before the shock from gas tables @My
22 Pox=Poy/p3 //Stagnation pressure before shock in kPa
23 ay=sqrt(k*R*Ty) //Velocity of sound after the shock
      in m/s
24 Cy=ay*My //Velocity of air after the shock in m/s
25
26 // Output
27 printf('After shock:\n
                              (A) Mach number is \%3.5 \text{ f} \setminus \text{n}
         (B) Velocity is \%3.3 \, \text{f m/s/n}
                                       (C) Stagnation
      pressure is \%3.3 \, \text{f kPa/n', My, Cy, Poy}
```

Scilab code Exa 5.4 To find velocities across shock and stagnation pressure change

```
1 clc
2 clear
3
4 //Input data
5 Px=30 //Pressure before the shock in kPa
6 Tx=-30+273 //Temperature before the shock in K
7 pr=2.6 //Pressure ratio across the shock wave
8 k=1.4 //Adiabatic constant
9 R=287 //Specific gas constant in J/kg-K
10
11 //Calculation
12 Mx=1.54 //Mach number before the shock from gas tables @pr
13 My=0.687 //Mach number after the shock from gas tables @Mx
14 t1=1.347 //Temperature ratio after and before the
```

```
shock from gas tables @Mv
15 Ty=t1*Tx //Temperature ratio after the shock in K
16 p1=3.567 //Stagnation pressure after shock to Static
       pressure before shock from gas tables @My
17 Poy=p1*Px //Stagnation pressure after shock in kPa
18 p2=0.917 //Stagnation pressure ratio after and
     before the shock from gas tables @My
19 Pox=Poy/p2 //Stagnation pressure before shock in kPa
20 dP=Pox-Poy //Change in stagnation pressure in kPa
21 ax=sqrt(k*R*Tx) //Velocity of sound before the shock
       in m/s
22 Cx=(Mx*ax) //Air Velocity before the shock in m/s
23 ay=sqrt(k*R*Ty) //Velocity of sound after the shock
     in m/s
24 Cy=(My*ay) //Velocity of air after the shock in m/s
25
26 //Output
27 printf('(A) Velocities upstream and downstream of
     shock wave are %3.2 f m/s and %3.2 f m/s
      respectively\n (B) Change in stagnation pressure
     is \%3.3 \, \text{f kPa}', Cx, Cy, dP)
```

Scilab code Exa 5.5 To find properties downstream of shock

```
1 clc
2 clear
3
4 //Input data
5 Mol=39.9 //Molar mass of a gas in kg/mol
6 k=1.67 //Specific heat ratio
7 Mx=2.5 //Mach number before the shock
8 Px=40 //Pressure before the shock in kPa
9 Tx=-20+273 //Temperature before the shock in K
10
11 //Calculation
```

Scilab code Exa 5.6 To find pressure acting on front of the body

```
1 clc
2 clear
3
4 //Input data
5 Mx=2 //Mach number before the shock
6 Px=50 //Pressure before the shock in kPa
7
8 //Calculation
9 p1=6.335 //Stagnation pressure after shock to Static pressure before shock from gas tables @Mx
10 Poy=p1*Px //Stagnation pressure after shock in kPa
11
12 //Output
13 printf('Pressure acting on the front of the body is %3.2 f kPa', Poy)
```

Scilab code Exa 5.7 To find mass flow rate and properties at exit of CD nozzle

```
1 clc
2 clear
4 //Input data
5 Po=800 //Pressure in reservoir in kPa
6 To=40+273 //Temperature in reservoir in K
7 M2a=2.5 //Mach number at exit from diagram
8 At=25 //Throat Area in cm<sup>2</sup>
9 Ax=40 //Area just before the shock in cm<sup>2</sup>
10 Ay=40 //Area just after the shock in cm<sup>2</sup>
11 k=1.4 //Adiabatic constant
12 R=287 //Specific gas constant in J/kg-K
13
14 // Calculation
15 t1=0.834 //Ratio of critical temperature and
      stagnation temperature from gas tables @M=1
16 Tt=To*t1 // Critical temperature in K
17 p1=0.528 //Ratio of critical pressure and stagnation
       pressure from gas tables @M=1
18 Pt=Po*p1 // Critical pressure in kPa
19 dt=Pt*10^3/(R*Tt) // Density in kg/m^3, Pt in Pa
20 at=sqrt(k*R*Tt) //Velocity of sound at throat in m/s
21 Ct=at //Air Velocity of sound at throat in m/s
22 m=dt*At*10^-4*Ct //Mass flow rate in kg/s
23 p2=0.0585 //Ratio of exit to stagnation pressure
     from isentropic gas tables @M2=2.5
24 a1=2.637 //Ratio of exit to critical area from
     isentropic gas tables @M2=2.5
25 A2=a1*At //Exit area in cm<sup>2</sup>
26 a2=Ax/At //Area ratio
27 M=1.94 //Mach number upstream of shock from gas
      tables @a2
28 p3=0.140 //Ratio of upstram of shock to stagnation
      pressures from isentropic gas tables @M
29 Px=p3*Po //Pressure upstram of shock in kPa
```

```
30 t2=0.570 //Ratio of upstram of shock to stagnation
      temperature from isentropic gas tables @M
31 Tx=t2*To //Temperature upstram of shock in K
32 My=0.588 //Mach number downstream of shock from
     normal shock gas tables @M
33 p4=4.225 //Static pressure ratio after and before
     the shock from gas tables @My
34 Py=Px*p4 //Static pressure after shock in kPa
35 t3=1.639 //Temperature ratio after and before the
     shock from gas tables @My
36 Ty=Tx*t3 //Temperature ratio after the shock in K
37 p5=2.338 //Stagnation pressure after shock to Static
      pressure before shock from gas tables @My
38 Poy=p5*Px //Stagnation pressure after shock in kPa
39 p6=0.749 //Stagnation pressure ratio after and
     before the shock from gas tables @My
40 Pox=Poy/p6 //Stagnation pressure before shock in kPa
41 // Here At2=Aty, Po2=Poy, Toy=To2=To1=To
42 p7=0.79 //Static to stagnation pressure ratio after
     shock from isentropic gas tables @My
43 Po2=Py/p7 //Stagnation pressure at exit in kPa
44 t4=0.935 //Static to stagnation temperature ratio
      after shock from isentropic gas tables @My
45 To2=Ty/t4 //Stagnation temperature in K (checked)
46 a3=1.2 //Ratio of areas after shock i.e. (Ay/At2)
47 At2=Ay/a3 // Critical area after shock in cm<sup>2</sup>
48 a4=A2/At2 //Ratio of areas
49 M2b=0.31 //Mach number at exit from gas tables @a4(
     as per section -b)
50 p8=0.936 //Static to stagnation pressure ratio at
      exit from isentropic gas tables @M2b
51 P2=Po2*p8 //Exit pressure in kPa
52 t5=0.981 //Static to stagnation temperature ratio
      after shock from isentropic gas tables @M2b
  T2=To2*t5 //Exit temperature in K
53
54
55 //Output
56 printf ('CASE-I:\n (A) Mass flow rate is \%3.2 \,\mathrm{f} kg/s
```

```
\n (B) Exit area is \%3.1 \, f \, \text{cm}^2 \, \text{CASE-II:} \ n (A) Temperature is \%3.3 \, f \, \text{K} \ n (B) Pressure is \%3.1 \, f \, \text{kPa'}, m, A2, T2, P2)
```

Scilab code Exa 5.8 To find properties upstream of wave front

```
1 clc
2 clear
4 //Input data
5 Px=1 // Pressure before the shock in bar
6 Tx=17+273 //Temperature before the shock in K
7 Cx=500 // Air Velocity before the shock in m/s
8 k=1.4 //Adiabatic constant
9 R=287 // Specific gas constant in J/kg-K
10
11 // Calculation
12 ax=sqrt(k*R*Tx) //Velocity of sound before the shock
      in m/s
13 Mx=Cx/ax //Mach number before the shock
14 My=0.715 //Mach number after the shock from gas
      tables @Mx
15 p1=2.335 //Static pressure ratio after and before
     the shock from gas tables @My
16 Py=p1*Px //Static pressure after shock in bar
17 t1=1.297 //Temperature ratio after and before the
     shock from gas tables @My
18 Ty=Tx*t1 //Temperature ratio after the shock in K
19 ay=sqrt(k*R*Ty) // Velocity of sound after the shock
     in m/s
20 Cy=ay*My //Velocity of air after the shock in m/s
21 C_y = Cx - Cy // Velocity of air in m/s
22 M_y=C_y/ay //Mach number impared upstream of the
     wave front
23 t2=0.939 //Static to stagnation temperature ratio
```

Scilab code Exa 5.9 To find properties downstream of shock total head pressure ratio entropy change strength of shock

```
1 clc
2 clear
4 //Input data
5 Mx=3 //Mach number before the shock
6 Tx=27+273 //Temperature before the shock in K
7 Px=1 // Pressure before the shock in bar
8 k=1.4 //Adiabatic constant
9 R=287 //Specific gas constant in J/kg-K
10
11 // Calculation
12 My=0.475 //Mach number after the shock from gas
     tables @Mx
13 p1=10.333 //Static pressure ratio after and before
     the shock from gas tables @My
14 Py=p1*Px //Static pressure after shock in bar
15 t1=2.679 //Temperature ratio after and before the
     shock from gas tables @My
16 Ty=Tx*t1 //Temperature ratio after the shock in K
17 p2=12.061 //Stagnation pressure after shock to
     Static pressure before shock from gas tables @My
18 Poy=p2*Px //Stagnation pressure after shock in bar
19 p3=0.328 //Stagnation pressure ratio after and
```

```
before the shock from gas tables @My
20 Pox=Poy/p3 //Stagnation pressure before shock in kPa
21 ay=sqrt(k*R*Ty) // Velocity of sound after the shock
      in m/s
22 Cy=ay*My //Velocity of air after the shock in m/s
23 ds=R*log(1/p3) //Change in entropy in J/kg-K
24 e=(Py-Px)/Px //Strength of shock
25
26 // Output
27 printf('(I)Downstream of the shock:\n
                                                  (A) Pressure
       is \%3.3 f bar n
                            (B) Temperature is \%3.1 \text{ f K}\n
          (C) Gas velocity is \%3.2 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n}
      number is %3.3 f\n (II) Total head pressure ratio
      is \%3.3 f\n (III) Entropy change across the shock
      is \%3.3 \,\mathrm{f} J/kg-K\n (IV) Strength of the shock is \%3
      .3 f', Py, Ty, Cy, My, p3, ds, e)
```

Scilab code Exa 5.10 To determine Mach number across shock and area at shock

```
1 clc
2 clear
3
4 //Input data
5 a1=0.4 //Ratio of throat area to exit area
6 p1=0.8 //Ratio of static pressure to Stagnation
        pressure at inlet
7 At=1 //Throat area in m^2
8
9 //Calculation
10 a2=1/a1 //reciprocal of a1 to find in gas tables
11 //Pox=Po1=Po, Poy=Po2
12 a2p2=a2*p1 //Area pressure ratio i.e. (A2*P2)/(At2*Po2)
13 M2=0.28 //Exit mach number from gas tables @a2p2
```

```
14 a3=2.166 //Ratio of exit area to throat area after
      shock from gas tables @a2p2
15 p2=0.947 //Static to stagnation pressure ratio at
      exit from gas tables @a2p2
16 p3=a2/a3 //Stagnation pressure ratio after and
      before shock
17 Mx=1.675 //Mach number before the shock @p3
18 My=0.647 //Mach number after the shock from gas
      tables @Mx
  a4=1.14 //Ratio of area after shock to throat area
      after shock from isentropic gas tables @My
  a5=1.315 //Ratio of area before shock to throat area
       before shock from isentropic gas tables @My
21 Ax=a5*At //Area at shock in m<sup>2</sup>
22
23 //Output
24 printf('(A) Mach number across the shock: Mx=\%3.3f(
     My=\%3.3 f)\n (B) Area at shock is \%3.3 f m<sup>2</sup>, Mx, My,
     Ax)
```

Scilab code Exa 5.11 To find Mach number across shock Static pressure and area at shock

```
1 clc
2 clear
3
4 //Input data
5 a1=1/3 //Ratio of throat area to exit area
6 p1=0.4 //Ratio of static pressure to Stagnation
        pressure at inlet
7
8 //Calculation
9 a2=1/a1 //reciprocal of al to find in gas tables
10 //we know Pox=Pol=Po, Poy=Po2, At=Atx and Aty=At2
11 a2p2=a2*p1 //Area pressure ratio i.e. (A2*P2)/(At2*
```

```
Po2)
12 M2=0.472 //Exit mach number from gas tables @a2p2
13 a3=1.397 //Ratio of exit area to throat area after
     shock from gas tables @a2p2
14 p2=0.858 //Static to stagnation pressure ratio at
     exit from gas tables @a2p2
15 p3=a3/a2 //Stagnation pressure ratio after and
     before shock
16 Mx = 2.58 //Mach number before the shock @p3
17 My=0.506 //Mach number after the shock from gas
     tables @Mx
18 p4=9.145 //Stagnation pressure after shock to Static
      pressure before shock from gas tables @My
19 a4=2.842 //Ratio of area before shock to throat area
20 p5=0.051 //Ratio of Pressure before shock to
     Stagnation pressure at entry
21
22 //Output
23 printf('At section where shock occurs:\n
                                                 (A) Mach
     number Mx=\%3.2 f and My=\%3.3 f n
                                         (B) Static
     Pressure is \%3.3 \, f*Po1 (units depend on Po1)\n
     (C) Area of cross section is %3.3 f*At (units
     depend on At)', Mx, My, p5, a4)
```

Scilab code Exa 5.12 To find properties at various sections

```
1 clc
2 clear
3
4 //Input data
5 Po=300 //Pressure in reservoir in kPa
6 To=500 //Temperature in reservoir in K
7 At=1 //Throat area in m^2
8 Ax=2 //Area just before the shock in m^2
9 Ay=2 //Area just after the shock in m^2
```

```
10 A2=3 //Exit area in m<sup>2</sup>
11
12 // Calculation
13 a1=Ax/At //Area ratio
14 Mx = 2.2 //Mach number upstream of shock
15 p1=0.0935 //Ratio of pressure before shock to
     stagnation pressure before shock from gas tables
     @Mx
16 Px=p1*Po //pressure before shock in kPa
17 t1=0.50 //Ratio of temperature before shock to
     stagnation pressure before shock from gas tables
     @Mx
18 Tx=t1*To //temperature before shock in K
19 My=0.547 //Mach number downstream of shock
20 p2=5.480 //Static pressure ratio after and before
     the shock from gas tables @My
21 Py=Px*p2 //Static pressure after shock in kPa
22 t2=1.857 //Temperature ratio after and before the
     shock from gas tables @My
23 Ty=t2*Tx //Temperature ratio after the shock in K
24 p3=6.716 //Stagnation pressure after shock to Static
      pressure before shock from gas tables @My
25 Poy=Px*p3 //Stagnation pressure after shock in kPa
26 Po2=Poy //Exit stagnation pressure in kPa, Since
      total pressure remains same after shock
27 t3=0.943 //Static to stagnation pressure after shock
      from isentropic gas tables @My
28 Toy=Ty/t3 //Stagnation pressure after shock in K
29 To2=Toy //Exit stagnation temperature in K, Since
     temperature remains after shock
30 a2=1.255 //Ratio of area after shock to throat area
      after shock from isentropic gas tables @My
31 Aty=Ay/a2 //Throat area after shock in m^2
32 At2=Aty //Throat area at exit in m^2
33 a3=A2/At2 //Areas ratio
34 M2=0.33 //Exit mach number from gas tables @a3
35 p4=0.927 //Static to Stagnation pressure at exit
     from gas isentropic gas tables @a3
```

```
36 P2=Po2*p4 //Exit pressure in kPa
37 t4=0.978 //Static to Stagnation temperature at exit
      from gas isentropic gas tables @a3
  T2=To2*t4 //Exit temperature in K
38
39
40
  //Output
41 printf('(A) Pressure at section (x) Px=\%3.2 \text{ f kPa} \text{ n} (B)
      ) Pressure at section (y) Px=\%3.3 f kPa n (C)
      Stagnation pressure at section (y) Poy=\%3.2 f kPa\
      n (D) Throat area of cross section at section (y)
      Aty=\%3.4 f m^2\n (E) Stagnation pressure at exit
      Po2=\%3.2 f kPa\n (F) Throat area of cross section
      at exit At2=\%3.4 f m^2\n (G) Static Pressure at
      exit P2=\%3.2 f kPa\n (H) Stagantion temperature at
      exit To2=%3i K\n (I) Temperature at exit T2=%3i k'
      , Px , Py , Poy , Aty , Po2 , At2 , P2 , To2 , T2)
```

Scilab code Exa 5.13 To find mass flow rate and properties at throat and exit at various sections of CD nozzle

