Scilab Textbook Companion for Engineering Physics by G. Aruldhas¹

Created by Pankaj Biswas Modern Physics Physics Shri Mata Vaishno Devi University College Teacher Dr. Vinay Kumar Cross-Checked by

May 23, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Engineering Physics
Author: G. Aruldhas
Publisher: Phi Learning Pvt. Ltd.
Edition: 1
Year: 2010
ISBN: 9788120339163

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	OSCILLATION AND WAVES	5
2	ELECTROMAGNETIC THEORY	12
3	INTERFERENCE	15
4	DIFFRACTION	21
5	POLARIZATION	28
6	CRYSTALLOGRAPHY	33
7	SUPERCONDUCTIVITY	44
8	SPECIAL THEORY OF RELATIVITY	48
9	QUANTUM MECHANICS	58
10	STATISTICAL MECHANICS	62
11	LASERS	65
12	HOLOGRAPHY AND FIBRE OPTICS	70
13	DIELECTRIC PROPERTIES OF MATERIALS	74
14	MAGNETIC PROPERTIES OF MATERIALS	80

15 THERMAL PROPERTIES	86
17 ULTRASONICS	90
18 ACOUSTICS OF BUILDINGS	91

List of Scilab Codes

Exa 1.1	Time period of SHM	5
Exa 1.2	Acceleration and maximum velocity in SHM	5
Exa 1.3	Damped Vibrating System	6
Exa 1.4	Amplitude and Time Period in SHM	7
Exa 1.5	Oscillation of a spring mass system	8
Exa 1.6	Frequency of visible region	8
Exa 1.7	Characteristics of sound wave	9
Exa 1.8	Equation of a wave moving along X axis	10
Exa 1.9	Wave in the wire	10
Exa 2.1	Peak value of displacement current	12
Exa 2.2	Displacement current density in a good conductor	12
Exa 2.4	Poynting vector	13
Exa 2.5	Plane electromagnetic wave in a medium	13
Exa 3.1	Wavelength of Light using Young Double Slit experiment	15
Exa 3.2	Fringe shift due to change in wavelength	15
Exa 3.3	Refractive index from double slit experiment	16
Exa 3.4	Interference by thin soap film	17
Exa 3.5	Interference due to thin air wedge	17
Exa 3.6	Separation between consecutive bright fringes formed by	
	an air wedge	18
Exa 3.7	Newton Rings by reflected light	18
Exa 3.8	Refractive index from Newton Rings arrangement	19
Exa 3.9	Wavelength of light using Michelson Interferometer	19
Exa 3.10	Shift in movable mirror of Michelson Interferometer	20
Exa 4.1	Diffraction at a single slit	21
Exa 4.2	Diffraction at a circular aperture	22
Exa 4.3	Second order maximum for diffraction grating	23
Exa 4.4	The highest spectral order with diffraction grating	23

Exa 4.5	Overlapping spectra with diffraction grating	24
Exa 4.6	Width of first order spectrum	25
Exa 4.7	Resolution of wavelengths for grating	25
Exa 4.8	Angular separation to satisfy Rayleigh criterion	26
Exa 4.9	Linear separation between two points	27
Exa 5.1	Polarization by reflection	28
Exa 5.2	Percentage transmission of polarized light	29
Exa 5.3	Thickness of Quarter Wave Plate	29
Exa 5.4	Behaviour of half wave plate for increased wavelength	30
Exa 5.5	Phase retardation for quartz	31
Exa 5.6	Brewster angle at the boundary between two materials	31
Exa 6.1	Lattice parameter of NaCl crystal	33
Exa 7.1	Variation of critical magnetic field with temperature .	34
Exa 6.2	Miller indices of the crystal plane	34
Exa 6.3	Indices of lattice plane	35
Exa 6.5	Interplanar spacing in cubic crystal	35
$Exa \ 6.6$	Interplanar spacing in cubic crystal	36
Exa 6.7	ngle of reflection by using wavelength of X ray	37
$Exa \ 6.8$	Actual volume occupied by the spheres in fcc structure	38
Exa 6.9	X ray Diffraction by crystal planes	38
Exa 6.10	X ray Diffraction by crystal planes	39
$Exa \ 6.11$	Maximum order of diffraction	40
Exa 6.12	Bragg reflection angle for the second order diffraction .	41
Exa 6.13	Distance between nearest neighbours of NaCl	42
Exa 6.14	Effect of structural change on volume	42
Exa 7.2	Frequency of Josephson current	44
Exa 7.3	Superconducting energy gap at 0K	44
Exa 7.4	Wavelength of photon to break up a Cooper pair	45
Exa 7.5	Variation of London penetration depth with temperature	45
Exa 7.6	Isotope Effect in mercury	46
Exa 8.1	Relativistic length contraction	48
Exa 8.2	Time Dilation	49
Exa 8.4	Relativistic velocity addition	49
Exa 8.5	Relativistic effects as observed for spaceship	50
Exa 8.6	Time difference and distance between the events	51
Exa 8.7	Speed of unstable particle in the Laboratory frame	52
Exa 8.8	Relativistic effects applied to mu meson	52
Exa 8.9	Speed of moving mass	53