```
clear

//Input data

//Input data

Po1=500 //Stagnation pressure in kPa

To1=600 //Stagnation temperature in K

C1=100 //inlet velocity in m/s

A1=0.01 //Inlet Area in m^2

A2=0.01 //Exit Area in m^2

Mx=1.2 //Mach number before the shock

Ax=37.6 //Area just before the shock in cm^2

Ay=37.6 //Area just after the shock in cm^2

Px=109.9 //Pressure before the shock in kPa

Poy=350 //Stagnation pressure after shock in kPa

k=1.4 //Adiabatic constant
```

```
16 R=287 // Specific gas constant in J/kg-K
17 Cp=1005 // Specific heat capacity at constant volume
     in J/kg-K
18
19 // Calculation
20 T1=To1+(C1^2/(2*Cp)) //Inlet static temperature in K
21 ai_1=sqrt(k*R*T1) // Velocity of sound at inlet in m/
22 M1=C1/ai_1 //Inlet Mach number
23 p1=0.973 //Static to Stagnation pressure ratio at
      entry from gas tables @M1
24 P1=Po1*p1 //Inlet static pressure in kPa
25 d1=P1*10^3/(R*T1) //Density at inlet in kg/m^3, P1
     in Pa
26 m=d1*A1*C1 //Mass flow rate at inlet in kg/s
27 p2=0.528 //Ratio of critical pressure to stagnation
      pressure from gas tables @M=1
28 Pt=Po1*p2 //Critical pressure in kPa
29 t1=0.834 //Ratio of critical temperature to
      stagnation temperature from gas tables @M=1
30 Tt=t1*To1 //critical temperature in K
31 ai_t=sqrt(k*R*Tt) //Velocity of sound at critical
     state in m/s
32 Ct=ai_t // Velocity of air at critical state in m/s
33 a1=2.964 //Ratio of inlet area to critical area from
      gas tables @M=1
34 At=A1/a1 //critical area in m^2
35 dt=Pt/(R*Tt) //Density at critical state in kg/m<sup>3</sup>
36 mt=dt*At*Ct //Mass flow rate at critical satate in
     kg/s
37 //Sub-division (a)
38 a2=1.030 //Ratio of area after shock to critical
      area from gas tables @Mx
39 Ay_a=At*a2 //Area after shock in cm<sup>2</sup>
40 p3=0.412 //Ratio of upstram of shock to stagnation
      pressures from isentropic gas tables @Mx
41 Px_a=Po1*p3 // Pressure upstram of shock in kPa
42 t2=0.776 //Ratio of upstram of shock to stagnation
```

- temperature from isentropic gas tables @Mx
- 43 Tx_a=To1*t2 //Temperature upstram of shock in K
- 44 My_a=0.84 //Mach number downstream of shock from normal shock gas tables @Mx
- 45 p4=1.497 //Static pressure ratio after and before the shock from gas tables @My
- 46 Py_a=Px_a*p4 //Static pressure after shock in kPa
- 47 t3=1.099 //Temperature ratio after and before the shock from gas tables @My
- 48 Ty_a=Tx_a*t3 //Temperature ratio after the shock in K
- 49 p5=2.407 //Stagnation pressure after shock to Static pressure before shock from gas tables @My
- 50 Poy_a=Px_a*p5 //Stagnation pressure after shock in kPa
- 51 a3=1.204 //Ratio of area after shock to throat area after shock from isentropic gas tables @My
- 52 At2_a=(Ay_a/a3)*10^4 //Throat area at exit in m^2, calculation mistake in textbook
- 53 a4=A2/At2_a //Ratio of areas to find gas tables
- 54 M2_a=0.2 //Exit mach number at section—A from gas tables @a4
- 55 p5=0.973 //ratio of exit pressure to stagnation pressure after shock from gas tables
- 56 P2_a=p5*Poy_a //exit pressure in kPa
- 57 //Sub-division (b)
- 58 a5=Ax/At //Ratio of area before shock to critical area
- 59 Mx_b=1.4 //Mach number at section—B from gas tables @a5
- 60 p6=0.314 //Ratio of upstram of shock to stagnation pressures from isentropic gas tables @Mx_b
- 61 Px_b=Po1*p6 // Pressure upstram of shock in kPa
- 62 t4=0.718 //Ratio of upstram of shock to stagnation temperature from isentropic gas tables @Mx_b
- 63 Tx_b=To1*t4 //Temperature upstram of shock in K
- 64 p20=3.049 //Stagnation pressure ratio after shock to Static pressure before shock from gas tables

- 65 Poy_b=Px_b*p20 //Stagnation pressure after shock in kPa
- 66 My_b=0.735 //Mach number downstream of shock from normal shock gas tables @Mx_b
- 67 p7=2.085 //Static pressure ratio after and before the shock from gas tables @My_b
- 68 Py_b=Px_b*p7 //Static pressure after shock in kPa
- 69 t5=1.260 //Temperature ratio after and before the shock from gas tables @My_b
- 70 Ty_b=Tx_b*t5 //Temperature after the shock in K
- 71 a6=1.071 //Ratio of area after shock to throat area after shock from isentropic gas tables My_b=0.735
- 72 At2_b=Ay/a6 //Throat area at exit in m^2
- 73 a7=A2/At2_b //Ratio of areas
- 74 M2_b=0.21 //Exit mach number at section—B from gas tables @a7
- 75 p8=0.9697 //ratio of exit pressure to stagnation pressure after shock from gas tables
- 76 P2_b=p8*Poy_b //exit pressure in kPa
- 77 / Sub-division (c)
- 78 p9=Px/Po1 //Ratio of upstram of shock to stagnation pressures
- 79 Mx_c=1.65 //Mach number at section—B from gas tables @p9
- 80 a8=1.292 //Ratio of area before shock to critical area from gas tables @p9
- 81 $Ax_c = At*a8*10^4$ // Area before shock in cm²
- 82 t6=0.647 // Ratio of upstram of shock to stagnation temperature from isentropic gas tables @p9
- 83 Tx_c=To1*t6 //Temperature upstram of shock in K
- 84 My_c=0.654 //Mach number downstream of shock from normal shock gas tables @Mx_c
- 85 p10=3.0095 //Static pressure ratio after and before the shock from gas tables @My_c
- 86 Py_c=Px*p10 // Pressure downstram of shock in kPa
- 87 t7=1.423 //Temperature ratio after and before the shock from gas tables @My_c
- 88 Ty_c=Tx_c*t7 //Temperature after the shock in K

- 89 p12=4 //Stagnation pressure after shock to Static pressure before shock from gas tables @Mx_c
- 90 Poy_c=Px*p12 //Stagnation pressure after shock in kPa
- 91 a9=1.136 //Ratio of area after shock to throat area after shock from gas tables $My_c=0.654$
- 92 At2_c=Ax_c/a9 //Throat area at exit in m^2
- 93 $a8=A2/At2_c$ //Ratio of areas
- 94 M2_c=0.23 //Exit mach number at section—B from gas tables @a8
- 95 p11=0.964 //ratio of exit pressure to stagnation pressure after shock from gas tables
- 96 P2_c=p11*Poy_c //exit pressure in kPa
- 97 //Sub-division (D)
- 98 p13=Poy/Po1 //Pressure ratio, Since Pox=Po1
- 99 Mx_d=2.04 //Mach number upstream of shock from gas tables @p13
- 100 My_d=0.571 //Mach number downstream of shock from gas tables @p13
- 101 p14=4.688 // Static pressure ratio after and before the shock from gas tables @My_d
- 102 t8=1.72 //Temperature ratio after and before the shock from gas tables @My_d
- 103 p15=5.847 //Stagnation pressure after shock to Static pressure before shock from gas tables $@Mx_d$
- 104 p16=0.120 //Ratio of upstram of shock to stagnation pressures from isentropic tables @Mx_d
- 105 Px_d=Po1*p16 // Pressure upstram of shock in kPa
- 106 t9=0.546 //Ratio of upstram of shock to stagnation temperature from isentropic gas tables @Mx_d
- 107 Tx_d=To1*t9 //Temperature upstram of shock in K
- 108 p21=4.688 //Static pressure ratio after and before the shock from gas tables
- 109 Py_d=Px_d*p21 // Pressure downstram of shock in kPa
- 110 t12=1.72 //Ratio of upstram of shock to stagnation temperature from isentropic gas tables
- 111 Ty_d=Tx_d*t12 //Temperature after the shock in K

```
112 a9=1.745 //Ratio of area before shock to throat area
       from isentropic gas tables
113 Ax_d=At*a9*10^4 //Area before shock in cm<sup>2</sup>
114 a10=1.226 //Ratio of area after shock to throat area
        after shock from isentropic tables @My_d
115 At2_d=(Ax_d/a10) //Throat area at exit in cm^2
116 a11=A2/At2_d //Ratio of areas
117 M2_d=0.29 //Exit mach number at section—B from gas
      tables @a11
118 p17=0.943 //ratio of exit pressure to stagnation
      pressure after shock from gas tables
119 P2_d=p17*Poy //exit pressure in kPa
120 //Sub-division (e)
121 a12=Ax/At //Ratio of areas
122 Mx_e=2.62 //Mach number upstream of shock from gas
      tables @a12
123 t10=0.421 //Ratio of upstram of shock to stagnation
      temperature from isentropic gas tables
124 Tx_e=To1*t10 //Temperature upstram of shock in K
125 p18=0.0486 //Ratio of upstram of shock to stagnation
       pressures from isentropic tables @Mx_e
126 Px_e=p18*Po1 // Pressure upstram of shock in kPa
127 My_e=0.502 //Mach number downstream of shock from
      gas tables @Mx_e
128 p19=7.842 //Static pressure ratio after and before
      the shock from gas tables @My_e
129 Py_e=Px_e*p19 // Pressure downstram of shock in kPa
130 P2_e=Py_e //Exit pressure in kPa
131 t11=2.259 //Temperature ratio after and before the
      shock from gas tables @My_d
132 Ty_e=Tx_e*t11 //Temperaure downstram of shock in K
133 T2_e=Ty_e //Exit temperature in K
134
```

Pressure

136 printf('At throat:\n Mass flow rate is \%3.2 f kg/s

Velocity is %3.1 f m/s/n (a) At section (A):\n

is %3i kPa\n Temperature is %3.1 f K\n

 \n Area at throat is $\%3.5 \, \text{f m}^2 \, \text{n}$

135 //Output

Pressure upstream is %3i kPa\n Temperature upstream is $\%3.1 \text{ f K}\$ n Mack number downstream is $\%3.2 \text{ f} \ \text{n}$ Pressure downstream is \%3.3 f kPa\n Temperature downstream is \%3.3 f K\n Stagnation pressure downstream is \%3.1f kPa\n Area is $\%3.3 \text{ f cm}^2 \text{ n}$ At exit:\n Mach number is $\%3.1 \text{ f} \ \text{n}$ Pressure is %3.1 f kPa\n (b)At section $(B): \ n$ Pressure upstream is %3i kPa\n Temperature upstream is \%3.1 f K\n Mack number upstream is $\%3.1 \text{ f} \setminus n$ Mack number downstream is $\%3.3 \text{ f} \setminus \text{n}$ Pressure downstream is %3.2 f kPa nTemperature downstream is \%3.2 f K\ Stagnation pressure downstream is %3.1 f kPa\ Area is $\%3.3 \text{ f cm}^2 \text{ n}$ At exit:\n number is $\%3.2 \text{ f} \setminus \text{n}$ Pressure is $\%3.1 \text{ f} \setminus \text{kPa} \setminus \text{n}$ (c) At section $(C): \ n$ Area upstream is %3.2 f cm² Temperature upstream is \%3.1 f K\n Mack number upstream is \%3.2 f\n Mack number downstream is $\%3.3 \text{ f} \setminus \text{n}$ Pressure downstream is $\%3.2 f kPa\n$ Temperature downstream is \%3.2 f K\ Stagnation pressure downstream is %3i kPa\n Area is $\%3.4 \text{ f cm}^2 \ln \text{ At exit:} \ln$ Mach number is $\%3.2 \text{ f} \setminus \text{n}$ Pressure is %3.1 f kPa/n (d) At section $(D): \ n$ Pressure upstream is %3i kPa Temperature upstream is \%3.1 f K\n upstream is $\%3.3 \text{ f cm}^2 \text{ n}$ Mack number upstream is $\%3.2 \text{ f} \ \text{n}$ Mack number downstream is %3.2 f\n Pressure downstream is \%3.2 f kPa\n Temperature downstream is \%3.2 f K\n Area is %3 $.3 \text{ f cm}^2 \ln$ At exit:\n Mach number is $\%3.2 \text{ f} \ \text{n}$ Pressure is %3.2 f kPa/n (e) At section (E):\n Pressure upstream is %3.1 f kPa\n Temperature upstream is \%3.1 f K\n Mack number upstream is %3.2 f\n Mack number downstream is $\%3.3 \text{ f} \ \text{n}$ Pressure downstream is %3.1f kPa\n Temperature downstream is \%3.2 f K\n At exit:\n Temperature is %3.2 f K\n Pressure is %3.1 f $kPa\n$ ',m,At,Pt,Tt,Ct,Px_a,Tx_a,My_a,Py_a,Ty_a,

```
Poy_a, At2_a, M2_a, P2_a, Px_b, Tx_b, Mx_b, My_b, Py_b, Ty_b, Poy_b, At2_b, M2_b, P2_b, Ax_c, Tx_c, Mx_c, My_c, Py_c, Ty_c, Poy_c, At2_c, M2_c, P2_c, Px_d, Tx_d, Ax_d, Mx_d, My_d, Py_d, Ty_d, At2_d, M2_d, P2_d, Px_e, Tx_e, Mx_e, My_e, Py_e, Ty_e, T2_e, P2_e)
```

Scilab code Exa 5.14 To estimate the difference in mercury in limbs of U tube manometer at various velocities

```
1 clc
2 clear
3
4 //Input data
5 T=300 //Temperature in K
6 P=1.01325*10^5 //Absolute pressure in Pa
7 k=1.4 // Adiabatic constant
8 R=287 // Specific gas constant in J/kg-K
9 C<sub>1</sub>=60 // Velocity of air in m/s
10 C_2=200 // Velocity of air in m/s
11 C_3=500 // Velocity of air in m/s
12 d_hg=13600 // Density of mercury in kg/m<sup>3</sup>
13 g=9.81 //Acceleration due to gravity in m/s^2
14
15 // Calculation
16 a=sqrt(k*R*T) //Sound velocity in m/s
17 \text{ M}_1=C_1/a //Mach number
18 dP1=(P*C_1^2)/(2*R*T) // Difference in mercury levels
19 dP1_hg=(dP1/(d_hg*g))*1000 // Difference in mercury
      levels in mm of Hg
20 M_2=C_2/a //Mach number
21 p1 = (1 + ((k-1)/2) * M_2^2) (k/(k-1)) / Stagnation to
      static pressure ratio
22 Po=p1*P //Stagnation pressure in Pa
23 dP2=abs(Po-P) // Difference in mercury levels in Pa
```

```
dP2_hg = (dP2/(d_hg*g))*1000 // Difference in mercury
      levels in mm of Hg
25 M_3=C_3/a //Mach number & M_3=Mach number just
      before shock
26 My=0.723 //Mach number just after shock
27 p1=2.2530 //Ratio of pressure after shock to before
      shock from gas tables @My
28 Py=p1*P //Pressure after shock in Pa
29 p2=0.706 //Ratio of pressure after shock to
      Stagnation pressure from gas tables @My
30 Po=Py/p2 //Stagnation pressure in Pa
31 dP3=Po-Py // Difference in mercury levels in Pa
32 dP3_hg=(dP3/(d_hg*g))*1000 // Difference in mercury
      levels in mm of Hg
33
34 //Output
35 printf ('Difference in mercury levels at velocity
      equal to:\n
                    (A)\%2i \text{ m/s} \text{ is } \%3.3 \text{ f mm of Hg/n}
      (B) \%3i m/s is \%3.1 f mm of Hg\n
                                         (C) %3i m/s is
      %3i mm of Hg', C_1, dP1_hg, C_2, dP2_hg, C_3, dP3_hg)
```

Scilab code Exa 5.15 To estimate Mach number and properties across the normal shock of tube

```
1 clc
2 clear
3
4 //Input data
5 Px=16 //Pressure before the shock in kPa
6 Poy=70 //Stagnation pressure after shock in kPa
7 To=300+273 //Stagnation temperature in K
8 k=1.4 //Adiabatic constant
9
10 //Calculation
11 p1=Poy/Px //Pressure ratio
```

```
12 Mx=1.735 //Mach number upstream of shock
13 My=0.631 //Mach number downstream of shock
14 p2=0.84 //Ratio of stagnation pressures after and
     before shock from gas tables
15 t1=1.483 //Temperature ratio after and before shock
     from gas tables
  Tx=To/(1+((k-1)/2)*Mx^2) // Temperature upstream of
16
     shock in K
17 Ty=Tx*t1 //Temperature downstream of shock in K
18 Pox=Poy/p2 //Stagnation pressure before shock in kPa
19
20 //Output
21 printf('(A) Mach number of the tunnal is Mx=\%3.3 f (My
     =%3.3 f)\n (B) Upstream of the tube:\n
                                               Static
     temperature is %3i K\n
                                 Total pressure is \%3.1 f
      kPa\n (C) Downstream of the tube:\n
     temperature is %3i K\n
                                Total pressure is %3i
     kPa', Mx, My, Tx, Pox, Ty, Poy)
```

Scilab code Exa 5.16 To find Mach number and velocity in pitot tube

```
1 clc
2 clear
3
4 //Input data
5 Py=455 //Pressure downstream of shock in kPa
6 Ty=65+273 //Temperature downstream of shock in K
7 dP=65 //Difference between dynamic and static
    pressure in kPa
8 k=1.4 //Adiabatic constant
9 R=287 //Specific gas constant in J/kg-K
10
11 //Calculation
12 Poy=dP+Py //Stagnation pressure after shock in kPa
13 p1=Py/Poy //Pressure ratio
```

```
14 My=0.44 //Mach number downstream of shock from
    isentropic gas tables @p1
15 Mx=3.8 //Mach number upstream of shock from normal
    shock gas tables @My
16 t1=3.743 //Temperature ratio after and before the
    shock from gas tables @My
17 Tx=Ty/t1 //Temperature before the shock in K
18 ax=sqrt(k*R*Tx) //Velocity of sound before the shock
    in m/s
19 Cx=Mx*ax //Air Velocity before the shock in m/s
20
21 //Output
22 printf('(A)Mach number is Mx=%3.1f (My=%3.2f)\n (B)
    Velocity is %3.2f m/s', Mx, My, Cx)
```

Scilab code Exa 5.17 To find shock speed and air velocity inside the shock

```
1 clc
2 clear
3
4 //Input data
5 k=1.4 //Adiabatic constant
6 Px=1.01325 // Pressure before the shock in bar
7 Tx=15+273 //Temperature before the shock in K
8 Py=13.789 //Pressure just after the shock in bar
9 R=287 //Specific gas constant in J/kg-K
10
11 // Calculation
12 p1=Py/Px //Pressure ratio
13 Mx=3.47 //Mach number upstream of shock from normal
     shock gas tables @p1
14 My=0.454 //Mach number downstream of shock from
     isentropic gas tables @p1
15 t1=3.213 //Temperature ratio after and before the
     shock from gas tables @Mx
```

```
16 Ty=Tx*t1 //Temperature downstream of shock in K
17 p2=15.574 //Stagnation pressure after shock to
      Static pressure before shock from gas tables @Mx
18 Poy=Px*p2 //Stagnation pressure after shock in bar
19 ax=sqrt(k*R*Tx) //Velocity of sound before the shock
       in m/s
             //Velocity of air before the shock in m/s
20 \text{ Cx=Mx*ax}
21 Csh=Cx //Since Csh=Cx, see dig.
22 ay=sqrt(k*R*Ty) //Velocity of sound after the shock
     in m/s
23 Cy=My*ay //Velocity of air after the shock in m/s
24 C_y=Cx-Cy //Air velocity just inside the shock in m/
25 P_y=Py //Pressure of air in bar, Since a powerful
      explosion creates a brief but intense blast wind
      as it passes
26 a_y=sqrt(k*R*Ty) ///Velocity of sound after the
     shock in m/s
27 M_y=C_y/a_y //Mach number
28
29 //Output
30 printf('(A) Shock speed is \%3.2 \text{ f m/s} \setminus n (B) Air
      velocity just inside the shock is \%3.2 f m/s', Cx,
     C_y)
```

Scilab code Exa 5.18 To compute speed of wave pressure and temperature of air at rest

```
1 clc
2 clear
3
4 //Input data
5 T=300 //Temperature in K
6 P=1.5 //Pressure in bar
7 C_y=150 //Air velocity just inside the shock in m/s
```

```
8 k=1.4 //Adiabatic constant
9 R=287 // Specific gas constant in J/kg-K
10
11 // Calculation
12 ax=sqrt(k*R*T) // Velocity of sound before the shock
      in m/s
13 Mx = sqrt(((C_y*(k+1))/(2*ax))+1) //Mach number before
       the shock
14 My=0.79 ///Mach number after the shock from normal
      shock gas tables
15 Cx=Mx*ax // Velocity of gas before the shock in m/s
16 p1=1.775 //Stagnation pressure ratio after and
      before the shock from gas tables @My
17 Py=P*p1 //Pressure just after the shock in bar
18 t1=1.1845 //Temperature ratio after and before the
      shock from gas tables @My
19 Ty=T*t1 //Temperature ratio after the shock in K
20 ay=sqrt(k*R*Ty) //Velocity of sound after the shock
      in m/s
  Csh=My*ay //Speed of the wave in m/s
21
22
23 // Output
24 printf('(A)Speed of the wave is \%3.1 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n} \, (B)At
      rest condition:\n Pressure is \%3.4 f bar\n
      Temperature is \%3.2 \, \text{f K}, Csh, Py, Ty)
```

Scilab code Exa 5.19 To find Mach number pressure temperature at exit and diffuser efficiency

```
1 clc
2 clear
3
4 //Input data
5 Mx=2 //Mach number before the shock
6 a1=3 //Diffuser area ratio
```

```
7 Pox=0.1 //Stagnation pressure before shock in bar
8 Tx=300 //Temperature before the shock in K
9 k=1.4 //Adiabatic constant
10
11 // Calculation
12 t1=0.555 //Static to stagnation temperature ratio
     before shock from isentropic gas tables @Mx, k=1.4
13 Tox=Tx/t1 //Stagnation temperature before shock in K
14 p1=0.128 //Static to stagnation pressure ratio
     before shock from isentropic gas tables @Mx, k=1.4
15 Px=Pox*p1 //Pressure before the shock in bar
16 My=0.577 //Mach number after the shock
17 p2=4.5 // Pressure ratio after and before the shock
     from gas tables @Mx
18 Py=Px*p2 //Pressure just after the shock in bar
19 t2=1.687 //Temperature ratio after and before the
     shock from gas tables @Mx
20 Ty=Tx*t2 //Temperature ratio after the shock in K
21 p3=0.721 //Stagnation pressure ratio after and
     before shock from gas tables @Mx
22 Poy=Pox*p3 //Stagnation pressure after shock in kPa
23 a2=1.2195 //Ratio of area after shock to throat area
       after shock from gas tables @My
24 a3=a2*a1 //Ratio of exit area to throat area at exit
25 M2=0.16 //Exit mach number from gas tables @a3
26 t3=0.9946 //Static to stagnation temperature ratio
     at exit from isentropic gas tables @Mx
27 T2=Tox*t3 //Exit Temperature in K, Since Tox=Toy=T02
      in case of diffuser
28 p4=0.982 //Static to stagnation pressure ratio at
     exit from isentropic gas tables @Mx
29
  P2=Poy*p4 //Exit pressure in bar, Calculation
     mistake in textbook
30 eff=(((Tox/Tx)*(Poy/Pox)^((k-1)/k))-1)/(((k-1)/2)*
     Mx^2))*100 // Diffuser efficiency including shock
     in percent
31
32 // Output
```

33 printf('(A)At the diffuser exit:\n Mach number is %3.2f\n Pressure is %3.3f bar\n Temperature is %3.2f K\n (B) Diffuser efficiency including shock is %3.3f percent', M2, P2, T2, eff)

Scilab code Exa 5.20 To find length of duct across shock mass flow rate entropy change across and downstream of shock

```
1 clc
2 clear
4 //Input data
5 k=1.3 //Adiabatic constant
6 R=287 // Specific gas constant in J/kg-K
7 P1=1 //Inlet pressure in bar
8 T1=400 //Inlet temperature in K
9 D=0.3 //Duct diameter in m
10 M1=2 //Mach number at entry
11 Mx=1.5 //Mach number upstream of shock
12 M2=1 //Mach number at outlet
13 f=0.003 //Friction factor
14
15 // Calculation
16 d1=P1*10^5/(R*T1) //Density at inlet in kg/m^3
17 a1=sqrt(k*R*T1) // Velocity of sound at inlet in m/s
18 C1=M1*a1 //Gas velocity at inlet in m/s
19 A1=%pi*D^2/4 //Inlet Area of the duct in m^2
20 m=d1*C1*A1 //Mass flow rate in kg/s
21 p1=0.131 //Static to Stagnation pressure ratio at
     entry from gas tables (M1, k=1.4, isentropic)
22 Po1=P1/p1 //Stagantion pressure at inlet in bar
23 t1=0.625 //Static to Stagnation temperature ratio at
      entry from gas tables (M1, k=1.4, isentropic)
24 To1=T1/t1 //Stagnation temperature at inlet in K
25 p2=0.424 //Static to Critical pressure ratio at
```

- inlet from gas tables, fanno flow tables @M1, k=1.4
- 26 Pt1=P1/p2 //Critical pressure in bar
- 27 p3=1.773 //Stagnation pressure ratio at entry to critical state from gas tables , fanno flow tables @M1, k=1.4
- 28 Pto1=Po1/p3 //Stagnation pressure at critical state in bar
- 29 t2=0.719 //Static to Critical temperature ratio at inlet from gas tables, fanno flow tables @M1, k=1.4
- 30 Tt1=T1/t2 // Critical temperature in K
- 31 X1=0.357 //frictional constant fanno parameter from gas tables, fanno flow tables @M1, k=1.4
- 32 p4=0.618 //Ratio of Static pressure before shock to critical pressure at entry from gas tables (fanno flow Mx, k=1.4)
- 33 Px=Pt1*p4 //pressure before shock in bar
- 34 t3=0.860 //Ratio of Static temperature before shock to critical temperature at entry from gas tables (fanno flow Mx, k=1.4)
- 35 Tx=Tt1*t3 //Temperature before shock in K
- 36 p5=1.189 //Ratio of Stagnation pressure before shock to Stagnation pressure at critical state at entry from gas tables (fanno flow, Mx, k=1.4)
- 37 Pox=Pto1*p5 //Stagnation pressure at critical state in bar
- 38 Xx=0.156 //frictional constant fanno parameter from gas tables, fanno flow tables @Mx, k=1.4
- 39 X3=X1-Xx //Overall frictional constant fanno parameter upstream of duct
- 40 L1=(X3*D)/(4*f) //Length upstream of duct in m
- 41 My=0.7 //Mach number downstream of shock from gas tables @Mx
- 42 p6=2.413 //Static pressure ratio after and before the shock from gas tables @My
- 43 Py=Px*p6 //Pressure after shock in bar
- 44 t4=1.247 //Temperature ratio after and before the shock from gas tables @My
- 45 Ty=Tx*t4 //temperature after shock in K

```
46 p7=0.926 //Stagnation pressure ratio after and
      before the shock from gas tables @My
47 Poy=Pox*p7 //Stagnation pressure after shock in bar
48 p8=1.479 //Ratio of pressure after shock to pressure
       at critical state from gas tables @My
49 Pt=Py/p8 //Critical pressure in bar
50 p9=1.097 //Ratio of Stagnation pressure after shock
      to Stagnation pressure at critical state from gas
       tables @My
51 Pot=Poy/p9 //Stagnation pressure at critical state
      in bar
52 t5=1.071 //Ratio of temperature after shock to
      temperature at critical state from gas tables @My
53 Tt=Ty/t5 //Critical temperature in K
54 Xy=0.231 //frictional constant fanno parameter from
      gas tables, fanno flow tables @My, k=1.4
55 X2=0 //frictional constant fanno parameter from gas
      tables, fanno flow tables @M=1,k=1.4
56 X4=Xy-X2 //Overall frictional constant fanno
      parameter downstream of duct
57 L2=(X4*D)/(4*f) //Length downstream of duct in m
58 ds1=R*log(Po1/Pox) //Change of entropy upstream of
      the shock in J/kg-K
59 ds2=R*log(Pox/Poy) //Change of entropy across the
      shock in J/kg-K
60 ds3=R*log(Poy/Pot) //Change of entropy downstream of
       the shock in J/kg-K
61
62 // Output
63 printf('(A) Length of the duct upstream and
      downstream of the duct is %3.3 f m and %3.3 f m
      respectively\n (B) Mass flow rate of the gas is \%3
      .3 f kg/s n (C) Change of entropy: n
                                              Upstream of
      the shock is \%3.2 \,\mathrm{f}\,\mathrm{J/kg-K}\n
                                        Across the shock
      is \%3.3 \, \text{f} \, \text{J/kg-K/n}
                           Downstream of the shock is
      \%3.4 \text{ f J/kg-K', L1, L2, m, ds1, ds2, ds3)}
```

Scilab code Exa 5.21 To find length across the shock properties of air at exit and mass flow rate through the duct

```
1 clc
2 clear
3
4 //Input data
5 P1=0.685 //Inlet pressure in bar
6 T1=310 //Inlet temperature in K
7 D=0.6 //Duct diameter in m
8 M1=3 //Mach number at entry
9 Mx=2.5 //Mach number upstream of shock
10 M2=0.8 //Mach number at outlet
11 f=0.005 //Friction factor
12 k=1.4 //Adiabatic constant
13 R=287 // Specific gas constant in J/kg-K
14
15 // Calculation
16 d1=P1*10^5/(R*T1) //Density at inlet in kg/m^3
17 al=sqrt(k*R*T1) // Velocity of sound at inlet in m/s
18 C1=M1*a1 //Air velocity at inlet in m/s
19 A1=%pi*D^2/4 //Inlet Area of the duct in m^2
20 m=d1*C1*A1 //Mass flow rate in kg/s
21 p1=0.218 //Static to Critical pressure ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
22 Pt1=P1/p1 // Critical pressure in bar
23 t1=0.428 //Static to Critical temperature ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
24 Tt1=T1/t1 // Critical temperature in K
25 X1=0.522 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.4
26 p2=0.292 //Ratio of Static pressure before shock to
      critical pressure at entry from gas tables (fanno
      flow, Mx, k=1.4)
```

```
27 Px=Pt1*p2 //pressure before shock in bar
28 t2=0.533 //Ratio of Static temperature before shock
     to critical temperature at entry from gas tables
     (fanno flow, Mx, k=1.4)
29 Tx=Tt1*t2 //Temperature before shock in K
30 Xx=0.432 //frictional constant fanno parameter from
     gas tables, fanno flow tables @Mx, k=1.4
31 X3=X1-Xx //Overall frictional constant fanno
     parameter upstream of duct
32 L1=(X3*D)/(4*f) //Length upstream of duct in m
33 My=0.513 //Mach number downstream of shock from gas
     tables @Mx
34 p3=7.125 //Static pressure ratio after and before
     the shock from gas tables @My
35 Py=Px*p3 //Pressure after shock in bar
36 t3=2.138 //Temperature ratio after and before the
     shock from gas tables @My
37 Ty=Tx*t3 //temperature after shock in K
38 p4=2.138 //Ratio of pressure after shock to pressure
      at critical state from gas tables @My
39 Pt=Py/p4 //Critical pressure in bar
40 t4=1.143 //Ratio of temperature after shock to
     temperature at critical state from gas tables @My
41 Tt=Ty/t4 //Critical temperature in K
42 p5=1.289 //Ratio of pressure at exit to pressure at
     critical state from gas tables @M2
43 P2=Pt*p5 //Exit pressure in bar
44 t5=1.064 //Ratio of temperature at exit to
     temperature at critical state from gas tables @M2
45 T2=Tt*t5 //Exit temperature in K
46 Xy=1.069 //frictional constant fanno parameter from
     gas tables, fanno flow tables @My, k=1.4
47 X2=0.073 //frictional constant fanno parameter from
     gas tables, fanno flow tables @M2, k=1.4
  X4=Xy-X2 //Overall frictional constant fanno
     parameter downstream of duct
```

49 L2=(X4*D)/(4*f) //Length downstream of duct in m

50

```
51 //Output
52 printf('(A)Length L1 and L2 are %3.1f m and %3.2f m
    respectively\n (B)State of air at exit:\n
    Pressure is %3.3f bar\n Temperature is %3.1f K
    \n (C)Mass flow rate through the duct is %3.2f kg
    /s',L1,L2,P2,T2,m)
```

Scilab code Exa 5.22 To find properties after shock and exit and exit Mach number

```
1 clc
2 clear
3
4 //Input data
5 At=24 //Throat area in cm<sup>2</sup>
6 \text{ A2=50} // \text{Exit area in cm}^2
7 Po=700 //Stagnation pressure in kPa
8 To=100+273 //Stagnation temperature in K
9 Ax=34 //Area before the shock in cm<sup>2</sup>
10 Ay=34 //Area after the shock in cm<sup>2</sup>
11
12 // Calculation
13 a1=Ax/At //Ratio of areas
14 Mx=1.78 //Mach number upstream of shock from gas
      tables @a1
15 t1=0.61212 //Ratio of temperature before shock to
      critical state from isentropic gas tables @Mx
16 Tx=To*t1 //temperature before shock in K
17 p1=0.179 //Ratio of pressure before shock to
      critical state from isentropic gas tables @Mx
18 Px=Po*p1 //pressure before shock in kPa
19 My=0.621 //Mach number downstream of shock from gas
      tables @Mx
20 p2=3.5298 //Static pressure ratio after and before
      the shock from gas tables @My
```

```
21 Py=Px*p2 //Pressure after shock in kPa
22 t2=1.51669 //Temperature ratio after and before the
      shock from gas tables @My
23 Ty=Tx*t2 //temperature after shock in K
24 p3=4.578 //Ratio of Stagnation pressure after the
      shock to static pressure before shock from gas
      tables @My
25 Po2=Px*p3 //Stagnation pressure at exit in bar
26 a2=1.16565 //Ratio of area after shock to critical
      area across shock from isentropic gas tables @My
27 At2=Ay/a2 //critical area at exit in cm^2
28 a3=A2/At2 //Ratio of areas
29 M2=0.36 //Exit mach number from gas tables (a3,k)
      =1.4, isentropic)
30 p4=0.914 //Static to Stagnation pressure ratio at
      exit from gas tables (a3, k=1.4, isentropic)
31 P2=Po2*p4 //Stagnation pressure ratio at exit in kPa
32 t3=0.975 //Static to Stagnation temperature ratio at
       exit from gas tables (a3, k=1.4, isentropic)
33
  T2=To*t3 //Stagnation temperature at exit in K
34
35 // Output
36 printf('(A) Properties of fluid just after shock:\n
         Mach number My=\%3.3 \text{ f} \ \text{n}
                                    Temperature is %3.2 f
              Pressure is %3.2 f kPa\n (B) Exit mach
     number is %3.2 f\n (C) Properties of fluid at exit
             Pressure is %3i kPa\n Temperature is %3
      .3 f K', My, Ty, Py, M2, P2, T2)
```

Scilab code Exa 5.23 To find length diameter of pipe and properties at pipe exit

```
1 clc
2 clear
3
```

```
4 //Input data
5 D=0.4 //Duct diameter in m
6 Po=12 //Stagnation pressure in kPa
7 To=600 //Stagnation temperature in K
8 f=0.0025 //Friction factor
9 M1=1.8 //Mach number at entry
10 M2=1 //Mach number at outlet
11 Mx=1.22 //Mach number upstream of shock
12
13 // Calculations
14 A2=\%pi*D^2/4 //Exit area in cm<sup>2</sup>
15 p1=0.174 //Static to Stagnation pressure ratio at
     entry from gas tables (M1, k=1.4, isentropic)
16 P1=Po*p1 //Inlet pressure in bar
17 t1=0.607 //Static to Stagnation temperature ratio at
       entry from gas tables (M1, k=1.4, isentropic)
18 T1=To*t1 //Inlet temperature in K
19 a1=1.094 //Ratio of area at exit to critical area
      across shock from isentropic gas tables @M1, k=1.4
20 Ax=A2/a1 //Area before the shock in cm<sup>2</sup>
21 Dt=sqrt((Ax*4)/(\%pi))*10^2 // Duct diameter at throat
       in cm
22 p2=0.474 //Static to Critical pressure ratio at
     inlet from gas tables, fanno flow tables @M1, k=1.4
23 Pt=P1/p2 // Critical pressure in bar
24 t2=0.728 //Static to Critical temperature ratio at
      inlet from gas tables, fanno flow tables @M1, k=1.4
25 Tt=T1/t2 //Critical temperature in K
26 X1=0.242 //frictional constant fanno parameter from
      gas tables, fanno flow tables @M1, k=1.4
27 p3=0.788 //Ratio of Static pressure before shock to
      critical pressure at entry from gas tables (fanno
      flow, Mx, k=1.4)
28 Px=Pt*p3 //pressure before shock in bar
29 t3=0.925 //Ratio of Static temperature before shock
     to critical temperature at entry from gas tables
     (fanno flow, Mx, k=1.4)
30 Tx=Tt*t3 //Temperature before shock in K
```