Exa 8.10	Rate of decreasing mass of sun	54
Exa 8.11	Relativistic mass energy relation	54
Exa 8.13	Mass from relativistic energy	55
Exa 8.14	Relativistic momentum of high speed probe	56
Exa 8.15	Moving electron subjected to the electric field	56
Exa 9.1	De broglie wavelength of an electron from accelerating	
	potential	58
Exa 9.2	De broglie wavelength of an electron from kinetic energy	58
Exa 9.4	Uncertainty principle for position and momentum	59
Exa 9.5	Uncertainty principle for energy and time	60
Exa 9.6	Width of spectral line from Uncertainty principle	60
Exa 9.14	Probability of electron moving in 1D box	61
Exa 10.1	Ratio of occupancy of two states	62
Exa 10.4	Number density and fermi energy of silver	62
Exa 10.5	Electronic contribution to the molar heat capacity of	
	silver	63
Exa 10.6	Fermi energy and mean energy of aluminium	64
Exa 11.1	Ratio of spontaneous and stimulated emission	65
Exa 11.2	Energy of excited state of laser system	66
Exa 11.3	Condition of equivalence of stimulated and spontaneous	
	emission	66
Exa 11.4	Area and intensity of image formed by laser	67
Exa 11.5	Rate of energy released in a pulsed laser	68
Exa 11.6	Angular and linear spread of laser beam	68
Exa 12.1	Parameters of step index fibre	70
Exa 12.2	Parameters of optical fibre	71
Exa 12.3	Numerical aperture and acceptance angle of step index	
	fibre	72
Exa 12.5	Output power in fibre optic communication	72
Exa 13.1	Electronic Polarizability of atom	74
Exa 13.2	Parallel plate capacitor	75
Exa 13.3	Dielectric displacement of medium	75
Exa 13.4	Relative dielectric constant	76
Exa 13.5	Atomic polarizability of sulphur	77
Exa 13.6	Electronic polarizability from refractive index	77
Exa 13.7	Ratio of electronic polarizability to ionic polarizability	78
Exa 14.1	Spontaneous magnetisation of the substance	80
Exa 14.2	Relative permeability of ferromagnetic material	81

Exa 14.3	Relative permeability from magnetisation	81
Exa 14.4	Magnetic flux density and magnetisation of diamagnetic	00
		02
Exa 14.5	Magnetisation Magnetic flux density relative permeabil-	
	ity of diamagnetic material	83
Exa 14.6	Mean radius of body centered cubic structure	84
Exa 14.7	Susceptibility and magnetisation of paramagnetic salt	84
Exa 15.1	Debye temperature of aluminium	86
Exa 15.2	Lattice specific heat of carbon	86
Exa 15.3	Einstein frequency for Cu	87
Exa 15.4	Electronic and lattice heat capacities for Cu	87
Exa 15.5	Einstein lattice specific heat	88
Exa 15.6	Molar electronic heat capacity of zinc	89
Exa 17.1	Thickness of vibrating quartz at resonance	90
Exa 18.1	Output power of the sound source	91
Exa 18.2	Change in sound level for doubling intensity	92
Exa 18.3	Total absorption of sound in the hall	92
Exa 18.4	Average absorption coefficient of the surfaces of the hall	92
Exa 18.5	Reverbration time for the hall	93
Exa 18.6	Gain of resultant sound intensity	94

Chapter 1

OSCILLATION AND WAVES

Scilab code Exa 1.1 Time period of SHM

1 // Scilab Code Ex1.1 : Page-23 (2010) 2 A = 4/2; // Amplitude of SHM, cm 3 x = 0; // Mean position of oscillating particle, cm 4 v = 12; // Velocity of the particle at the mean position, cm/s 5 // As v = omega*sqrt(A² - x²), solving for omega 6 omega = v/sqrt(A² - x²); 7 printf("\nThe time period of SHM = %5.2f s", (2*%pi) /omega); 8 9 // Result 10 // The time period of SHM = 1.05 s

Scilab code Exa 1.2 Acceleration and maximum velocity in SHM

```
1 // Scilab Code Ex1.2 : Page-23 (2010)
2 T = 0.1; // Time period of oscillation in SHM, s
```

3 x = 0.2; // Position of the particle from its mean position, cm $4 \ A = 4;$ // Amplitude of the particle executing SHM , cm 5 // As T = 2*%pi/omega, solving for omega 6 omega = 2*%pi/T; // Angular speed of particle executing SHM, per sec 7 $a = omega^2 x;$ // Accelertion of particle executing SHM, cm per sec square 8 v_max = omega*A; // Maximum velocity of the particle in SHM, cm per sec 9 printf("\nThe acceleration of particle executing SHM = %5.1 f cm per sec square", a); 10 printf("\nThe maximum velocity of the particle in SHM = $\%5.1 \, \text{f}$ cm per sec", v_max); 11 12 // Result 13 // The accelertion of particle executing SHM = 789.6cm per sec square 14 // The maximum velocity of the particle in SHM =251.3 cm per sec

Scilab code Exa 1.3 Damped Vibrating System

1 // Scilab Code Ex1.3 : Page-24 (2010) 2 A1 = 40; // First amplitude of oscillation, cm 3 An_plus_1 = 4; // Amplitude after 100 oscillations, cm 4 n = 100; // Number of oscillations 5 T = 2.5; // Time period of oscillations, s 6 t = T/4; // Time taken to reach the first amplitude from the mean position, s 7 // Now A1 = x0*exp(-lambda*t) and An_plus_1 = x0*exp (-lambda*(t+nT)) 8 // A1/An_plus_1 = exp(n*lambda*T), solving for

```
lambda
```

Scilab code Exa 1.4 Amplitude and Time Period in SHM

```
1 // Scilab Code Ex1.4 : Page-24 (2010)
2 v1 = 16; // Velocity of particle executing SHM at
      position 3 cm
3 v2 = 12;
              // Velocity of particle executing SHM at
      position 4 cm
4 x1 = 3; // First position of the particle, cm
5 x^2 = 4; // Second position of the particle, cm
6 // As v = \text{omega} * \text{sqrt} (A^2 - x^2) so
7 // (v1/v2)^2 = (A^2 - x1^2)/(A^2 - x2^2), solving
     for A
8 A = poly(0, 'A'); // Declare variable A
9 A = roots((A^2 - x1^2) * v2^2 - (A^2 - x2^2) * v1^2);
10 printf("\nThe amplitude of SHM = \%1d cm", A(1));
11 // v = omega * sqrt (A^2 - x^2), solving for omega
12 omega = v1/sqrt(A(1)^2 - x1^2); // Angular speed
     of the particle, rad per sec
13 T = 2*%pi/omega; // Time period of oscillation,
     sec
14 printf("\nThe time period of oscillation = \%5.3 f sec
     ", T);
15
16 // Result
17 // The amplitude of SHM = 5 cm
18 // The time period of oscillation = 1.571 sec
```

Scilab code Exa 1.5 Oscillation of a spring mass system

```
1 // Scilab Code Ex1.5 : Page-25 (2010)
2 m = 0.3;
              // Mass attached to the string, kg
               // Acceleration due to gravity, metre
3 g = 9.8;
     per sec square
4 x = 0.15; // Stretchness produced in the spring,
     \mathbf{m}
              // Restoring force acting on the mass, N
5 F = m*g;
              // Spring constant, newton per metre
6 k = F/x;
7 A = 0.1;
              // Amplitude of the string, m
8 omega = sqrt(k/m); // Angular frequency of
      oscillation, rad per sec
9 v0 = omega * A;
                  // Maximum velocity during the
      oscillations, m/s
10 printf("\nThe spring constant = \%4.1 f newton per
     metre", k);
11 printf("\nThe amplitude of oscillation = \%2.1 f m", A
     );
12 printf("\nThe maximum velocity during oscillations =
      %3.2 f m/s", v0);
13
14 // Result
15 // The spring constant = 19.6 newton per metre
16 // The amplitude of oscillation = 0.1 \text{ m}
17 // The maximum velocity during oscillations = 0.81 m
     / s
```

Scilab code Exa 1.6 Frequency of visible region

1 // Scilab Code Ex1.6 : Page-25 (2010)

```
2 \text{ lambda1} = 400e-09;
                        // Lower limit of wavelength
     of visible region, m
3 \text{ lambda2} = 700e-09;
                         // Upper limit of wavelength
     of visible region, m
               // Speed of light in vacuum, m/s
4 c = 3e + 08;
                      // Upper limit of frequency of
5 f1 = c/lambda1;
      visible region, m
6 f2 = c/lambda2;
                      // Lower limit of frequency of
      visible region, m
  printf("\nThe frequency equivalent of %3g nm to %3g
7
     nm is \%3.1e Hz to \%3.1e Hz", lambda1/le-09,
     lambda2/1e-09, f1, f2);
8
9 // Result
10 // The frequency equivalent of 400 nm to 700 nm is
      7.5e + 014 Hz to 4.3e + 014 Hz
```

Scilab code Exa 1.7 Characteristics of sound wave

```
1 // Scilab Code Ex1.7 : Page-26 (2010)
2 // Comparing the standard equation
3 // u(x,t) = A * sin (2 * \% pi(x/lambda-t/T))
4 // with the given equation, we get
5 A = 1.5e-03; // Amplitude of the sound wave, m
6 \quad lambda = 8;
                  // Wavelength of the sound wave, m
7 T = 1/40;
                // Time period of the sound wave, s
               // Frequency of the sound wave, Hz
8 nu = 1/T;
9 v = nu*lambda; // Velocity of the sound wave, m/s
10 printf("\nThe amplitude of the sound wave = \%3.1 em"
      , A);
11 printf("\nThe wavelength of the sound wave = \%1d m",
      lambda);
12 printf("\nThe time period of the sound wave = \%3.2 f
     s", T);
13 printf("\nThe frequency of the sound wave = \%2d Hz",
```

```
nu);
14 printf("\nThe velocity of the sound wave = %3d m/s",
v);
15
16
17 // Result
18 // The amplitude of the sound wave = 1.5e-003 m
19 // The wavelength of the sound wave = 8 m
20 // The time period of the sound wave = 0.03 s
21 // The frequency of the sound wave = 40 Hz
22 // The velocity of the sound wave = 320 m/s
```

Scilab code Exa 1.8 Equation of a wave moving along X axis

```
1 // Scilab Code Ex1.8 : Page-26 (2010)
2 \quad A = 2;
             // Amplitude of the wave, cm
              // Time period of the wave, sec
3 T = 0.5;
               // Wave velocity , cm/s
4 v = 200;
5 f = 1/0.5; // Frequency of the wave, Hz
6 lambda = v/f; // Wavelength of the wave, cm
7 printf("\nThe Equation of the wave moving along X-
      axis :");
8 printf("u = \%1d * \sin *2*pi * (x/\%3d - t/\%2.1f)", A, lambda
      , T);
9
10
11 // Result
12 // The Equation of the wave moving along X-axis : u =
       2 * \sin * 2 * \operatorname{pi} * (x/100 - t/0.5)
```

Scilab code Exa 1.9 Wave in the wire

1 // Scilab Code Ex1.9 : Page-27 (2010)

```
2 T = 1000; // Tension in the wire, N
                  // Mass per unit length of the wire,
3 m = 15/300;
     kg per metre
4 \text{ lambda} = 0.30;
                     // Wavelength of wave along wire,
     \mathbf{m}
5 v = sqrt(T/m);
                     // Velocity of wave through wire,
     m/s
6 nu = v/lambda;
                   // Frequency of wave through
      string, Hz
7 printf("\nThe velocity and frequency of the wave
     through wire are \%5.1\,f m/s and \%5.1\,f Hz
      respectively", v, nu);
8
9
10
11 // Result
12 // The velocity and frequency of the wave through
     wire are 141.4 m/s and 471.4 Hz respectively
```

Chapter 2

ELECTROMAGNETIC THEORY

Scilab code Exa 2.1 Peak value of displacement current

```
1 // Scilab Code Ex2.1 : Page-46 (2010)
2 function V = f(t)
3
      V = 0.2 * sin(120 * % pi * t);
4 endfunction
5 t = 0; // Time when peak value of current occurs
6 C = 10e - 012;
                // Capacitance of the capacitor,
     farad
7 I = C*derivative(f,t);
8 printf("\nThe peak value of displacement current =
     %6.4 e A", I);
9
10 // Result
11 // The peak value of displacement current = 7.5398e
     -010 A
```