```
31 Xx=0.039 //frictional constant fanno parameter from
      gas tables, fanno flow tables @Mx, k=1.4
32 X3=X1-Xx //Overall frictional constant fanno
     parameter upstream of duct
33 L1=(X3*D)/(4*f) //Length upstream of duct in m
34 My=0.83 //Mach number downstream of shock from gas
      tables @Mx
35 p4=1.57 //Static pressure ratio after and before the
      shock from gas tables @My
36 Py=Px*p4 //Pressure after shock in bar
37 t4=1.141 //Temperature ratio after and before the
     shock from gas tables @My
38 Ty=Tx*t4 //temperature after shock in K
39 p5=1.2375 //Ratio of pressure after shock to
      pressure at critical state from gas tables @My
40 Pt=Py/p5 // Critical pressure in bar
41 t5=1.055 //Ratio of temperature after shock to
     temperature at critical state from gas tables @My
42 Tt=Ty/t5 //Critical temperature in K
43 Xy=0.049 //frictional constant fanno parameter from
     gas tables, fanno flow tables @My, k=1.4
44 X2=0 //frictional constant fanno parameter from gas
     tables, fanno flow tables @M=1,k=1.4
45 X4=Xy-X2 //Overall frictional constant fanno
     parameter downstream of duct
46 L2=(X4*D)/(4*f) //Length downstream of duct in m
47 L=L1+L2 //Length of duct in m
48
49 // Output
50 printf('(A) Length of the pipe is \%3.2 \text{ f m/n} (B)
     Diameter of the nozzle throat is \%3.3 f cm\n (C) At
      the pipe exit:\n
                          Pressure is %3.3f bar\n
     Temperature is %3.2 f K', L, Dt, Pt, Tt)
```

Scilab code Exa 5.24 To estimate amount of heat added in two pipe section and properties

```
1 clc
2 clear
4 //Input data
5 Po=700 //Stagnation pressure in kPa
6 To=500+273 //Stagnation temperature in K
7 a1=3.5 //Ratio of exit area to throat area
8 m=5.5 //Mass flow rate in kg/s
  Cp=1.005 //Specific heat capacity at constant
     pressure in kJ/kg-K
10 k=1.4 // Adiabatic constant
11
12 // Calculation
13 My=1/sqrt(k) //Mach number downstream of shock
14 M2=2.8 //Mach number at outlet from gas tables @a1
15 t1=0.389 //Static to Stagnation temperature ratio at
      exit from gas tables (M1, k=1.4, isentropic)
16 T2=To*t1 //Exit temperature in K
17 p1=0.0369 //Static to Stagnation pressure ratio at
     exit from gas tables (M1, k=1.4, isentropic)
18 P2=Po*p1 //exit pressure in kPa
19 p2=0.2 //Ratio of pressure at exit to pressure at
     critical state at exit from Rayleigh flow gas
      tables @M2
20 Pt2=P2/p2 //Exit pressure at critical state in kPa
21 t2=0.315 //Ratio of temperature at exit to
     temperature at critical state at exit from
     Rayleigh flow gas tables @M2
22 Tt2=T2/t2 //Exit temperature at critical state in K
23 t3=0.674 //Ratio of Stagnation temperature at exit
     to stagnation temperature at critical state at
     exit from Rayleigh flow gas tables @M2
24 Tto2=To/t3 //Exit stagnation temperature at critical
      state in K
25 Mx=1.2 //Mach number upstream of shock from gas
```

```
tables @My
```

- 26 p3=0.796 // Ratio of Static pressure before shock to critical pressure at exit from gas tables (Rayleigh flow, Mx, k=1.4)
- 27 Px=Pt2*p3 //Static pressure before shock in kPa
- 28 t4=0.912 //Ratio of Static temperature before shock to critical temperature at exit from gas tables (Rayleigh flow, Mx, k=1.4)
- 29 Tx=Tt2*t4 //Static temperature before shock in K
- 30 t5=0.978 //Ratio of Stagnation temperature before shock to critical Stagnation temperature at exit from gas tables (Rayleigh flow, Mx, k=1.4)
- 31 Tox=Tto2*t5 //Stagnation temperature before shock in K
- 32 p4=1.513 //Static pressure ratio after and before the shock from gas tables @Mx
- 33 Py=Px*p4 //Pressure after shock in kPa
- 34 t6=1.128 //Temperature ratio after and before the shock from gas tables @Mx
- 35 Ty=Tx*t6 //temperature after shock in K
- 36 t7=0.875 // Ratio of Temperature after the shock to Stagnation temperature after shock from gas tables @Mx
- 37 Toy=Ty/t7 //Stagnation temperature after shock in K,
- 38 p5=1.207 //Ratio of pressure after shock to pressure at critical state from gas tables @My
- 39 Pt=Py/p5 //Critical pressure in kPa
- 40 t8=1.028 // Ratio of temperature after shock to temperature at critical state from gas tables @My
- 41 Tt=Ty/t8 //Critical temperature in K
- 42 t9=0.978 //Ratio of Stagnation temperature after shock to Stagnation temperature at critical state from gas tables @My
- 43 Tot=Toy/t9 //Stagnation temperature at critical state in K, calculation mistake in textbbok
- 44 q1=Cp*(Tox-To) //Amount of heat added in upstream of shock in kJ/s
- 45 q2=Cp*(Tot-Toy) //Amount of heat added in downstream

```
of shock in kJ/s
46 Q=m*(q1+q2) //Amount of heat added in two pipe
      section in kJ/s
47
48 //Output
49 printf('(A) Amount of heat added in two pipe section
      is \%3.2 f kJ/s\n (B) Properties:\n Upstream of
      shock: \ n
                    Pressure is %3.1f kPa\n
      Temperature is %3.3 f K\n
                                       Stagnation
      temperature is \%3.2 f \text{ K}\n
                                       Mach number is \%3.1 \,\mathrm{f} \,
                                   Pressure is %3.3 f kPa
      n Downstream of shock:\n
             Temperature is %3.3 f K\n
                                              Stagnation
      temperature is \%3.1 f \text{ K}\n
                                       Mach number is \%3.3 \text{ f} \setminus
      n At the throat:\n
                                Pressure is %3.2f kPa\n
      Temperature is %3.3 f K\n
                                       Stagnation
      temperature is \%3.2 f K\n At the exit:\n
      Pressure is %3.2 f kPa\n
                                      Temperature is \%3.2 f K
             Mach number is \%3.2 \, \text{f}', Q, Px, Tx, Tox, Mx, Py, Ty,
      Toy, My, Pt, Tt, Tot, P2, T2, M2)
```

Scilab code Exa 5.25 To find deflection angle Downstream Mach number Static pressure and total pressure loss through the shock

```
1 clc
2 clear
3
4 //Input data
5 M1=2.8 //Inlet mach number
6 sig=42 //Shock wave angle in degree
7 Px=1 //Pressure upstream of shock in bar(Assuming)
8 k=1.4 //Adiabatic constant
9
10 //Calculations
11 Mx=M1*sind(sig) //Mach number before the shock
12 My=0.601 //Mach number after the shock from gas
```

```
tables @Mx
13 p1=3.98 //Static pressure ratio after and before the
       shock from gas tables @Mx
14 Py=Px*p1 //Pressure after shock in bar
15 p2=4.994 //Stagnation pressure after shock to Static
       pressure before shock from gas tables @Mx
16 Poy=Px*p2 //Stagnation pressure after shock in bar
17 p3=0.788 //Stagnation pressure ratio after and
      before the shock from gas tables @Mx
18 Pox=Poy/p3 //Stagnation pressure before shock in kPa
19 dPl=Pox-Poy //Total pressure loss in bar
20 def = atand(((M1^2*sind(2*sig)) - (2/tand(sig)))/(2+(M1))
      ^2*(k+cosd(2*sig))))) // Deflection angle in
      degree
21 M2=My/(sind(sig-def)) //Downstream mach number
22
23 //Output
24 printf('(A) Deflection angle is %3i degree\n (B)
      Downstream mach number is \%3.3 f\n (C) Static
      pressure is %3.3 f bar\n (D) Total pressure loss is
      \%3.3 \, \text{f} \, \text{bar}', \text{def}, \text{M2}, \text{Py}, \text{dPl})
```

Scilab code Exa 5.26 To determine static pressure temperature behind wave Mach number and Wedge angle

```
1 clc
2 clear
3
4 //Input data
5 M1=2 //Inlet mach number
6 sig=40 //Shock wave angle in degree
7 Px=0.5 //Pressure upstream of shock in bar
8 Tx=273 //Temperature upstream of shock in K
9 k=1.4 //Adiabatic constant
```

```
11 // Calculation
12 Mx=M1*sind(sig) //Mach number before the shock
13 \text{ My=0.796} //Mach number after the shock from gas
      tables @Mx
14 p1=1.745 //Static pressure ratio after and before
      the shock from gas tables @Mx
15 Py=p1*Px //Pressure after shock in bar
16 t1=1.178 //Static temperature ratio after and before
       the shock from gas tables @Mx
17 Ty=Tx*t1 //Temperature after shock in K
18 Ws = atand(((M1^2*sind(2*sig)) - (2/tand(sig)))/(2+(M1))
      ^2*(k+cosd(2*sig))))) //Wedge semi angle in
      degree
19 W=2*Ws //Wedge angle in degree
20
21 // Output
22 printf('(A) Static pressure is \%3.4 \,\mathrm{f} bar\n (B)
      Temperature behind the wave is %3.2 f K\n (C)Mach
      number of flow passing over wedge is \%3.3 \text{ f} \setminus n (D)
      Wedge angle is %3.2 f degree', Py, Ty, Mx, W)
```

Scilab code Exa 5.27 To find property ratios at strong and weak shock at wedge

```
1 clc
2 clear
3
4 //Input data
5 def=15
6 M1=2
7 k=1.4
8
9 //Calculation
10 //Using relation def=atand(((M1^2*sind(2*sig)))-(2/tand(sig)))/(2+(M1^2*(k+cosd(2*sig))))) and
```

```
converting into 6th degree polynomial of sind (sig
     )=x
11 C = ((2*tand(def)) + ((M1^2)*k*tand(def)) + ((M1^2)*tand(def)))
     def))) //Constant value for convenience
12 D=(2*M1^2*tand(def)) // Constant value for
      convenience
13 a=4 //Value of constant in polynomial
14 b=0 //Coefficient of power 1 i.e. x^1
15 c=(4+C^2+(8*M1^2)) // Coefficient of power 2 i.e. x^2
16 d=0 // Coefficient of power 3 i.e. x^3
17 e=(4*(M1^4))+(2*C*D)+(8*M1^2) // Coefficient of power
      4 i.e. x<sup>4</sup>
18 f=0 // Coefficient of power 5 i.e. x^5
19 g=(4*M1^4)+D^2 // Coefficient of power 6 i.e. x^6
20 p4=poly([a b -c -d e f -g], 'x', 'c') //Expression for
       solving 6th degree polynomial
21 disp('Values for sine of wave angle are:\n')
22 disp(roots(p4))
23 sig1=asind(0.9842) //Strong shock wave angle in
     degree, nearer to 90 degree
24 sig2=asind(0.7113) //Weak shock wave angle in degree
      , nearer to 45 degree
25 //(a) Strong Shock Wave
26 Mx_1=M1*sind(sig1) //Mach number before the shock of
      stong shock wave
27 My_1=0.584 //Mach number after the shock from gas
      tables @Mx_1
28 p1=4.315 //Static pressure ratio after and before
     the shock from gas tables @Mx_1
29 t1=1.656 //Static temperature ratio after and before
      the shock from gas tables @Mx_1
30 d1=p1/t1 //Density ratio after and before the shock
     of stong shock wave
31 M2_1=My_1/(sind(sig1-def)) //Exit mach number of
     stong shock wave
32 Mx_2=M1*sind(sig2) //Mach number before the shock of
       weak shock wave
33 My_2=0.731 //Mach number after the shock from gas
```

```
tables @Mx_2
34 p2=2.186 //Static pressure ratio after and before
      the shock from gas tables @Mx_2
  t2=1.267 //Static temperature ratio after and before
35
       the shock from gas tables @Mx_2
36 d2=p2/t2 //Density ratio after and before the shock
      of weak shock wave
  M2_2=My_2/(sind(sig2-def)) //Exit mach number of
      weak shock wave
38
39 //Output
40 printf('\nStrong Shock Wave:\n
                                          (A) Wave angle is
      %3.1f degree\n
                           (B) Pressure ratio is %3.3 f\n
          (C) Density ratio is \%3.3 \text{ f} \setminus n
                                              (D) Temperature
                             (E) Downstream Mach number is
      ratio is %3.3 f\n
      \%3.3 \text{ f} \text{ Weak Shock Wave:} \text{ n}
                                         (A) Wave angle is %3
                        (B) Pressure ratio is \%3.3 f\n
      .1f degree\n
      C) Density ratio is \%3.3 \text{ f} \setminus n
                                         (D) Temperature
      ratio is %3.3 f\n
                             (E) Downstream Mach number is
      \%3.3 \, \text{f}', sig1, p1, d1, t1, M2_1, sig2, p2, d2, t2, M2_2)
```

Scilab code Exa 5.28 To find deflection angle final Mach number and temperature of gas

```
1 clc
2 clear
3
4 //Input data
5 k=1.3 //Adiabatic constant
6 P1=0.345 //Inlet pressure in bar
7 T1=350 //Inlet temperature in K
8 M1=1.5 //Inlet mach number
9 P2=0.138 //Exit pressure in bar
10
11 //Calculation
```

```
12 p1=0.284 // Pressure ratio at entry from gas tables
      @M1, k = 1.3
13 Po=P1/p1 //Stagnation Pressure in bar
14 t1=0.748 //Temperature ratio at entry from gas
      tables @M1, k=1.3
15 To=T1/t1 //Stagnation temperature in K
16 p2=P2/Po //Pressure ratio
17 M2=2.08 //Final Mach number from isentropic gas
      tables @p2
18 t2=0.606 //Temperature ratio at exit from gas tables
       @M2, k = 1.3
19 T2=To*t2 //The temperature of the gas in K
20 w1=12.693 //Prandtl Merger function at M1
21 w2=31.12 //Prandtl Merger function at M2
22 def=w2-w1 //Deflection Angle in degree
23
24 //Output
25 printf('(A) Deflection Angle is \%3.3 f degree\n (B)
      Final Mach number is \%3.2 \text{ f} \setminus n (C) The temperature
      of the gas is \%3.3\,\mathrm{f} K', def, M2, T2)
```

Chapter 6

Aircraft Propulsion

Scilab code Exa 6.1 To calculate thrust and specific thrust of jet propulsion

```
1 clc
2 clear
4 //Input data
5 eff_com=0.8 //Compressor efficiency
6 eff_t=0.85 //Turbine efficiency
7 pr=4 // Pressure ratio including combustion pressure
     loss (Po2s/Po1)
8 eff_c=0.98 //Combustion efficiency
9 eff_m=0.99 // Mechanical transmission efficiency
10 eff_n=0.9 //Nozzle efficiency
11 Tmax=1000 //Maximum cycle temperature in K
12 To3=Tmax //Stagnation temperature before turbine
     inlet in K
13 w=220 //mass flow rate in N/s
14 Cp_air=1005 //Specific heat capacity at constant
     pressure in J/kg-K
15 k=1.4 //Adiabatic constant for air
16 Cp_gas=1153 //Specific heat capacity at constant
     pressure in J/kg-K
```

```
17 k_gas=1.3 //Adiabatic constant
18 To1=15+273 //Inlet Stagnation temperature of
     compressor in K
19 Po1=1 //Inlet Stagnation pressure in bar
20 Poe=Po1 //Exit stagnation pressure in bar, Since
     exit at ambient conditions
21 g=9.81 //Acceleration due to gravity in m/s<sup>2</sup>
22
23 // Calculation
24 To2s=To1*(pr)^((k-1)/k) //Exit Stagnation
     temperature of compressor at isentropic process
  To2=((To2s-To1)/eff_com)+To1 //Exit Stagnation
25
     temperature of compressor in K
26 Wc=(Cp_air*(To2-To1)) //Work given to compressor in
     J/kg, Cp in J/kg-K
  To4=To3-(Wc/Cp_gas*eff_m) //Exit Stagnation
27
     temperature of turbine in K
  To4s=To3-((To3-To4)/eff_t) // Exit Stagnation
     temperature of turbine at isentropic process in K
29 Po2=Po1*pr //Exit Stagnation pressure of compressor
     in bar
30 Po3=Po2 //Exit Stagnation pressure of combustion
     chamber in bar, Since the process takes place at
     constant pressure process
31 p1=(To3/To4s)^(k_gas/(k_gas-1)) // Stagnation
     Pressure ratio of inlet and outlet of turbine
32 Po4s=Po3/p1 //Stagnation Pressure at outlet of
     turbine at isentropic process in bar
33 pr_n=Po4s/Poe //Pressure ratio of nozzle
34 Toes=To4/((pr_n)^((k_gas-1)/k_gas)) //Exit
     Stagnation temperature of nozzle at isentropic
     process in K
35 Toe=To4-((To4-Toes)*eff_n) //Exit Stagnation
     temperature of nozzle in K
36 Cj=sqrt(2*Cp_gas*(To4-Toe)) //Jet velocity in m/s
37 m=w/g //Mass flow rate of air in kg/s
38 F=m*Cj*10^-3 //Thrust in kN
```

```
39 Fs=(F*10^3)/m //Specific thrust in Ns/kg, F in N
40 Is=F/w //Specific impulse in sec
41
42 //Output
43 printf('(A)Thrust is %3.3 f kN\n (B)Specific thrust
    is %3.2 f Ns/kg',F,Fs)
```

Scilab code Exa 6.2 To find thrust developed thrust power and propulsive efficiency

```
1 clc
2 clear
3
4 //Input data
5 u=800*(5/18) //Flight velocity in m/s
6 Pe=60 //Ambient pressure in kPa
7 Pn=300 // Pressure entering nozzle in kPa
8 Tn=200+273 //Temperature entering nozzle in K
9 m=20 //Mass flow rate of air in kg/s
10 Cp=1005 //Specific heat capacity at constant
      pressure in J/kg-K
11 k=1.4 //Adiabatic constant for air
12
13 // Calculation
14 Te=Tn*(Pe/Pn)^{(k-1)/k} // Exit temperature of nozzle
       in K
15 Cj = sqrt(2*Cp*(Tn-Te)) // Jet velocity in m/s
16 F=m*(Cj-u) //Thrust in N
17 P=F*u*10^-3 //Thrust power in kW
18 eff=((2*u)/(Cj+u))*100 //Propulsive efficiency in
      percent
19
20
21 //Output
22 printf('(A) Thrust developed is \%3.1 \text{ f N} \setminus n (B) Thrust
```

Scilab code Exa 6.3 To determine specific thrust and thrust specific fuel consumption for turbojet engine

```
1 clc
2 clear
3
4 //Input data
5 Mi=0.8 //Inlet mach number
6 h=10000 // Altitude in m
7 pr_c=8 // Pressure ratio of compressor
  To3=1200 //Stagnation temperature at turbine inlet
9 eff_c=0.87 //Compressor efficiency
10 eff_t=0.9 //Turbine efficiency
11 eff_d=0.93 // Diffuser efficiency
12 eff_n=0.95 //Nozzle efficiency
13 eff_m=0.99 // Mechanical transmission efficiency
14 eff_cc=0.98 //Combustion efficiency
15 pl=0.04 //Ratio of combustion pressure loss to
      compressor delivery pressure
16 k=1.4 // Adiabatic constant of air
17 R=287 //Specific gas constant in J/kg-K
18 k_g=1.33 // Adiabatic constant of gas
19 Cp_a=1005 // Specific heat capacity at constant
     pressure of air in J/kg-K
20 Cp_g=1100 //Specific heat capacity at constant
      pressure of gas in J/kg-K
21 CV=43000000 // Calorific value in J/kg (Assume)
22
23 // Calculation
24 Ti=223.15 //Inlet temperature in K from gas tables
25 Pi=26.4 //Inlet pressure in kPa from gas tables
```

```
26 ai=sqrt(k*R*Ti) //Sound velocity in m/s
27 Ci=ai*Mi //Velocity of air in m/s,
28 u=Ci //Flight velocity in m/s, Since it is reaction
     force of Ci
29 t1=0.886 //Ratio of static to stagnation temperature
      a entry from gas tables at M=0.8
30 Tols=Ti/tl //Stagnation temperature at inlet of
     compressor at isentropic process in K
31 To1=((To1s-Ti)/eff_d)+Ti //Stagnation temperature at
      inlet of compressor in K
32 p1=(To1s/Ti)^(k/(k-1)) // Pressure ratio i.e. (Po1s/
33 Pols=Pi*pl //inlet Stagnation pressure of compressor
      at isentropic process in kPa
34 Po1=Po1s //Inlet Stagnation pressure of compressor
35 Po2=pr_c*Po1 //Exit Stagnation pressure of
     compressor in kPa
36 To2s=To1s*(Po2/Po1)^((k-1)/k) //Exit Stagnation
     temperature of compressor at isentropic process
     in K
37 To2=((To2s-To1)/eff_c)+To1 //Exit Stagnation
     temperature of compressor in K
38 P_los=pl*Po2 //combustion pressure loss in kPa
39 Po3=Po2-P_los //Exit Stagnation pressure of
     combustion chamber in kPa
40 To4=To3-((Cp_a*(To2-To1))/(eff_m*Cp_g)) //Exit
     Stagnation temperature of turbine in K
  To4s=To3-((To3-To4)/eff_t) //Exit Stagnation
     temperature of turbine at isentropic process in K
42 p1=(To3/To4s)^(k_g/(k_g-1)) // Pressure ratio i.e. (
     Po3/Po4s)
43 Po4s=Po3/p1 //Stagnation Pressure at outlet of
     turbine at isentropic process in kPa
44 Poe=Pi //Exit stagnation pressure in kPa, Since exit
      is at ambient conditions
45 pr_n=Po4s/Poe //Pressure ratio of nozzle
```

46 Toes=To4/((pr_n)^((k_g-1)/ k_g)) //Exit Stagnation

Scilab code Exa 6.4 To estimate properties at exit and propulsive efficiency of a turbojet aircraft

```
1 clc
2 clear
4 //Input data
5 u=300 //Flight velocity in m/s
6 Pi=35 //Inlet pressure in kPa
7 Ti = -40 + 273 // Inlet temperature in K
8 pr_c=10 //Pressure ratio of compressor
9 T3=1100+273 //Inlet turbine temperature in K
10 m=50 //Mass flow rate of air in kg/s
11 k=1.4 // Adiabatic constant of air
12 Cp=1005 // Specific heat capacity at constant
     pressure of air in J/kg-K
13 R=287 //Specific gas constant in J/kg-K
14
15 // Calculation
16 ai=sqrt(k*R*Ti) //Sound velocity at diffuser in m/s
```

```
17 C1=u // Velocity of air in m/s, Since it is reaction
      force of u
18 T1=Ti+(C1^2/(2*Cp)) //Temperature at inlet of
      compressor in K
19 P1=Pi*((T1/Ti)^(k/(k-1))) //Inlet pressure of
      compressor in kPa
20 P2=pr_c*P1 //Exit pressure of compressor in kPa
21 P3=P2 //Exit pressure of combustion chamber in kPa,
      Since the process takes place at constant
      pressure process
22 T2=T1*(P2/P1)^((k-1)/k) //Exit temperature of
      compressor in K
23 T4=T3-(T2-T1) //Exit temperature of turbine in K
24 P4=P3/((T3/T4)^(k/(k-1))) // Pressure at outlet of
      turbine in kPa
  Pe=Pi //Exit pressure in kPa, Since exit is at
      ambient conditions
26 pr_n=P4/Pe //Pressure ratio of nozzle
27 Te=T4/((pr_n)^((k-1)/k)) //Exit temperature of
      nozzle in K
28 Cj=sqrt(2*Cp*(T4-Te)) //Jet velocity in m/s
29 sig=u/Cj //Jet speed ratio
30 eff_prop=((2*sig)/(1+sig))*100 // Propulsive
      efficiency of the cycle in %
31
32 //Output
33 printf('(A) Temperature and pressure of gases at
      turbine exit is %3.2 f K and %3i kPa\n (B) Velocity
      of gases is \%3.2 f m/s\n (C) Propulsive efficiency
       of the cycle is %3.2f percent', T4,P4,Cj,eff_prop
     )
```

Scilab code Exa 6.5 To calculate absolute velocity drag overall and turbine efficiency of jet

```
1 clc
2 clear
4 //Input data
5 n=2 //Number of jets
6 D=0.25 //Diameter of turbojet in m
7 P=3000 //Net power at turbojet in W
8 mf_kWh=0.42 //Fuel consumption in kg/kWh
9 CV=49000 // Calorific value in kJ/kg
10 u=300 //Flight velocity in m/s
11 d=0.168 // Density in kg/m<sup>3</sup>
12 AFR=53 //Air fuel ratio
13
14 // Calculatioon
15 mf=mf_kWh*P/3600 //Mass flow rate of fuel in kg/s
16 ma=AFR*mf //Mass flow rate of air in kg/s
17 m=ma+mf //Mass flow rate of gas in kg/s
18 Q=m/d //Volume flow rate in m<sup>3</sup>/s
19 Cj = (Q*4)/(2*\%pi*D^2) // Jet velocity in m/s
20 Ca=Cj-u //Absolute Jet velocity in m/s
21 F = ((m*Cj) - (ma*u))*10^-3 //Thrust in kN
22 eff=((F*u)/(mf*CV))*100 //Overall efficiency in \%
23 eff_prop=((2*u)/(Cj+u))*100 //Propulsive efficiency
      of the cycle in %
24 eff_ther=(eff/eff_prop)*100 //Efficiency of turbine
      in %
25
26 //Output
27 printf('(A) Absolute velocity of jet is \%3.3 \,\mathrm{f}\,\mathrm{m/s} \cdot \mathrm{n} (
      B) Resistance of the plane is \%3.4 \text{ f kN} \setminus n (C)
      Overall efficiency is \%3.2 f percent\n (D)
      Efficiency of turbine is \%3.3f percent', Ca, F, eff,
      eff_ther)
```

Scilab code Exa 6.6 To Calculate propulsive and thrust power total fuel consumption and propulsive thermal and overall efficiency

```
1 clc
2 clear
4 //Input data
5 u=900*(5/18) //Flight velocity in m/s
6 ma=3000/60 //Mass flow rate of air in kg/s
7 dh=200 //Enthalpy drop of nozzle in kJ/kg
8 eff_n=0.9 //Nozzle efficiency
9 AFR=85 //Air fuel ratio
10 eff_cc=0.95 //Combustion efficiency
11 CV=42000 // Calorific value in kJ/kg
12
13 // Calculation
14 mf=ma/AFR //Mass flow rate of fuel in kg/s
15 m=ma+mf //Mass flow rate of gas in kg/s
16 Cj = sqrt(2*eff_n*dh*10^3) // Jet velocity in m/s
17 sig=u/Cj //Jet speed ratio
18 F = ((m*Cj) - (ma*u))*10^-3 //Thrust in kN
19 Pt=F*u //Thrust power in kW
20 Pp=0.5*((m*Cj^2)-(ma*u^2))*10^-3 // Propulsive power
     in kW
21 HS=eff_cc*mf*CV //Heat supplied in kW
22 eff_ther=(Pp/HS)*100 //Efficiency of turbine in %
23 eff_prop=(Pt/Pp)*100 //Propulsive efficiency of the
      cycle in %
24 eff=(Pt/HS)*100 // Overall efficiency in \%
25
26 // Output
27 printf('(A) Propulsive power is %3.2 f kW\n (B) Thrust
      power is \%3.1 f kW\n (C) Propulsive efficiency is
     \%3.3 f percent\n (D) Thermal efficiency is \%3.2 f
      percent\n (E) Total fuel consumption is \%3.3 f kg/s
      \n (F) Overall efficiency is \%3.3f percent', Pp, Pt,
      eff_prop,eff_ther,mf,eff)
```

Scilab code Exa 6.7 To find specific thrust jet velocity TSFC and propulsive thermal and overall efficiency

```
1 clc
2 clear
3
4 //Input data
5 M=0.8 //Mach number
6 CV=42800 // Calorific value in kJ/kg
7 h=10 // Altitude in km
8 F=50 //Thrust in kN
9 ma=45 //Mass flow rate of air in kg/s
10 mf=2.65 //Mass flow rate of fuel in kg/s
11
12 // Calculation
13 m=ma+mf //Mass flow rate of gas in kg/s
14 a=299.6 //Sound velocity in m/s, from gas tables
15 T=233.15 //Inlet temperature in K
16 u=a*M //Flight velocity in m/s
17 C_{j}=((F*10^3)+(ma*u))/m // Jet velocity in m/s
18 sig=u/Cj //Jet speed ratio
19 Fs=F*10^3/m //Specific thrust in Ns/kg, F in N
20 TSFC=mf*3600/(F*10^3) //Thrust specific fuel
     consumption in kg/N-hr, F in N
21 Pt=F*u //Thrust power in kW
22 Pp=0.5*((m*Cj^2)-(ma*u^2))*10^-3 // Propulsive power
     in kW
23 HS=mf*CV //Heat supplied in kW
24 eff_ther=(Pp/HS)*100 //Efficiency of turbine in %
  eff_prop=(Pt/Pp)*100 //Propulsive efficiency of the
      cycle in %
  eff=(Pt/HS)*100 //Overall efficiency in %
26
27
28 //Output
```

Scilab code Exa 6.8 To calculate fuel air and pressure ratios and Mach number of jet

```
1 clc
2 clear
3
4 //Input data
5 Mi=0.8 //Inlet mach number
6 h=10 // Altitude in km
  To3=1200 //Stagnation temperature before turbine
      inlet in K
  dTc=175 //Stagnation temperature rise through the
     compressor in K
9 CV=43000 // Calorific value in kJ/kg
10 eff_c=0.75 //Compressor efficiency
11 eff_cc=0.75 //Combustion efficiency
12 eff_t=0.81 //Turbine efficiency
13 eff_m=0.98 // Mechanical transmission efficiency
14 eff_n=0.97 //Nozzle efficiency
15 Is=25 //Specific impulse in sec
16 k=1.4 //Adiabatic constant of air
17 R=287 //Specific gas constant in J/kg-K
18 Cp=1005 //Specific heat capacity at constant
      pressure of air in J/kg-K
19
  g=9.81 // Acceleration due to gravity in m/s<sup>2</sup>
20
21 // Calculation
22 Ti=223.15 //Inlet temperature in K from gas tables
```

```
23 ai=sqrt(k*R*Ti) //Sound velocity in m/s
24 Toi=(1+((0.5*(k-1)*Mi^2)))*Ti //Stagnation
      temperature at diffuser inlet in K
25 To1=Toi //Inlet Stagnation temperature of compressor
       in K, since hoi=ho1
26 To2=dTc+To1 //Exit Stagnation temperature of
      compressor in K
27 \text{ pr_c} = (1 + (eff_c*((To2 - To1)/To1)))^(k/(k-1)) //
      Compressor pressure ratio
28 f = ((Cp*To3) - (Cp*To2)) / ((eff_cc*CV*10^3) - (Cp*To3)) / 
      Fuel-air ratio, calculation mistake in textbook
29 dTt=dTc/(eff_m*(1+f)) //Temperature difference
      across turbine
30 \text{ pr_t=1/((1-(dTt/(To3*eff_t)))^(k/(k-1)))} // \text{Turbine}
      pressure ratio
31 To4=To3-dTc //Exit Stagnation temperature of turbine
       in K
32 u=ai*Mi //Flight velocity in m/s
33 sig=1/(((Is*g)/u)+1) // Jet speed ratio
34 Ce=u/sig //Exit velocity in m/s
35 Cj=Ce //Jet velocity in m/s, Since Cj is due to exit
       velociv
36 Te=To4-(Ce<sup>2</sup>/(2*Cp)) //Exit temperature in K
37 Tes=To4-((To4-Te)*eff_n) //Exit temperature in K, (
      At isentropic process)
38 pr_n = (To4/Te)^(k/(k-1)) //Nozzle pressure ratio
39 ae=sqrt(k*R*Te) //Exit Sound velocity in m/s
40 Me=Ce/ae //Exit mach number
41
42 printf('(A) Fuel-air ratio is %3.5 f \n (B) Compressor,
       turbine, nozzle pressure ratio are \%3.3f, \%3.3f,
       \%3.2 \, \text{f} respectively \n (C) Mach number at exhaust
      jet is \%3.3 \,\mathrm{f}',f,pr_c,pr_t,pr_n,Me)
```

Scilab code Exa 6.9 To determine air flow rate thrust power thrust produced specific thrust and specific impulse

```
1 clc
2 clear
4 //Input data
5 D=2.5 // Diameter in m
6 \text{ u=500*(5/18)} // \text{Flight velocity in m/s}
7 h=8000 //Altitude in m
8 sig=0.75 // Jet speed ratio
9 g=9.81 // Acceleration due to gravity in m/s<sup>2</sup>
10
11 // Calculation
12 d=0.525 //from gas tables
13 A = \%pi * D^2 * 0.25 / Area of flow in m^2
14 Cj=u/sig //Jet velocity in m/s
15 Vf = (u+Cj)/2 // Velocity of flow in m/s
16 ma=d*A*Vf //Mass flow rate of air in kg/s
17 F=ma*(Cj-u)*10^-3 // Thrust in kN
18 P=F*u //Thrust power in kW
19 Fs=F*10^3/ma //Specific thrust in Ns/kg
20 Is=Fs/g //Specific impulse in sec
21
22 // Output
23 printf('(A)Flow rate of air through the propeller is
       \%3.3 \text{ f m/s/n} (B) Thrust produced is \%3.3 \text{ f kN/n} (C)
      Specific thrust is %3.2 f N-s/kg\n (D) Specific
      impulse is \%3.3 \, \text{f} \, \sec n (E) Thrust power is \%3.1 \, \text{f}
      kW', ma, F, Fs, Is, P)
```

Scilab code Exa 6.10 To calculate pressure rise pressured developed by compressor and air standard efficiency of the engine

1 clc

```
2 clear
4 //Input data
5 h=3000 // Altitude in m
6 Pi=0.701 //Inlet pressure in bar
7 Ti=268.65 //Inlet temperature in K
8 u=525*(5/18) //Flight velocity in m/s
9 eff_d=0.875 // Diffuser efficiency
10 eff_c=0.79 //Compressor efficiency
11 C1=90 // Velocity of air at compressor in m/s
12 dTc=230 //Temperature rise through compressor
13 k=1.4 // Adiabatic constant of air
14 Cp=1005 //Specific heat capacity at constant
      pressure of air in J/kg-K
15 R=287 // Specific gas constant in J/kg-K
16
17 // Calculation
18 ai=sqrt(k*R*Ti) //Sound velocity in m/s
19 Mi=u/ai //Inlet mach number
20 Toi=(1+((0.5*(k-1)*Mi^2)))*Ti //Stagnation
     temperature at diffuser inlet in K
21 To1=Toi //Inlet Stagnation temperature of compressor
      in K, since hoi=ho1
  T1=To1-(C1^2/(2*Cp)) // Temperature at inlet of
      compressor in K
23 P1=Pi*((1+(eff_d*((T1/Ti)-1)))^(k/(k-1))) // Inlet
     pressure of compressor in bar
24 dPc=P1-Pi //Pressure rise through inlet diffuser in
25 \text{ pr_c}=(((eff_c*dTc)/To1)+1)^(k/(k-1)) //Pressure
      ratio of compressor
26
  P=Cp*(dTc) //Power required by the compressor in kW
     /(kg/s)
  eff=1-(1/pr_c^((k-1)/k)) //Air standard efficiency
27
28
29 // Output
30 printf('(A) Pressure rise through diffuser is %3.4 f
     bar\n (B) Pressure developed by compressure is \%3
```