Scilab code Exa 2.2 Displacement current density in a good conductor

```
1 // Scilab Code Ex2.2 : Page-46 (2010)
2 function E = fn(t)
      E = sin(120*\%pi*t);
3
4 endfunction
5 epsilon_r = 1; // Relative electrical
     permittivity of free space
6 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, farad per metre
7 t = 0; // Time when peak value of current occurs
8 J2 = epsilon_0*epsilon_r*derivative(fn,t);
9 printf("\nThe peak value of displacement current =
     %4.2e ampere per metre square", J2);
10
11 // Result
12 // The peak value of displacement current = 3.34e
     -009 ampere per metre square
```

Scilab code Exa 2.4 Poynting vector

```
1 // Scilab Code Ex2.4 : Page-47 (2010)
2 p = 60; // Power rating of bulb, watt
3 d = 0.5; // Distance from the blb, m
4 P = p/(4*%pi*d^2); // Value of Poynting vector,
watt per metre square
5 printf("\nThe value of Poynting vector = %4.1f watt
per metre square", P);
6
7 // Result
8 // The value of Poynting vector = 19.1 watt per
metre square
```

Scilab code Exa 2.5 Plane electromagnetic wave in a medium

1 // Scilab Code Ex2.5 : Page-47 (2010)

- 2 E_peak = 6; // Peak value of electric field intensity, V/m
- 3 c = 3e+08; // Speed of electromagnetic wave in free space, m/s
- 4 mu_0 = 4*%pi*1e-07; // Absolute permeability of free space, tesla metre per ampere
- 5 epsilon_0 = 8.854e-012; // Absolute permittivity of free space, farad/m
- 6 mu_r = 1; // Relative permeability of medium
- 7 epsilon_r = 3; // Relative permittivity of the medium

```
8 v = c/sqrt(mu_r*epsilon_r); // Wave velocity, m/s
```

```
9 eta = sqrt((mu_0/epsilon_0)*(mu_r/epsilon_r)); //
Intrinsic impedance of the medium, ohm
```

```
10 H_P = E_peak*sqrt((epsilon_0*epsilon_r)/(mu_0*mu_r))
; // Peak value of the magnetic intensity,
ampere per metre
```

- 11 printf("\nThe wave velocity = $\%5.3 \,\mathrm{e} \,\mathrm{m/s}$ ", v);
- 13 printf("\nThe peak value of the magnetic intensity = %4.2 e A/m", H_P);

14

```
15 // Result
```

- 16 // The wave velocity = 1.732 e+008 m/s
- 17 // The intrinsic impedance of the medium = 217.51 ohm
- 18 // The peak value of the magnetic intensity = 2.76e $-002~\mathrm{A/m}$

Chapter 3

INTERFERENCE

Scilab code Exa3.1 Wavelength of Light using Young Double Slit experiment

```
1 // Scilab Code Ex3.1 : Page-71 (2010)
2 beta = 0.51e-02; // Fringe width, cm
3 d = 2.2e-02; // Distance between the slits, cm
4 D = 2e+02; // Distance between the slits and the
screen, cm
5 // As beta = D*lambda/d, solving for lambda
6 lambda = beta*d/D; // Wavelength of light, m
7 printf("\nThe wavelength of light = %4d angstrom",
lambda/1e-010);
8
9 // Result
10 // The wavelength of light = 5610 angstrom
```

Scilab code Exa 3.2 Fringe shift due to change in wavelength

```
3 lambda2 = 5050e-010; // Second wavelength emitted
     by source of light, m
4 D = 1.5; // Distance between the source and the
     screen, m
5 d = 0.025e-03; // Distance between the slits,
     m
6 n = 3; // Number of fringe from the centre
7 x3 = n*lambda1*D/d; // Position of third bright
     fringe due to lambda1, m
8 x3_prime = n*lambda2*D/d;
                              // Position of third
     bright fringe due to lambda2, m
9 printf("\nThe separation between the third bright
     fringe due to the two wavelengths = %4.2 f cm", (
     x3_prime - x3)/1e-02);
10
11 // Result
12 // The separation between the third bright fringe
     due to the two wavelengths = 1.44 cm
```

Scilab code Exa 3.3 Refractive index from double slit experiment

```
1 // Scilab Code Ex3.3 : Page-71 (2010)
2 lambda = 5.5e-05; // Wavelength emitted by source
of light, cm
3 n = 4; // Number of fringes shifted
4 t = 3.9e-04; // Thickness of the thin glass sheet
, cm
5 mu = n*lambda/t+1; // Refractive index of the
sheet of glass
6 printf("\nThe refractive index of the sheet of glass
= %6.4 f", mu);
7
8 // Result
9 // The refractive index of the sheet of glass =
1.5641
```

Scilab code Exa 3.4 Interference by thin soap film

```
1 // Scilab Code Ex3.4 : Page-72 (2010)
2 \text{ lambda} = 5893e-010; // Wavelength of
     monochromatic lingt used, m
3 n = 1; // Number of fringe for the least
      thickness of the film
4 r = 0;
           // Value of refraction angle for normal
     incidence, degrees
5 \text{ mu} = 1.42;
                 // refractive index of the soap film
6 // As for constructive interference,
7 // 2*mu*t*cos(r) = (2*n-1)*lambda/2, solving for t
8 t = (2*n-1)*lambda/(4*mu*cos(r)); // Thickness of
      the film that appears bright, m
9 printf("\nThe thickness of the film that appears
      bright = \%6.1 \, \text{f} angstrom", t/1e-010);
10 // As for destructive interference,
11 // 2*mu*t*cos(r) = n*lambda, solving for t
12 t = n*lambda/(2*mu*cos(r)); // Thickness of the
     film that appears bright, m
13 printf("\nThe thickness of the film that appears
     dark = \%4d angstrom", t/1e-010);
14
  // Result
15
16 // The thickness of the film that appears bright =
      1037.5 angstrom
17 // The thickness of the film that appears dark =
     2075 angstrom
```