```
.4 f bar\n (C) Air standard efficiency of the engine is \%3.4\,\mathrm{f}', dPc, P1, eff)
```

Scilab code Exa 6.11 To estimate diameter power output AFR and absolute velocity of the jet

```
1 clc
2 clear
3
4 //Input data
5 h=9500 //Altitude in m
6 u=800*(5/18) //Flight velocity in m/s
7 eff_prop=0.55 // Propulsive efficiency of the cycle
8 eff_o=0.17 //Overall efficiency
9 F=6100 //Thrust in N
10 d=0.17 // Density in kg/m^3
11 CV=46000 // Calorific value in kJ/kg
12
13 // Calculation
14 mf = (F*u)/(eff_o*CV*10^3) //Mass flow rate of fuel in
15 Cj = ((2*u)/(eff_prop)) - u // Jet velocity in m/s, wrong
       calculation in textbook
16 Ca=Cj-u //Absolute Jet velocity in m/s
17 ma=(F-(mf*Cj))/(Ca) //Mass flow rate of air in kg/s
18 m=ma+mf //Mass flow rate of gas in kg/s
19 f=ma/mf //Air fuel ratio
20 Q=m/d //Volume flow rate in m<sup>3</sup>/s
21 Dj = sqrt((4*Q)/(%pi*Cj))*10^3/Diameter of jet in mm
      , Cj value wrong in textbook
22 P = ((F*u)/eff_prop)*10^-3 / Power output of engine in
23
24 //Output
25 printf('(A) Diamter of the jet is \%3.1 \text{ f mm/n} (B) Power
```

```
output is \%3.1\,f kW\n (C) Air-fuel ratio is \%3.3\,f\n (D) Absolute velocity of the jet is \%3i m/s\n', Dj,P,f,Ca)
```

Scilab code Exa 6.12 To determine jet velocity thrust specific thrust TSFC thrust power and efficiencies

```
1 clc
2 clear
3
4 //Input data
5 \text{ u=960*(5/18)} //\text{Flight velocity in m/s}
6 ma=40 //Mass flow rate of air in kg/s
7 AFR=50 //Air fuel ratio
8 sig=0.5 //Jet speed ratio, for maximum thrust power
9 CV=43000 // Calorific value in kJ/kg
10
11 // Calculation
12 mf=ma/AFR //Mass flow rate of fuel in kg/s
13 m=ma+mf //Mass flow rate of gas in kg/s
14 Cj=u/sig //Jet velocity in m/s
15 F = ((m*Cj) - (ma*u))*10^-3 //Thrust in kN
16 Fs=F*10^3/m //Specific thrust in Ns/kg, F in N
17 Pt=F*u //Thrust power in kW
18 eff_prop=((2*sig)/(1+sig))*100 // Propulsive
      efficiency of the cycle in %
19 eff_ther=((0.5*m*(Cj^2-u^2))/(mf*CV*10^3))*100 //
      Efficiency of turbine in %
20 eff=(eff_prop/100)*(eff_ther/100)*100 //Overall
      efficiency in %
21 TSFC=mf*3600/(F*10^3) //Thrust specific fuel
      consumption in kg/Nhr
22
  //Output
24 printf('(A) Jet velocity is \%3.1 f m/s\n (B) Thrust is
```

 $\%3.3\,f$ kN\n (C) Specific thrust is $\%3.2\,f$ N-s/kg\n (D) Thrust power is $\%3.2\,f$ kW\n (E) propulsive, thermal and overall efficiency is $\%3.2\,f$, $\%3.2\,f$ and $\%3.3\,f$ respectively\n (F) Thrust specific fuel consumption is $\%3.4\,f$ kg/Nhr',Cj,F,Fs,Pt,eff_prop,eff_ther,eff,TSFC)

Scilab code Exa 6.13 To jet velocity fuel rate TSFC propulsive power and efficiencies

```
1 clc
2 clear
3
4 //Input data
5 u=960*(5/18) //Flight velocity in m/s
6 ma=54.5 //Mass flow rate of air in kg/s
7 dh=200 //Change of enthalpy for nozzle in kJ/kg
8 Cv=0.97 // Velocity coefficient
9 AFR=75 //Air fuel ratio
10 eff_cc=0.93 //Combustion efficiency
11 CV=45000 // Calorific value in kJ/kg
12
13 // Calculation
14 mf=ma/AFR //Mass flow rate of fuel in kg/s
15 Cj=Cv*sqrt(2*dh*10^3) // Jet velocity in m/s
16 F=ma*(Cj-u) //Thrust in kN
17 TSFC=mf*3600/(F) //Thrust specific fuel consumption
     in kg/Nhr
18 HS=mf*eff_cc*CV //Heat supplied in kJ/s
19 Pp=0.5*ma*(Cj^2-u^2)*10^-3 // Propulsive power in kW
20 Pt=F*u //Thrust power in kW
21 eff_p=Pt/(Pp*10^3) // Propulsive efficiency of the
     cycle
22 eff_t=Pp/HS //Efficiency of turbine
23 eff_o=Pt*10^-3/HS //Overall efficiency
```

```
24
25 //Output
26 printf('(A) Exit velocity of the jet is %3.2 f m/s\n (
        B) Fuel rate is %3.4 f kg/s\n (C) Thrust specific
        fuel consumption is %3.5 f kg/Nhr\n (D) Thermal
        efficiency is %3.3 f\n (E) Propulsive power is %3.2
        f kW\n (F) Propulsive efficiency is %3.4 f\n (G)
        Overall efficiency is %3.5 f',Cj,mf,TSFC,eff_t,Pp,
        eff_p,eff_o)
```

Scilab code Exa 6.14 To find absolute jet velocity volume of air compressed diameter power output and air fuel ratio of the jet

```
1 clc
2 clear
3
4 //Input data
5 \text{ u}=750*(5/18) //\text{Flight velocity in m/s}
6 h=10000 //Altitude in m
7 eff_p=0.5 // Propulsive efficiency of the cycle
  eff_o=0.16 // Overall efficiency
9 d=0.173 // Density in kg/m^3
10 F=6250 // Thrust in N
11 CV=45000 // Calorific value in kJ/kg
12
13 // Calculation
14 sig=eff_p/(2-eff_p) //Jet speed ratio
15 Cj=u/sig //Jet velocity in m/s
16 Ca=Cj-u //Absolute Jet velocity in m/s
17 ma=F/Ca //Mass flow rate of air in kg/s
18 Q=ma*60/d //Volume flow rate in m<sup>3</sup>/min
19 A=Q/(Cj*60) //Area of flow in m<sup>2</sup>
20 D=sqrt((4*A)/(%pi))*10^3 //Diameter in mm
21 Pt=F*u //Thrust power in W
22 Pp=(Pt/eff_p)*10^-3 //Propulsive power in kW
```

```
eff_t=eff_o/eff_p // Efficiency of turbine
HS=Pp/eff_t // Heat supplied in kJ/s
mf=HS/CV // Mass flow rate of fuel in kg/s
AFR=ma/mf // Air fuel ratio
// Output
printf('(A) Absolute velocity of the jet is %3.2 f m/s
\n (B) Volume of air compressed per minute is %3.2
f m^3/min\n (C) Diameter of the jet is %3i mm\n (D)
Power unit of the unit is %3.3 f kW\n (E) Air fuel
ratio is %3.1 f', Ca,Q,D,Pp,AFR)
```

Scilab code Exa 6.15 To estimate AFR nozzle thrust propeller thrust and mass flow rate

```
1 clc
2 clear
4 //Input data
5 P1=0.56 //Inlet pressure of compressor in bar
6 T1=260 //Temperature at inlet of compressor in K
7 pr_c=6 // Pressure ratio of compressor
8 eff_c=0.85 //Compressor efficiency
9 u=360*(5/18) //Flight velocity in m/s
10 D=3 //Propeller diameter in m
11 eff_p=0.8 // Efficiency of propeller
12 eff_g=0.95 //Gear reduction efficiency
13 pr_t=5 //Expansion ratio
14 eff_t=0.88 //Turbine efficiency
15 T3=1100 //temperature at turbine inlet in K
16 eff_n=0.9 //Nozzle efficiency
17 Cp=1005 //Specific heat capacity at constant
     pressure of air in J/kg-K
18 CV=40000 // Calorific value in kJ/kg
19 k=1.4 //Adiabatic constant of air
```

```
20 R=287 //Specific gas constant in J/kg-K
21
22 // Calculation
23 P2=pr_c*P1 //Exit pressure of compressor in bar
24 T2s=T1*(pr_c)^((k-1)/k) //Exit temperature of
      compressor at isentropic proces in K
25 T2=T1+((T2s-T1)/eff_c) //Exit temperature of
     compressor in K
26 Wc=Cp*(T2-T1)*10^-3 //Power input to compressor in
     kJ/kg of air
  C1=u //Air velocity in m/s, since C1 is resultant of
28 C=C1/eff_p //Average velocity in m/s
29 C2=(2*C)-C1 //Exit velocity from compressor in m/s
30 Ap=0.25*%pi*D^2 //Area of propeller passage in m^2
31 Q=Ap*C //Quantity of air inducted in m^3/s
32 mf = ((T3-T2)*Cp)/((CV*10^3)-(Cp*T3)) // Mass flow rate
       of fuel in kg/s
33 f=mf //Fuel consumption in kg/kg of air
34 AFR=1/mf //Air fuel ratio
35 P3=P2 //Exit pressure of combustion chamber in bar,
      Since process is at constant pressure
36 P4=P3/pr_t //Exit pressure of turbine in bar
37 T4s=T3/((pr_t)^((k-1)/k)) //Exit temperature of
      turbine at isentropic proces in K, wrong
      calculation
38 T4=T3-(eff_t*(T3-T4s)) //Exit temperature of turbine
      in K
39 Po=(1+f)*Cp*(T3-T4)*10^-3 //Power output per kg of
      air in kJ/kg of air
40 Pa=Po-Wc //Power available for propeller in kJ/kg of
       air
41 Pe=P1 //Exit pressure in bar, Since exit is at
     ambient conditions
42 Tes=T4/((P4/Pe)^((k-1)/k)) //Exit temperature of
      nozzle at isentropic proces in K
43 Cj = sqrt(2*Cp*eff_n*(T4-Tes)) // Jet velocity in m/s
44 Fs=((1+f)*Cj)-u // Specific thrust in Ns/kg, F in N
```

```
45 Pp=((0.5*P1*10^5*Q*(C2^2-C1^2))/(R*T1))*10^-3 //
        Propulsive power by propeller in kJ/s
46 Ps=Pp/eff_g //Power supplied by the turbine in kW
47 ma=Ps/Pa //Air flow rate in kg/s
48 Fj=ma*Cj*10^-3 //Jet thrust in kN, calculation
        mistake
49 Fp=(Pp*eff_p)/u //Thrust produced by propeller in kN
50
51 //Output
52 printf('(A) Air fuel ratio is %3.2 f\n (B) Thrust
        produced by the nozzle is %3.3 f kN\n (C) Thrust by
        the propeller is %3.3 f kN\n (D) mass flow rate
        through the compressor is %3.2 f kg/s', AFR, Fj, Fp,
        ma)
```

Scilab code Exa 6.16 To find various parameters of ramjet engine through out its operation

```
1 clc
2 clear
3
4 //Input data
5 M1=1.5 //Mach number
6 h=6500 // Altitude in m
7 D=0.5 //Diameter in m
8 To4=1600 //Stagnation temperature at nozzle inlet in
      K
9 CV=40000 // Calorific value in kJ/kg
10 k=1.4 // Adiabatic constant of air
11 R=287 // Specific gas constant in J/kg-K
12 eff_d=0.9 // Diffuser efficiency
13 eff_cc=0.98 //Combustion efficiency
14 eff_n=0.96 //Nozzle efficiency
15 pr_l=0.02 // Pressure ratio i.e. Stagnation pressure
     loss to Exit presure of compressor
```

```
16 Cp=1005 // Specific heat capacity at constant
     pressure of air in J/kg-K
17
18 // Calculation
19 P1=0.44 //Inlet pressure of compressor in bar
20 T1=245.9 //Temperature at inlet of compressor in K
21 a1=314.5 //Sound velocity at compressor in m/s
22 d1=0.624 // Density at compressor in kg/m<sup>3</sup>
23 A1=0.25*%pi*D^2 //Area at diffuser inlet in m^2
24 u1=M1*a1 //Flight velocity in m/s
25 ma=d1*A1*u1 //Mass flow rate of air in kg/s
26 To2=T1*(1+(((k-1)/2)*M1^2)) //Stagnation temperature
       at commpressor inlet in K
27 To1=To2 //Stagnation temperature at commpressor
     outlet in K, (It is in case of diffuser)
28 pr_d = ((eff_d*(((k-1)/2)*M1^2))+1)^(k/(k-1)) //
      Pressure ratio of diffuser
29 P2=pr_d*P1 //Exit pressure of compressor in bar
30 Po2=P2 //Stagnation pressure at exit of compressor
     in bar
31 Po3=(Po2-(pr_1*Po2)) //Stagnation pressure at exit
     of combustion chamber in bar
32 Poe=P1 //Exit stagnation pressure in kPa, Since exit
      is at ambient conditions
33 pr_n=Po3/Poe //Pressure ratio of nozzle
34 p1=1/pr_n //Inverse of pr_n to find in gas tables
35 M4s=1.41 //Mach number at turbine exit from gas
     tables
36 \text{ T4s=To4/(1+((0.5*(k-1)*M4s^2)))} // \text{Exit temperature}
     of turbine at isentropic process in K
37 To3=To4 //Stagnation temperature at inlet turbine in
      Κ,
38 T4=To3-(eff_n*(To3-T4s)) //Exit temperature of
     turbine in K
39 C4=sqrt(2*Cp*(To4-T4)) // Flight velocity of air in m
40 a4=sqrt(k*R*T4) //Sound velocity in m/s
41 Me=C4/a4 //Nozzle jet mach number
```

```
42 f = (Cp*(To3-To2))/(eff_cc*CV*10^3) //Fuel air ratio
43 mf=ma*f //Mass flow rate of fuel in kg/s
44 m=ma+mf //Mass flow rate of gas in kg/s
45 eff_i=(1/(1+((2/(k-1))*(1/M1^2))))*100 // Efficiency
      of the ideal cycle in %
46 sig=u1/C4 //Jet speed ratio
47 eff_p=((2*sig)/(1+sig)) //Propulsive efficiency in \%
48 F = ((m*C4) - (ma*u1))*10^-3 //Thrust in kN
49
50 //Output
51 printf('(A) Efficiency of the ideal cycle is %3i
      percent\n (B) Flight speed is \%3.3 \,\mathrm{f} \,\mathrm{m/s} \,\mathrm{n} (C) Air
      flow rate is %3.3 f kg/s\n (D) Diffuser pressure
      ratio is \%3.4 \text{ f} \setminus n (E) Fuel air ratio is \%3.5 \text{ f} \setminus n (F)
      Nozzle pressure ratio is \%3.2 f\n (G) Nozzle jet
      mach number is %3.3 f\n (H) Propulsive efficiency
      is %3.4f percent\n (I) Thrust is %3.3f kN', eff_i,
      C4, ma, pr_d, f, pr_n, Me, eff_p, F)
```

Scilab code Exa 6.17 To find power input power output Fuel air ratio Exit Mach number thrust and thrust power developed in the jet

```
1 clc
2 clear
3
4 //Input data
5 ma=18 //Mass flow rate of air in kg/s
6 Mi=0.6 //Inlet mach number
7 h=4600 //Altitude in m
8 Pi=55 //Inlet pressure in
9 Ti=-20+273 //Inlet temperature in K
10 eff_d=0.9 //Diffuser efficiency
11 pr_d=5 //Diffuser pressure ratio
12 T3=1000+273 //Inlet turbine temperature in K
13 Pe=60 //Exit pressure in kPa
```

```
14 eff_c=0.81 //Compressor efficiency
15 eff_t=0.85 //Turbine efficiency
16 eff_n=0.915 //Nozzle efficiency
17 CV=46520 // Calorific value in kJ/kg
18 Cp=1005 //Specific heat capacity at constant
      pressure of air in J/kg-K
19 k=1.4 //Adiabatic constant
20 R=287 //Specific gas constant in J/kg-K
21
22 // Calculation
23 Ci=Mi*sqrt(k*R*Ti) //Velocity of air in m/s,
24 u=Ci //Flight velocity in m/s, Since it is reaction
      force of Ci
  T1=Ti+(Ci^2/(2*Cp)) // Temperature at inlet of
     compressor in K
  P1s=Pi*(T1/Ti)^(k/(k-1)) // Inlet pressure of
     compressor at isentropic process in kPa
  P1=Pi+(eff_d*(P1s-Pi)) //Inlet pressure of
      compressor in kPa
28 P2=P1*pr_d //Outlet pressure of compressor in kPa
29 T2s=T1*(pr_d)^((k-1)/k) // Outlet temperature of
     compressor at isentropic process in K
30 T2=T1+((T2s-T1)/eff_c) //Exit temperature of
     compressor in K
31 Wc=Cp*(T2-T1)*10^-3 //Workdone on compressor in kJ/
     kg of air
32 Pc=ma*Wc //Power input in kW
33 Pt=Pc //Power out put of turbine for isentropic
      process in kW
34 f = (T3-T2)/((CV*10^3/Cp)-T3) //Fuel air ratio
35 Wt=Wc //Workdone by the turbine in kJ/kg of air
36 \text{ T4=T3-(Wt*10^3/Cp)} //Exit temperature of turbine in
     K
37 T4s=T3-((T3-T4)/eff_t) //Exit temperature of turbine
      at isentropic process in K
38 P3=P2 //Exit pressure of combustion chamber in kPa,
     Since the process takes place at constant
     pressure process
```

```
39 P4=P3*(T4s/T3)^(k/(k-1)) // Pressure at outlet of
      turbine in kPa
40 pr_n=P4/Pe //Pressure ratio of nozzle
41 Tes=T4/(pr_n)^((k-1)/k) //Exit temperature of nozzle
        at isentropic process in K
42 Te=T4-(eff_n*(T4-Tes)) //Exit temperature of nozzle
      in K
43 Cj = sqrt(2*Cp*(T4-Te)) // Jet velocity in m/s
44 Ce=Cj //Flight velocity in m/s
45 ae=sqrt(k*R*Te) //Sound velocity at nozzle in m/s
46 Me=Ce/ae //Nozzle jet mach number
47 F=ma*(((1+f)*Cj)-u) // Thrust in N
48 P=F*u*10^-3 //Thrust power in kW
49
50 //Output
51 printf('(A) Power input of compressor is \%3.2 \text{ f kW} \setminus \text{n} (
      B) Power output of turbine is %3.2 f kW\n (C)F/A
      ratio on mass basis is %3.4 f\n (D) Exit mach
      number is \%3.3 \text{ f} \setminus \text{n} (E) Thrust is \%3.2 \text{ f} N\n (F)
      Thrust power is %3.1 f kW', Pc, Pt, f, Me, F, P)
```

Chapter 7

Rocket Propulsion

Scilab code Exa 7.1 To find thrust of the motor of a rocket

```
1 clc
2 clear
3
4 //input data
5 mp=12 //flow rate in kg/s
6 Ae=335*10^-4 // \text{exit} area in m^2
7 Ce=2000 //exhaust velocity in m/s
8 h=10 //altitude in km
9 Pe=1*10^5 //exhaust pressure in Pa
10 P0=1*10^5 //p0=atomspheric pressure in Pa at h=0.
11 P10=0.25*10^5 //atmospheric pressure in Pa using gas
       tables
12
13 //calculations
14 Fs=mp*Ce*10^-3 //thrust of motor at sea level since
     pe=p0 in kN
15 F10=((mp*Ce) + Ae*(Pe-P10))*10^-3 //thrust of motor
     at altitude of 10km in kN
16
17 //output
18 printf('(A) thrust of motor at sea level is %3i kN (
```

upwards) \n (B) thrust of motor at an altitude 10 km is %3.4 f kN, Fs, F10)

Scilab code Exa 7.2 To calculate area ratio thrust characteristic velocity thrust coefficient exit velocity and possible maximum velocity

```
1 clc
2 clear
3
4 //input data
5 P0=38*10^5 //combustion chamber pressure in Pa
6 T0=3500 //combustion chamber temperature in K
7 ma=41.67 // oxidizer flow rate in kg/s
8 MR=5 //mixture ratio
9 k=1.3 //adiabatic constant
10 R=287 //gas constant in J/kg-K
11 Pamb=0.0582*10^5 //ambient pressure in Pa
12 Pe=Pamb //exhaust pressure at sea level in Pa
13
14 //calculation
15 mf=ma/MR //mass flow of fuel in kg/s
16 mp=mf+ma //propellant mass flow in kg/s
17 Cp=(k*R)/(k-1) // specific heat at constant pressure
     in J/kg-k
  p=PO/Pe //ratio of pressures at combustion chamber
     and exhaust
19 Me = ((((p^((k-1)/k))-1)*2)/(k-1))^0.5 / Mach number
20 t=1/(1+(((k-1)/2)*Me^2)) //ratio of exhaust
     temperature to combustion temperature
21 Te=t*T0 //exhaust temperature in Kelvin
22 a=(1/Me)*(((2/(k+1))+(((k-1)/(k+1))*Me^2))^((k+1))
     /(2*(k-1)))) //ratio of areas at exit section and
      throat section of the nozzle
23 Ce=(k*R*Te)^0.5*Me //exit velocity in the exhaust in
      m/s
```

```
24 Cj=Ce //average effective jet velocity in m/s, since
       Pe=Pamb
25 P1=P0*(2/(k+1))^(k/(k-1)) // pressure at throat
      section in Pa
26 T1=T0*(2/(k+1)) //temperature at throat section in K
27 d1=P1/(R*T1) //density of fuel at throat section in
      kg/m^3
28 C1=(k*R*T1)^0.5 //velocity at throat section in m/s
29 A1=(mp/(d1*C1))*10^4 //nozzle throat area in cm^2
30 Ae=a*A1 // exit area in cm<sup>2</sup>
31 F=(mp*Ce)*10^-3 // thrust in kN
32 \operatorname{Cmax1}=(2*\operatorname{Cp}*\operatorname{T0})^0.5 //maximum possible velocity in m
33 Cf = (F*10^3)/(P0*A1*10^-4) / thrust coefficient, F in
       kN and A1 in m<sup>2</sup>
34 Cch1=Cj/Cf //characteristic velocity in m/s
35
36 //output
37 printf('(A) nozzle throat area is \%3.2 \,\mathrm{f} \,\mathrm{cm}^2 \,\ln (\mathrm{B})
      thrust is \%3.1\,\mathrm{f} kN \n (C) thrust coefficient is \%3
      .2 f \n (D) characteristic velocity is %3i m/s \n (
      E) exit velocity in exhaust is \%3i \text{ m/s/n} (F)
      maximum possible exhaust velocity is %3i m/s\n',
      A1, F, Cf, Cch1, Ce, Cmax1)
```

Scilab code Exa 7.3 To estimate thrust per unit area and specific impulse

```
1 clc
2 clear
3
4 //input data
5 a=3 //exit area to throat area ratio
6 T0=2973 //combustion chamber temperature in K
7 P0=20*10^5 //combustion chamber pressure in Pa
8 k=1.3 //adiabatic constant
```

```
9 R=248 //gas constant in J/kg-K
10 Pamb=1*10^5 //ambient pressure in Pa
11 Me=2.52 //mach number for k=1.3 and a=3 using gas
      tables
12 g=9.81 //acceleration due to gravity in m/s^2
13
14 //calculation
15 p=1/((1+(((k-1)/2)*Me^2))^(k/(k-1))) // ratio of
      pressures at exhaust and combustion chamber
16 Pe=p*P0 //exhaust pressure in Pa
17 t=1/(1+(((k-1)/2)*Me^2)) //ratio of exhaust
      temperature to combustion temperature
  Te=t*T0 //exhaust temperature in Kelvin
19 Ce=(k*R*Te)^0.5*Me //exit velocity in the exhaust in
      m/s
20 M=(Pe*Ce)/(R*Te) //propellant mass flow per unit
      area of exit in kg/m^2-s
  Fa=((M*Ce)+(Pe-Pamb))*10^-3 //thrust per unit area
      of exit in N/m<sup>2</sup>
  Is=(Fa*10^3)/(M*g) //specific impulse in sec
22
23
24 //output
25 printf('(A)thrust per unit area of exit is \%3.2\,\mathrm{f~kN/}
     m^2 \setminus n (B) specific impulse is \%3.2 f sec', Fa, Is)
```

Scilab code Exa 7.4 To find specific impulse specific propellant consumption effective and absolute jet velocity of rocket

```
1 clc
2 clear
3
4 //input data
5 mp=5 //propellent flow rate in kg/s (missing data)
6 de=0.10 //nozzle exit diameter in m
7 Pe=1.02*10^5 //nozzle exit pressure in Pa
```

```
8 Pamb=1.013*10^5 //ambient pressure in Pa
9 PO=20 //thrust chamber pressure in Pa
10 F=7000 // thrust in N
11 u=1000 //rocket speed in m/s
12 g=9.81 //acceleration due to gravity in m/s^2
13
14 //calculation
15 Cj=F/mp //effective jet velocity in m/s
16 Ca=Cj-u //absolute jet velocity in m/s
17 wp=mp*g //weight flow rate of propellent in N/s
18 Is=F/(wp) //specific impulse in sec
19 SPC=1/Is // specific propellent consumption in sec^-1
20
21 //output
22 printf('(A) effective jet velocity is %3i m/s \n (B)
      specific impulse is %3.2f sec \n (C) specific
      propellent consumption is \%3.3 \, \text{f s} -1 \, \text{n} (D)
      absolute jet velocity is %3i m/s',Cj,Is,SPC,Ca)
```

Scilab code Exa 7.5 To find propulsive efficiency thrust and thrust power of rocket

```
clc
clear

//input data
Cj=2700 //average effective jet velocity in m/s
u=1350 //forward flight velocity in m/s
mp=78.6 //propellant mass flow in kg/s

//calculation
s=u/Cj //effective jet speed ratio
np=(2*s)/(1+s^2) //propulsive efficiency
F=Cj*mp*10^-3 //thrust in kN
Pt=F*u*10^-3 //Thrust power in MW, F in N
```

Scilab code Exa 7.6 To find velocity and maximum height that rocket will reach

```
1 clc
2 clear
3
4 //input data
5 mi=15000 //mass of the rocket in kg
6 mp=125 //propellant mass flow in kg/s
7 Cj=2000 //velocity of gases coming out in m/s
8 t=70 //time interval in sec
9 t0=0 //lower limit in integration in sec
10 t1=70 //upper limit in integration in sec
11 g=9.81 //acceleration due to gravity in m/s<sup>2</sup>
12
13 //calculation
14 u = (-Cj*(log(1-((mp*t)/mi))))-(g*t) // velocity
      attained in 70 sec in m/s
  h1=(integrate('((-2000*(\log (1-((125*t)/15000))))-(g*)
15
     t))','t',t0,t1))*10^-3 //distance travelled
     through 70 sec obtained by integrating u w.r.t
     time with intervals 0 to 70 in km
16 h2=(u^2/(2*g))*10^-3 // distance reached after fuel
     last i.e. after 70 sec due to kinetic energy by
     using KE=PE in km
17 h=h1+h2 //maximum height the rocket will reach in km
18
19 //output
20 printf('(A) velocity attained in %i sec is %3.2 f m/s\
```

```
n (B) maximum height the rocket will reach is %3.3 f km',t,u,h)
```

Scilab code Exa 7.7 To determine thrust coefficient propellant weight flow coefficient SPC and characteristic velocity of rocket

```
1 clc
2 clear
3
4 //input data
5 A1=18*10^-4 //throat area in m^2
6 P0=25*10^5 //combustion chamber pressure in Pa
7 Is=127.42 //specific impulse in sec
8 wp=44.145 //weight flow rate of propellent in N/s
9 g=9.81 //acceleration due to kravity in m/s<sup>2</sup>
10
11 //calculation
12 F=Is*wp //thrust in N
13 mp=wp/g //propellant mass flow in kg/s
14 Cj=F/mp //average effective jet velocity in m/s
15 Cf=F/(P0*A1) //thrust coefficient
16 Cw=wp/(P0*A1)/10^{-3} //propellent weight flow
      coefficent *10^-3
  SPC=(wp/F)/10^-3 //specific propellent consumption
      in \sec^{-1} *10^{-3}
18 Cch1=Cj/Cf //characteristic velocity in m/s
19
20 //output
21 printf('(A) thrust coefficient is \%3.2 \text{ f} \setminus n (B)
      propellent weight flow coefficient is \%3.2 \, f*10^-3
      \n (C) specific propellent consumption is \%3.2 f
      *10^{-3} s<sup>-1</sup> \n (D) characteristic velocity is \%3.0
      f m/s, Cf, Cw, SPC, Cch1)
```

Scilab code Exa 7.8 To find various parameters of rocket projectile during its operation

```
1 clc
2 clear
3
4 //input data
5 m1=200 //internal mass in kg
6 m2=130 //mass after rocket operation in kg
7 m3=110 //payload, non-propulsive structure, etc in kg
8 tp=3 //rocket operation duration in sec
9 Is=240 //specific impulse in sec
10 g=9.81 //acceleration due to kravity in m/s^2
11
12 //calculation
13 MR=m2/m1 //mass ratio
14 Mp=m1-m2 //mass of propellant in kg
15 mp=Mp/tp //propellent flow rate in kg/s
16 wp=mp*g //weight flow rate of propellent in N/s
17 IMF = (m2-m3)/(m1-m3) //initial mass fraction
18 PMF=1-IMF //propellant mass fraction
19 F=Is*wp //thrust in N
20 TWRi=F/(m1*g) //initial thrust to weight ratio
21 TWRf=F/(m2*g) //final thrust to weight ratio
22 av=F/m2 //Maximum accelaration of the vechicle in m/
23 Cj=Is*g //effective exhaust velocity in m/s
24 It=Is*Mp*g*10^-3 // total impulse in kN-s, units of
      the answer given in the book is wrong
  IWR = (It*10^3)/((m1-m3)*g) / impulse to weight ratio,
       It in N-s
26
27 //output
28 printf('(A) mass ratio is \%3.2 \,\mathrm{f} \, \mathrm{n} \, \mathrm{(B)} \,\mathrm{propellent} \,\mathrm{mass}
```

fraction is $\%3.3\,\mathrm{f} \setminus \mathrm{n}$ (C) propellent flow rate is $\%3.1\,\mathrm{f}$ kg/s\n (D) thrust is $\%3.1\,\mathrm{f}$ N\n (E) thrust to weight ratio is $\%3.2\,\mathrm{f}$ (intial) and $\%3.2\,\mathrm{f}$ (final)\\n (F) accelaration of the vechicle is $\%3.2\,\mathrm{f}$ m/s\2\\n (G) effective exhaust velocity is $\%3.1\,\mathrm{f}$ m/s\n (H) total impulse is $\%3.3\,\mathrm{f}$ kN-s\n (I) impulse to weighr ratio is $\%3.2\,\mathrm{f}$, MR, PMF, mp, F, TWRi, TWRf, av, Cj, It, IWR)

Scilab code Exa 7.9 To propulsive power engine output and efficiencies

```
1 clc
2 clear
3
4 //input data
5 u=2800 //rocket speed in m/s
6 Cj=1400 //effective exhaust velocity in m/s
7 mp=5 //propellent flow rate in kg/s
8 q=6500 //heat of propellent per kg of propellant
      mixture in kJ/kg
9
10 //calculation
11 s=u/Cj //effective jet speed ratio
12 np=(2*s)/(1+s^2) //propulsive efficiency
13 F=Cj*mp*10^-3 //thrust in kN
14 Pt=F*10^3*u*10^-6 //Thrust power in MW, F in N
15 Pe=Pt/np //engine outputin MW
16 nth=Pe*10^3/(mp*q) //thermal efficiency, Pe in kW
17 no=np*nth //overall efficiency
18
19 //output
20 printf('(A) propulsive efficiency is \%3.1 \,\mathrm{f} \, \mathrm{n} (B)
      propulsive power is \%3.1f MW\n (C) engine outut is
       \%3.1 \text{ f MW} \setminus n (D) thermal efficiency is \%3.4 \text{ f } \setminus n (E)
      overall efficiency is %3.3 f', np, Pt, Pe, nth, no)
```

Scilab code Exa 7.10 To find thrust specific impulse and efficiencies

```
1 clc
2 clear
4 //input data
5 Cj=1250 //effective exhaust velocity in m/s
6 s=0.8 //effective jet speed ratio i.e. flight to jet
       speed ratio
7 ma=3.5 //oxidizer flow rate in kg/s
8 mf=1 //fuel flow rate in kg/s
9 g=9.81 //acceleration due to gravity in m/s<sup>2</sup>
10 q=2500*10^3 //heat of propellent per kg of
      propellant mixture in J/kg
11
12 //calculation
13 u=s*Cj //flight velocity in m/s
14 mp=ma+mf //propellant mass flow in kg/s
15 F=Cj*mp*10^-3 //thrust in kN
16 wp=mp*g //weight flow rate of propellent in N/s
17 Is=(F*10^3)/(wp) // specific impulse in sec, F in N
18 np=(2*s)/(1+s^2) //propulsive efficiency
19 nth=0.5*mp*((Cj^2+u^2)/(mp*q)) //thermal efficiency
20 no=np*nth //overall efficiency
21
22 //output
23 printf('(A) thrust is \%3.3 \text{ f kN} \setminus n (B) specific impulse
      is \%3.2 \,\mathrm{f} sec\n (C) propulsive efficiency is \%3.4 \,\mathrm{f}
      \n (D) thermal efficiency is \%3.4 \,\mathrm{f} \, \n (E) overall
      efficiency is %3.1 f', F, Is, np, nth, no)
```

Scilab code Exa 7.11 To find specific impulse SPC effective and actual jet velocity and efficiencies

```
1 clc
2 clear
4 //input data
5 mp=193 //propellent flow rate in kg/s
6 P1=27*10^5 //pressure at throat section in Pa
7 T1=3000 //temperature at throat section in K
8 de=0.6 //nozzle exit diameter in m
9 Pe=1.1*10^5 //exhaust pressure in Pa
10 Pamb=1.013*10^5 //ambient pressure in Pa
11 F=380*10^3 //thrust of motor in N
12 u=694.44 //flight velocity in m/s
13 g=9.81 //acceleration due to gravity in m/s^2
14 q=6500*10^3 //heat of propellent per kg of
      propellant mixture in J/kg
15
16 //calculation
17 Ae = (\%pi * 0.6^2)/4 // exit area in m^2
18 Cj=F/mp //average effective jet velocity in m/s
19 Ce=(F-((Pe-Pamb)*Ae))/mp //exhaust velocity in m/s,
     wrong answer in textbook
20 wp=mp*g //weight flow rate of propellent in N/s
21 Is=(F)/(wp) //specific impulse in sec
22 SPC=(wp/F)/10^-3 //specific propellent consumption
     in \sec^{-1} *10^{-3}
23 Pt=F*u*10^-6 //Thrust power in MW
24 Pl = (0.5*mp*((Cj-u)^2))*10^-6 //Power loss in exhaust
      in MW
25 Pe=Pt+Pl //engine output in MW
26 np=Pt/Pe //propulsive efficiency
27 nth=Pe*10^3/(mp*q*10^-3) //thermal efficiency and Pe
      q in kW
28 no=np*nth //overall efficiency
29
30 //output
```

31 printf('(A) effective jet velocity is %3.4 f m/s\n (B) Actual jet velocity is %3.4 f m/s\n (C) specific impulse is %3.1 f sec\n (D) specific propellent consumption is %3.4 f*10^-3 sec^-1\n (E) propulsive efficiency is %3.5 f \n (D) thermal efficiency is %3.3 f \n (E) overall efficiency is %3.5 f',Cj,Ce,Is,SPC,np,nth,no)

Scilab code Exa 7.12 To find propellant flow rate thrust developed and height attained during powered and coasting flights