Scilab code Exa 3.5 Interference due to thin air wedge

```
1 // Scilab Code Ex3.5 : Page-72 (2010)
2 lambda = 5893e-008; // Wavelength of
    monochromatic lihgt used, m
3 n = 10; // Number of fringe that are found in the
    distnace of 1 cm
4 d = 1; // Distance of 10 fringes, cm
5 beta = d/n; // Fringe width, cm
6 theta = lambda/(2*beta); // Angle of the wedge,
    rad
7 printf("\nThe angle of the wedge = %5.3e rad", theta
    );
8
9 // Result
10 // The angle of the wedge = 2.946e-004 rad
```

Scilab code Exa 3.6 Separation between consecutive bright fringes formed by an air wedge

```
1 // Scilab Code Ex3.6 : Page-72 (2010)
2 lambda = 5900e-008; // Wavelength of
    monochromatic lihgt used, m
3 t = 0.010e-01; // Spacer thickness, cm
4 l = 10; // Wedge length, cm
5 theta = t/l; // Angle of the wedge, rad
6 beta = lambda/(2*theta); // Fringe width, cm
7 printf("\nThe separation between consecutive bright
    fringes = %5.3 e cm", beta);
8
9 // Result
10 // The separation between consecutive bright fringes
    = 2.950e-001 cm
```

Scilab code Exa 3.7 Newton Rings by reflected light

```
1 // Scilab Code Ex3.7 : Page-72 (2010)

2 D4 = 0.4; // Diameter of 4th dark ring, cm

3 D12 = 0.7; // Diameter of 12th dark ring, cm

4 // We have dn_puls_k^2-Dn^2 = 4*k*R*lambda, so

5 // D12^2-D4^2 = 32*R*lambda and D20^2-D12^2 = 32*R*

lambda for k = 8, solving for D20

6 D20 = sqrt(2*D12^2-D4^2); // Diameter of 20th

dark ring, cm

7 printf("\nThe diameter of 20th dark ring = %6.4f cm"

, D20);

8

9 // Result

10 // The diameter of 20th dark ring = 0.9055 cm
```

Scilab code Exa 3.8 Refractive index from Newton Rings arrangement

Scilab code Exa 3.9 Wavelength of light using Michelson Interferometer

```
1 // Scilab Code Ex3.9 : Page-73 (2010)
2 x = 0.002945; // Distance through which movable
    mirror is shifted, cm
```

Scilab code Exa 3.10 Shift in movable mirror of Michelson Interferometer

```
1 // Scilab Code Ex3.10 : Page-73 (2010)
2 lambda1 = 5896e-008; // Wavelength of D1 line of
    sodium, m
3 lambda2 = 5890e-008; // Wavelength of D2 line of
    sodium, m
4 lambda = (lambda1+lambda2)/2;
5 // As lambda1 - lambda2 = lambda^2/(2*x), solving
    for x
6 x = lambda^2/(2*(lambda1 - lambda2)); // Shift in
    movable mirror of Michelson Interferometer, cm
7 printf("\nThe shift in movable mirror = %5.3 f mm", x
    //le-001);
8
9 // Result
10 // The shift in movable mirror = 0.289 mm
```

Chapter 4

DIFFRACTION

Scilab code Exa 4.1 Diffraction at a single slit

1 // Scilab Code Ex4.1 : Page-91 (2010) 2 D = 50; // Distance between source and the screen , cm // Wavelength of light of 3 lambda = 6563e - 008;parallel rays, m 4 d = 0.385e - 01;// Width of the slit, cm 5 n = 1; // Order of diffraction for first minimum 6 // As sin(theta1) = n*lambda/d = x1/D, solving for $\mathbf{x1}$ 7 x1 = n*lambda*D/d;// Distance from the centre of the principal maximum to the first minimum, cm 8 printf("\nThe Distance from the centre of the principal maximum to the first minimum = %4.2 f mm ", x1/1e-001); 9 n = 5; // Order of diffraction for fifth minimum 10 x2 = n*lambda*D/d; // Distance from the centre of the principal maximum to the fifth minimum, cm 11 printf("\nThe Distance from the centre of the principal maximum to the fifth minimum = %4.2 f mm ", x2/1e-001);

12

13 // Result

```
14 // The Distance from the centre of the principal
maximum to the first minimum = 0.85 mm
15 // The Distance from the centre of the principal
```

15 // The Distance from the centre of the principal maximum to the fifth minimum = 4.26 mm

Scilab code Exa 4.2 Diffraction at a circular aperture

1 // Scilab Code Ex4.2 : Page-91 (2010) 2 D = 0.04; // Diameter of circular aperture, cm 3 f = 20; // Focal length of convex lens, cm 4 lambda = 6000e-008; // Wavelength of light used, m 5 // We have $\sin(\text{theta}) = 1.22 * \text{lambda/D} = \text{theta}$, for small theta, such that 6 // For first dark ring 7 theta = 1.22*lambda/D; // The half angular width at central maximum, rad r1 = theta*f; // The half width of central 8 maximum for first dark ring, cm 9 // We have $\sin(\text{theta}) = 5.136 * \text{lambda} / (\% \text{pi} * \text{D}) = \text{theta}$, for small theta, such that 10 // For second dark ring 11 theta = 5.136*lambda/(%pi*D); // The half angular width at central maximum, rad 12 r2 = theta*f; // The half width of central maximum for second dark ring, cm 13 printf("\nThe radius of first dark ring = $\%4.2 \,\mathrm{e}$ cm", r1); 14 printf("\nThe radius of second dark ring = %4.1e cm" , r2); 1516 // Result 17 // The radius of first dark ring = 3.66e - 002 cm 18 // The radius of second dark ring = 4.90 e - 002 cm

Scilab code Exa 4.3 Second order maximum for diffraction grating

```
1 // Scilab Code Ex4.3 : Page-91 (2010)
2 n = 2; // Order of diffraction
3 lambda = 650e-009; // Wavelength of light used, m
4 d = 1.2e-05; // Distance between two consecutive
      slits of grating, m
5 // We have \sin(\text{theta}) = n*N*\text{lambda} = n*\text{lambda/d},
     solving for theta
6 theta = asind(n*lambda/d); // Angle at which the
     650 nm light produces a second order maximum,
     degrees
7 printf("\nThe angle at which the 650 nm light
     produces a second order maximum = \%4.2 f degrees",
      theta);
8
9 // Result
10 // The angle at which the 650 nm light produces a
     second order maximum = 6.22 degrees
```

Scilab code Exa 4.4 The highest spectral order with diffraction grating

```
1 // Scilab Code Ex4.4 : Page-92 (2010)
2 lambda = 650e-009; // Wavelength of light used, m
3 N = 6000e+02; // Number of lines per m on grating
, per m
4 theta = 90; // Angle at which the highest
    spectral order is obtained, degrees
5 // We have sin(theta) = n*N*lambda, solving for n
6 n = sind(theta)/(N*lambda); // The highest order
    of spectra with diffraction grating
```

Scilab code Exa 4.5 Overlapping spectra with diffraction grating

```
1 // Scilab Code Ex4.5 : Page-92 (2010)
2 N = 4000e+02; // Number of lines per m on grating
     , per m
3 // For Blue Line
4 lambda = 450e-009; // Wavelength of blue light, m
5 n = 3; // Order of diffraction spectrum
6 // We have sin(theta) = n*N*lambda, solving for sin(
     theta)
7 sin_theta_3 = n*N*lambda;
                              // Sine of angle at
     third order diffraction
8 // For Red Line
9 lambda = 700e-009; // Wavelength of blue light, m
10 n = 2; // Order of diffraction spectrum
11 // We have \sin(\text{theta}) = n*N*\text{lambda}, solving for \sin(
     theta)
12 sin_theta_2 = n*N*lambda; // Sine of angle at
     second order diffraction
13 // Check for overlapping
14 if abs(sin_theta_3 - sin_theta_2) < 0.05 then
      printf("\nThe two orders overlap.");
15
16 else
       printf("\nThe two orders do not overlap.");
17
18 end
19
20 // Result
21 // The two orders overlap.
```

Scilab code Exa 4.6 Width of first order spectrum

```
1 // Scilab Code Ex4.6 : Page-93 (2010)
2 n = 1; // Order of diffraction spectrum
3 N = 6000e+02; // Number of lines per m on
      diffraction grating, per m
4 D = 2; // Distance of screen from the source, m
  lambda1 = 400e-009; // Wavelength of blue light,
5
     m
  // We have sin(theta1) = n*N*lambda, solving for
6
     theta1
7 theta1 = asind(n*N*lambda1); // Angle at first
     order diffraction for Blue light, degrees
  lambda2 = 750e-009; // Wavelength of blue light,
8
     m
9 // We have sin(theta2) = n*N*lambda, solving for
     theta2
10 theta2 = asind(n*N*lambda2); // Angle at first
     order diffraction for Red light, degrees
11 x1 = D*tand(theta1);
                          // Half width position at
     central maximum for blue color, m
                          // Half width position at
12 x^2 = D*tand(theta^2);
     central maximum for red color, m
13
14 printf("\nThe width of first order spectrum on the
     screen = \%4.1 \, \text{f} \, \text{cm}, (x2 - x1)/1e-02);
15
16 // Result
17 // The width of first order spectrum on the screen =
      51.3 cm
```

Scilab code Exa 4.7 Resolution of wavelengths for grating

```
1 // Scilab Code Ex4.7 : Page-93 (2010)
2 w = 5; // Width of the grating, cm
3 N = 320; // Number of lines per cm on grating,
     per cm
4 NO = w*N; // Total number of lines on the grating
5 lambda = 640; // Wavelength of light, nm
6 n = 2; // Order of diffraction
7 d_lambda = lambda/(n*N0); // Separation between
     wavelengths which the gratign can just resolve,
     nm
8 printf("\nThe separation between wavelengths which
     the grating can just resolve = \%3.1 f nm",
     d_lambda);
9
10 // Result
11 // The separation between wavelengths which the
     grating can just resolve = 0.2 nm
```

Scilab code Exa 4.8 Angular separation to satisfy Rayleigh criterion

```
1 // Scilab Code Ex4.8 : Page-93 (2010)
2 lambda = 550e-09; // Wavelength of light, m
3 D = 3.2e-02; // Diameter of circular lens, m
4 f = 24e-02; // Focal length of the lens, m
5 theta_min = 1.22*lambda/D; // Minimum angle of
resolution provided by the lens, rad
6 // As delta_x/f = theta_min, solving for delta_x
7 delta_x = theta_min*f; // Separation of the
centres of the images in the focal plane of lens,
m
8 printf("\nThe separation of the centres of the
images in the focal plane of lens = %1d micro-
metre", delta_x/1e-06);
9
10 // Result
```

11 // The separation of the centres of the images in the focal plane of lens = 5 micro-metre

Scilab code Exa 4.9 Linear separation between two points

```
1 // Scilab Code Ex4.9 : Page-94 (2010)
2 lambda = 550e-09; // Wavelength of light, m
3 D = 20e-02; // Diameter of objective of telescope
     , m
4 d = 6e+003; // Distance of two points from the
      objective of telescope, m
5 theta = 1.22*lambda/D; // Angular separation
     between two points, rad
6 x = \text{theta}*d;
                  // Linear separation between two
      points, m
7 printf("\nThe linear separation between two points = \frac{1}{2}
      \%5.2 \text{ f mm}, x/1e-03);
8
9 // Result
10 // The linear separation between two points = 20.13
     \mathbf{m}\mathbf{m}
```