```
1 clc
2 clear
3
4 //input data
5 m1=3600 //internal mass in kg
6 Cj=2070 //average effective jet velocity in m/s
7 tp=80 //rocket operation duration in sec
8 g=9.81 //acceleration due to gravity in m/s<sup>2</sup>
9
10 //calculation
11 up=2*Cj //flight velocity in m/s
12 MR=1/\exp((up+(g*tp))/Cj) //mass ratio
13 m2=MR*m1 //mass after rocket operation in kg
14 PMF=1-MR //propellant mass fraction
15 Mp=m1-m2 //mass of propellant in kg
16 mp=Mp/tp //propellent flow rate in kg/s
17 F=Cj*mp*10^-3 // thrust in kN
18 Zp = (((1+((1-(1/PMF))*log(1/MR)))*Cj*tp)-(0.5*g*tp^2)
     )*10^-3 //powered altitude gain in km
19 Zc = ((0.5*up^2)/g)*10^-3 //coasting altitude gain in
20 Z=Zp+Zc //maximum altitude in km
21
22 //output
```

23 printf('(A) flow rate of propellent is %3.2 f kg/s\n (B) thrust developed is %3.3 f kN\n (C) altitude gains during powered and coasting flights are %3.3 f km and %3.3 f km respectively',mp,F,Zp,Zc)

Scilab code Exa 7.13 To find effective jet velocity mass ratio and propellant mass fraction maximum slight speed Altitude gain during powered and coasting flights

```
1 clc
2 clear
3
4 //input data
5 s=0.2105 //effective jet speed ratio
6 Is=203.88 //specific impulse in sec
7 tp=8 //rocket operation duration i.e. burn out time
      in sec
  g=9.81 //acceleration due to kravity in m/s<sup>2</sup>
10 //calculation
11 Cj=g*Is //average effective jet velocity in m/s
12 up=s*Cj //maximum flight speed in m/s
13 MR=1/\exp((up+(g*tp))/Cj) //mass ratio
14 PMF=1-MR //propellant mass fraction
15 Zp = (((1+((1-(1/PMF))*log(1/MR)))*Cj*tp)-(0.5*g*tp^2)
      )*10^-3 //powered altitude gain in km
16 Zc = ((0.5*up^2)/g)*10^-3 //coasting altitude gain in
17 Z=Zp+Zc //maximum altitude in km
18
19 //output
20 printf('(A) effective jet velocity is \%3i \text{ m/s} \setminus n (B)
      mass ratio and propellent mass fraction are \%3.2 f
       and %3.2f respectively\n (C)maximum flight speed
       is %3.2 f m/s\n (D)) altitude gains during powered
```

Scilab code Exa 7.14 To find orbital and escape velocities of a rocket

```
1 clc
2 clear
4 //input data
5 RO=6341.6*10^3 //radius of earth at mean sea-level
     in m
6 g=9.809 //acceleration due to gravity in m/s^2
7 Z1=0 //altitude at sea-level in m
8 Z2=300*10^3 //altitude above sea-level in m
10 //calculation
11 uorb1=R0*sqrt(g/(R0+Z1)) //orbit velocity of a
      rocket at mean sea level in m/s
12 uesc1=sqrt(2)*uorb1 //escape velocity of a rocket at
      mean sea level in m/s
13 uorb2=R0*sqrt(g/(R0+Z2)) //orbit velocity of a
      rocket at an altitude of 300 km in m/s
14 uesc2=sqrt(2)*uorb2 //escape velocity of a rocket at
       an altitude of 300 km in m/s
15
16 //output
17 printf('(A) orbit and escape velocities of a rocket
      at mean sea level are %3i m/s and %3i m/s\n (B)
      orbit and escape velocities of a rocket at an
      altitude of 300 km are \%3.1 \,\mathrm{f} m/s and \%3.2 \,\mathrm{f} m/s',
     uorb1, uesc1, uorb2, uesc2 )
```

Chapter 8

Two Marks Questions and Answers

Scilab code Exa 8.1.34 To find Mach angle

```
1 clc
2 clear
3
4 //Input data
5 C=500 //Airplane velocity in m/s
6 T=20+273 //Temperature in K
7 k=1.4 //Adiabatic constant
8 R=287 //Specific gas constant in J/kg-K
9
10 //Calculation
11 a=sqrt(k*R*T) //Sound velocity in m/s
12 M=C/a //Mach number
13 alp=asind(1/M) //Mach angle in degree
14
15 //Output
16 printf('Mach angle is %3.3f degree',alp)
```

Scilab code Exa 8.1.35 To find values of back pressure

```
1 clc
2 clear
3
4 //Input data
5 a1=2.2 //Area ratio (A/At)
6 Po=10 //Stagnation Pressure in bar
8 // Calculation
9 //Two values of mach number at a1 from gas tables
10
11 M1=0.275 //Mach number from gas tables
12 p1=0.949 // Presure ratio (P/Po)
13 P1=Po*p1 //back pressure in bar
14
15 M2=2.295 //Mach number from gas tables
16 p2=0.0806 // Presure ratio (P/Po)
17 P2=Po*p2 //back pressure in bar
18
19 //Output
20 printf('(A)When M=\%3.3 f, back pressure is \%3.2 f bar\
     n (B)When M=\%3.3f, back pressure is \%3.3f bar', M1
      ,P1,M2,P2)
```

Scilab code Exa 8.1.37 To find temperature at nose of aircraft

```
1 clc
2 clear
3
4 //Input data
5 M=0.8 //Mach number
6 T=20+273 //Temperature in K
7 k=1.4 //Adiabatic constant
```

```
9 //Calculation
10 To=T*(1+(((k-1)/2)*M^2)) //Temperature of air at
    nose of aircraft in K
11 To1=To-273 //Temperature of air at nose of aircraft
    in degree Centigrade
12
13 //Output
14 printf('Temperature of air at nose of aircraft is %3
    .1f degree Centigrade', To1)
```

Scilab code Exa 8.1.38 To determine stagnation pressure and stagnation temperature

```
1 clc
2 clear
3
4 //Input data
5 P=1 //Pressure in bar
6 T=400 //Temperature in K
7 C=400 //Air velocity in m/s
8 k=1.4 // Adiabatic constant
9 R=287 // Specific gas constant in J/kg-K
10 Cp=1005 // Specific heat capacity at constnat
      pressure in J/kg-K
11
12 // Calculation
13 To=T+(C^2/(2*Cp)) //Stagnation Temperature in K
14 Poi=P+((P*C^2)/(R*T*2)) //Stagnation Pressure (if it
       is incompressible) in bar
15 Poc=P*(To/T)^(k/(k-1)) // Stagnation Pressure (if it
      is compressible) in bar
16
17 //Output
18 printf('(Stagnation Temperature is \%3.1 \text{ f K} \setminus n (C)
      Stagnation Pressure:\n If it is incompressible
```

```
is \%3.4\,\mathrm{f} bar\n If it is compressible is \%3.4\,\mathrm{f} bar', To, Poi, Poc)
```

Scilab code Exa 8.1.39 To calculate bulk modulus of elasticity of a liquid

Scilab code Exa 8.1.40 To find highest possible velocity

```
1 clc
2 clear
3
4 //Input data
5 To=15+273 //Air Temperature in K
6 Cp=1005 //Specific heat capacity at constnat
         pressure in J/kg-K
7
8 //Calculation
```

```
9 Cmax=sqrt(2*Cp*To) // Highest possible velocity in m/
s
10
11 // Output
12 printf('Highest possible velocity is %3.2 f m/s', Cmax
)
```

Scilab code Exa 8.3.10 To find the length of the pipe

```
1 clc
2 clear
3
4 //Input data
5 M=0.25 //mach number
6 D=0.04 //Diamter in m
7 f=0.002 //frictional factor
8
9 //Calculation
10 X=8.483 //fanno parameter from gas tables at M
11 Lmax=(X*D)/(4*f) //Lenggth of the pipe in m
12
13 //Output
14 printf('Length of the pipe is %3.3f m',Lmax)
```

Scilab code Exa 8.3.15 To find length of the pipe to achieve deceleration

```
1 clc
2 clear
3
4 //Input data
5 M=3 //mach number
6 D=0.04 //Diamter in m
7 f=0.002 //frictional factor
```

```
8
9 //Calculation
10 X=0.522 //fanno parameter from gas tables at M
11 L=(X*D)/(4*f) //Lenggth of the pipe in m
12
13 //Output
14 printf('Lenggth of the pipe is %3.2f m',L)
```

Scilab code Exa 8.3.31 To find maximum possible amount of heat transfer of combustion chamber

```
1 clc
2 clear
3
4 //Input data
5 M=0.2 //Mach number
6 To=120+273 //Stagnation Temperature in K
7 Cp=1005 // Specific heat capacity at constnat
      pressure in J/kg-K
8
9 // Calculation
10 t1=0.174 //Temperature ratio (To/Tot) from Rayleigh
     gas tables
11 Tot=To/t1 // Critical stagnation temperature in K
12 q=Cp*(Tot-To)*10^-3 //Maximum amount of heat
      transfer in kJ/kg
13
14 //Output
15 printf ('Maximum amount of heat transfer is %3.2 f kJ/
     kg',q)
```

Scilab code Exa 8.3.32 To find increase in specific entropy of the fluid

```
1 clc
2 clear
3
4 //Input data
5 p1=0.75 //Pressure ratio (Po2/Po1) Since Stagnation
    pressure drop is 25%
6 Cp=1150 //Specific heat capacity at constnat
    pressure in J/kg-K
7 k=1.33 //Adiabatic constant
8
9 //Calculation
10 ds=((k-1)/k)*Cp*log(1/p1) //Increase in entropy in J
    /kg-K
11
12 //Output
13 printf('Increase in entropy is %3.2f J/kg-K',ds)
```

Scilab code Exa 8.3.33 To pipe maximum heat transfer in a pipe

```
1 clc
2 clear
3
4 //Input data
5 Mi=2.2 //Inlet Mach number
6 T=100+273 //Temperature in K
7 Cp=1005 //Specific heat capacity at constnat
        pressure in J/kg-K
8
9 //Calculation
10 t1=0.508 //Temperature ratio (To/Tot) from
        isentropic gas tables @Mi
11 To=T/t1 //Stagnation Temperature in K
12 t2=0.756 //Temperature ratio (To/Tot) from Rayleigh
        gas tables @Mi
13 Tot=To/t2 //Critical stagnation temperature in K
```

Scilab code Exa 8.5.16 To find pressure acting on the front of the body

```
1 clc
2 clear
3
4 //Input data
5 Mx=1.5 //Mach number
6 P=40 //Static pressure in kPa
7
8 //Calculation
9 p1=3.413 //Pressure ratio in (Poy/Px) from normal shock gas tables @Mx
10 Poy=p1*P //Pressure acting on front of the body in kPa
11
12 //Output
13 printf('Pressure acting on front of the body is %3.1 f kPa',Poy)
```

Scilab code Exa 8.5.17 To find strength of shock wave

```
1 clc
2 clear
3
4 //Input data
5 M=2 //Mach number at shock
```

```
6
7 //Calculation
8 p1=4.5 //Pressure ratio (Py/Px) from normal shock
        gas tables @M
9 e=p1-1 //Strength of shock wave
10
11 //Output
12 printf('Strength of shock wave is %3.1f',e)
```

Scilab code Exa 8.5.20 To find irreversibility of duct

```
1 clc
2 clear
3
4 //Input data
5 Mx=7 //mach number upstream of shock
6 P=2 //pressure @Mx in bar
7 T=57+273 // Temperature @Mx in K
8 R=287 //Specific gas constant in J/kg-K
9
10 // Calculation
11 p1=0.72 //Pressure ratio (Poy/Pox) from normal shock
       gas tables @Mx
12 ds=R*log(1/p1) // Irreversibility in J/kg-K
13
14 // Output
15 printf ('Irreversibility is \%3.2 \,\mathrm{f}\,\mathrm{J/kg-K'}, ds)
```

Scilab code Exa 8.5.21 To find mach number and air velocity of pitot tube

```
1 clc
2 clear
```

```
3
4 //Input data
5 Px=45 //Static pressure in kPa
6 T=-20+273 //Static temperature in K
7 Poy=395 //Stagnation pressure in kPa
8 k=1.4 //Adiabatic constant
9 R=287 // Specific gas constant in J/kg-K
10
11 // Calculation
12 p1=Poy/Px //Pressure ratio
13 Mx = 2.536 //Mach number from normal shock gas tables
14 Cx=Mx*sqrt(k*R*T) //Air velocity in m/s
15
16 //Output
17 printf ('Mach number is \%3.3 \,\mathrm{f} \setminus \mathrm{n} Air velocity is \%3\mathrm{i} m
      /s', Mx, Cx)
```

Scilab code Exa 8.5.22 To find properties downstream of the shock

```
15 Ty=Tx*t1 //Static temperature downstream of shock in
    K
16 p1=5.583 //Pressure ratio (Py/Px)
17 Py=Px*p1 //Static pressure downstream of shock in
    bar
18 Cy=My*sqrt(k*R*Ty) //velocity downstream of shock in
    m/s
19
20 //Output
21 printf('Downstream of shock:\n Velocity is %3.3 f
    m/s\n Pressure is %3.3 f bar\n Temperature
    is %3.3 f K',Cy,Py,Ty)
```

Scilab code Exa 8.6.41 To find propulsive efficiency for an optimum thrust power

```
1 clc
2 clear
3
4 //Calculation
5
6 //Differentiating P=m*(Cj-u)*u and equating it to
    zero we get jet speed ratio as 0.5
7 sig=0.5 //Jet speed ratio
8 eff_max=((2*sig)/(1+sig)) //Propulsive efficiency
    for optimum thrust power, wrong notation in
    textbook.
9
10 //Output
11 printf('Propulsive efficiency for optimum thrust
    power is %3.3f',eff_max)
```

Scilab code Exa 8.6.42 To find propulsive efficiency

```
clc
clear

//Input dat
u=1200*(5/18) //Flight velocity in m/s
Cj=800 //Effective jet velocity in m/s

//Calculation
sig=u/Cj //jet speed ratio
eff=((2*sig)/(1+sig))*100 //Propulsive efficiency in
//Output
printf('Propulsive efficiency is %3.1f percent',eff)
```

Scilab code Exa 8.7.42 To find thrust of the rocket

```
1 clc
2 clear
3
4 //Input data
5 m=5 //Propellent rate in kg/s
6 Pamb=1.013 //Ambient pressure in bar
7 Pe=1.02 //Nozzle exit pressure in bar
8 D=0.1 //Nozzle exit diameter in m
9 Ce=1400 //Exit jet velocity in m/s
10
11 // Calculation
12 Ae = \%pi * D^2/4 // Exit area in m^2
13 F=(m*Ce)+((Pe-Pamb)*Ae) // Thrust in N
14
15 // Output
16 printf('Thrust is %3i N',F)
```

Scilab code Exa 8.7.44 To find the thrust developed

```
clc
clear

//Input data
Is=230 //Specific Impulse in sec
m=1 //Propellent flow in kg/s
g=9.81 //Acceleration due to gravity in m/s^2

//Calculation
F=m*Is*g //Thrust in N

//Output
printf('Thrust is %3.1f N',F)
```

Scilab code Exa 8.7.45 To find the jet velocity of a rocket

```
1 clc
2 clear
3
4 //Input data
5 u=1500 //Flight velocity in m/s
6 eff=0.75 //Propulsive efficiency
7
8 //calculation
9 //Converting relation eff=(2*sig)/(1+sig^2) into 2nd degree polynomial of sig
10 sig=((2-(sqrt(4-(4*eff*eff))))/(2*eff)) //Jet speed ratio
11 Cj=u/sig //Jet velocity in m/s
12
```

```
//Output
frintf('Jet velocity is %3.2 f m/s',Cj)
```

Scilab code Exa 8.7.46 To calculate thrust propulsive efficiency and thrust power of a rocket

```
1 clc
2 clear
3
4 //Input data
5 Cj=2700 // Jet velocity in m/s
6 u=1350 //Flight velocity in m/s
7 m=78.6 //Propellent flow in kg/s
8
9 // Calculation
10 F=m*Cj*10^-3 //Thrust in kN
11 P=F*u*10^-3 //Thrust power in MW
12 sig=u/Cj //Jet speed ratio
13 eff=((2*sig)/(1+sig^2))*100 //Propulsive efficiency
     in %
14
15 //Output
16 printf ('Thrust is %3.1 f kN\n Thrust power is %3.2 f
     MW\n Propulsive efficiency is \%3i percent', F, P,
     eff)
```

Scilab code Exa 8.7.47 To determine orbital velocity and escape velocity of a rocket

```
1 clc
2 clear
3
4 //Input data
```

```
5 D=12683*1000 // Diameter of Earth in m
6 g=9.81 // Acceleration due to gravity in m/s
7 h=500*1000 // Altitude in m
8
9 // Calculation
10 Uorb=(D/2)*sqrt(g/((D/2)+h)) // Orbital velocity in m/s
11 Uesc=sqrt(2)*Uorb // Escape velocity in m/s
12
13 // Output
14 printf('Orbital velocity is %3.2 f m/s\n Escape velocity is %3.2 f m/s', Uorb, Uesc)
```

Scilab code Exa 8.7.48 To determine propulsive efficiency and propulsive power of a rocket

```
1 clc
2 clear
3
4 //Input data
5 u=10080*(5/18) //Flight velocity in m/s
6 Cj=1400 //Jet velocity in m/s
7 m=5 //Propellent flow in kg/s
8
9 //calculation
10 F=m*Cj*10^-3 //Thrust in kN
11 P=F*u*10^-3 //Thrust power in MW
12 sig=u/Cj //Jet speed ratio
13 eff=((2*sig)/(1+sig^2)) //Propulsive efficiency
14
15 //Output
16 printf('Propulsive power is %3.1 f MW\n Propulsive efficiency is %3.1 f',P,eff)
```