Chapter 5

POLARIZATION

Scilab code Exa 5.1 Polarization by reflection

1 // Scilab Code Ex5.1 : Polarization by reflection: Page - 113 (2010)2 mu_g = 1.72; // Refractive index of glass 3 mu_w = 4/3; // Refractive index of water 4 // For polarization to occur on flint glass, tan(i) $= mu_g/mu_w$ 5 // Solving for i 6 i = atand(mu_g/mu_w); 7 printf("\nThe angle of incidence for complete polarization to occur on flint glass = %4.1 f degrees", i); 8 // For polarization to occur on water, tan(i) = muw/mu_g 9 // Solving for i 10 i = atand(mu_w/mu_g); 11 printf("\nThe angle of incidence for complete polarization to occur on water = %5.2 f degrees", i); 1213 // Result 14 // The angle of incidence for complete polarization

```
to occur on flint glass = 52.2 degrees
15 // The angle of incidence for complete polarization
to occur on water = 37.78 degrees
```

Scilab code Exa 5.2 Percentage transmission of polarized light

- 1 // Scilab Code Ex5.2 : Percentage transmission of polarized light: Page-113 (2010)
- 2 IO = 1; // For simplicity, we assume the intensity of light falling on the second Nicol prism to be unity, watt per metre square
- 3 theta = 30; // Angle through which the crossed Nicol is rotated, degrees
- 4 I = I0*cosd(90-theta)^2; // Intensity of the emerging light from second Nicol, watt per metre square
- 5 T = I/(2*I0)*100; // Percentage transmission of incident light
- 7

```
8 // Result
```

9 // The percentage transmission of incident light after emerging through the Nicol prism = 12.5 percent

Scilab code Exa 5.3 Thickness of Quarter Wave Plate

- 1 // Scilab Code Ex5.3 : Thickness of Quarter Wave Plate : Page-113 (2010)
- 2 lambda = 6000e-008; // Wavelength of incident light, cm

3 mu_e = 1.55; // Refractive index of extraordinary ray 4 mu_o = 1.54; // Refractive index of ordinary ray 5 t = lambda/(4*(mu_e - mu_o)); // Thickness of Quarter Wave plate of positive crystal, cm 6 printf("\nThe thickness of Quarter Wave plate = %6.4 f cm", t); 7 8 // Result 9 // The thickness of Quarter Wave plate = 0.0015 cm

Scilab code Exa 5.4 Behaviour of half wave plate for increased wavelength

```
1 // Scilab Code Ex5.4 : Behaviour of half wave plate
     for increased wavelength : Page-114 (2010)
2 lambda = 1; // For simplicity, wavelength of
     incident light is assumed to be , cm
3 mu_e = 1.55; // Refractive index of extraordinary
      ray
4 mu_o = 1.54; // Refractive index of ordinary ray
5 t = lambda/(2*(mu_e - mu_o)); // Thickness of
     Half Wave plate for given lambda, cm
6 t_prime = 2*lambda/(2*(mu_e - mu_o)); // Thickness
     of Half Wave plate for twice lambda, cm
7 printf("\nThe thickness of half wave plate is %2.1f
     times that of the quarter wave plate.", t/t_prime
     );
8 printf("\nThe half wave plate behaves as a quarter
     wave plate for twice the wavelength of incident
     light.");
9
10 // Result
11 // The thickness of half wave plate is 0.5 times
     that of the quarter wave plate.
12 // The half wave plate behaves as a quarter wave
```

Scilab code Exa 5.5 Phase retardation for quartz

```
1 // Scilab Code Ex5.5 : Phase retardation for quartz
     : Page - 114 (2010)
                     // Wavelength of incident light
2 \text{ lambda} = 500e-09;
     , m
3 mu_e = 1.5508; // Refractive index of
     extraordinary ray
4 mu_o = 1.5418; // Refractive index of ordinary
     ray
5 t = 0.032e-03; // Thickness of quartz plate, m
6 dx = (mu_e - mu_o)*t; // Path difference between
     E-ray and O-ray, m
7 dphi = (2*%pi)/lambda*dx; // Phase retardation
     for quartz for given wavelength, rad
8 printf("\nThe phase retardation for quartz for given
      wavelength = \%5.3 \text{ f} pi rad", dphi/%pi);
9
10 // Result
11 // The phase retardation for quartz for given
     wavelength = 1.152 pi rad
```

Scilab code Exa 5.6 Brewster angle at the boundary between two materials

```
1 // Scilab Code Ex5.6 : Brewster angle at the
    boundary between two materials : Page-114 (2010)
2 C = 52; // Critical angle for total internal
    reflection at a boundary between two materials,
    degrees
3 // From Brewster's law, tand(i_B) = 1_mu_2
```
```
4 // Also sind(C) = 1_mu_2, so that
5 // tand(i_B) = sind(C), solving for i_B
6 i_B = atand(sind(C)); // Brewster angle at the
boundary, degrees
7 printf("\nThe Brewster angle at the boundary between
two materials = %2d degrees", i_B);
8
9 // Result
10 // The Brewster angle at the boundary between two
materials = 38 degrees
```

Chapter 6

CRYSTALLOGRAPHY

Scilab code Exa 6.1 Lattice parameter of NaCl crystal

```
1 // Scilab Code Ex6.1 : Lattice parameter of NaCl
     crystal : Page - 134 (2010)
                 // Molecular weight of NaCl, kg
2 M = 23 + 35.5;
     per k-mole
                // Density of rock salt, kg per
3 d = 2.18e+03;
     metre cube
4 n = 4; // No. of atoms per unit cell for an fcc
     lattice of NaCl crystal
                   // Avogadro's No., atoms/k-mol
5 N = 6.023D+26;
6 // Volume of the unit cell is given by
7 // a^3 = M*n/(N*d)
8 // Solving for a
9 a = (n*M/(d*N))^{(1/3)}; // Lattice constant of
     unit cell of NaCl
10 printf("\nLattice parameter for the NaCl crystal =
     %4.2f angstrom", a/1e-010);
11
12 // Result
13 // Lattice parameter for the NaCl crystal = 5.63
     angstrom
```

Scilab code Exa 7.1 Variation of critical magnetic field with temperature

```
1 // Scilab Code Ex7.1 : Variation of critical
magnetic field with temperature : Page-152 (2010)
2 T_c = 3.722; // Critical temperature of
superconducting transition, kelvin
3 B_c0 = 0.0306; // Critical magnetic field to
destroy superconductivity, tesla
4 T = 2; // Temperature at which critical magnetic
field is to be found out, kelvin
5 B_cT = B_c0*(1-(T/T_c)^2);
6 printf("\nThe critical magnetic field at %d K = %6.4
f T", T, B_cT);
7
8 // Result
9 // The critical magnetic field at 2 K = 0.0218 T s
```

Scilab code Exa 6.2 Miller indices of the crystal plane

```
1 // Scilab Code Ex6.2 : Miller indices of the crystal
      plane : Page-134 (2010)
2 m = 3; n = 2; p = 1; // Coefficients of intercepts
     along three axes
3 \text{ m_inv} = 1/\text{m};
                       // Reciprocate the first
     coefficient
4 n_{inv} = 1/n;
                       // Reciprocate the second
     coefficient
5 p_{inv} = 1/p;
                       // Reciprocate the third
     coefficient
6 mul_fact = double(lcm(int32([m,n,p]))); // Find l.c.
    m. of m, n and p
7 m1 = m_inv*mul_fact; // Clear the first fraction
```

```
8 m2 = n_inv*mul_fact; // Clear the second fraction
9 m3 = p_inv*mul_fact; // Clear the third fraction
10 printf("\nThe required miller indices are : (%d %d
%d) ", m1,m2,m3);
11
12 // Result
13 // The required miller indices are : (2 3 6)
```

Scilab code Exa 6.3 Indices of lattice plane

```
1 // Scilab Code Ex6.3 : Indices of lattice plane :
     Page - 135 (2010)
2 m = 2; // Coefficient of intercept along x-axis
3 n = %inf; // Coefficient of intercept along y-
      axis
4 p = 3/2; // Coefficient of intercept along z-axis
5 m_inv = 1/m; // Reciprocate m
                  // Reciprocate n
6 n_{inv} = 1/n;
7 p_inv = 1/p; // Reciprocate p
8 mul_fact = 6; // multiplicative factor, L.C.M. of
       2 and 3 i.e. 6
9 m1 = m_inv*mul_fact; // Clear the first fraction
10 m2 = n_inv*mul_fact; // Clear the second fraction
11 m3 = p_inv*mul_fact; // Clear the third fraction
12 printf("\nThe required miller indices are : %d, %d,
     %d ", m1,m2,m3);
13
14 // Result
15 // The required miller indices are : 3, 0, 4
```

Scilab code Exa 6.5 Interplanar spacing in cubic crystal

```
1 // Scilab Code Ex6.5 : Interplanar spacing in cubic
     crystal: Page-136 (2010)
2
3 // For (110) planes
4 h = 1; k = 1; l = 0; // Miller Indices for planes in
      a cubic crystal
5 a = 0.43e - 009;
                   // Interatomic spacing, m
6 d = a/(h^2+k^2+l^2)(1/2); // The interplanar
     spacing for cubic crystals, m
  printf("\nThe interplanar spacing between
7
     consecutive (110) planes = \%4.2 f angstrom", d/1e
     -010);
8
9 // For (212) planes
10 h = 2; k = 1; l = 2; // Miller Indices for planes in
      a cubic crystal
11 a = 4.21D-10;
                  // Interatomic spacing, m
12 d = a/(h^2+k^2+l^2)(1/2); // The interplanar
     spacing for cubic crystals, m
13 printf("\nThe interplanar spacing between
     consecutive (212) planes = \%4.3 f angstrom", d/1e
     -010);
14
15 // Result
16 // The interplanar spacing between consecutive (110)
      planes = 3.04 angstrom
17 // The interplanar spacing between consecutive (212)
      planes = 1.403 angstrom
```

Scilab code Exa 6.6 Interplanar spacing in cubic crystal

1 // Scilab Code Ex6.6 : Interplanar spacing in cubic crystal: Page-136 (2010) 2 h = 2; k = 3; l = 1; // Miller Indices for planes in a cubic crystal

```
3 r = 0.175e-009; // Atomic radius of fcc lattice,

m
4 a = 2*sqrt(2)*r; // Interatomic spacing of fcc

lattice, m
5 d = a/(h^2+k^2+l^2)^(1/2); // The interplanar

spacing for cubic crystals, m
6 printf("\nThe interplanar spacing between

consecutive (231) planes = %4.2f ansgtrom", d/1e

-010);
7
8 // Result
9 // The interplanar spacing between consecutive (231)

planes = 1.32 ansgtrom
```

Scilab code Exa 6.7 ngle of reflection by using wavelength of X ray

1 // Scilab Code Ex6.7 : Angle of reflection by using wavelength of X-ray: Page-136 (2010) 2 lambda = 1.440e-010; // Wavelength of X-rays, m 3 d = 2.8e - 010;// Interplanar spacing of rocksalt crystal, m 4 // 2*d*sin(theta) = n*lambda **Bragg's law, n isthe order of diffraction 5 // Solving for theta, we have 6 7 // For Ist Order diffraction 8 n = 1;9 theta = asind(n*lambda/(2*d)); // Angle of diffraction, degrees 10 printf("\nThe angle of reflection for first order diffraction = $\%4.1 \, \text{f}$ degrees", theta); 11 12 // For IInd Order diffraction 13 n = 2; 14 theta = asind(n*lambda/(2*d)); // Angle of

```
diffraction , degrees
15 printf("\nThe angle of reflection for first order
    diffraction = %4.1f degrees", theta);
16
17 // Result
18 // The angle of reflection for first order
    diffraction = 14.9 degrees
19 // The angle of reflection for first order
    diffraction = 30.9 degrees
```

Scilab code Exa 6.8 Actual volume occupied by the spheres in fcc structure

```
1 // Scilab Code Ex6.8 : Actual volume occupied by the
      spheres in fcc structure Page-136 (2010)
2 N = 8*1/8 + 6*1/2; // total number of spheres in
     a unit cell
3 a = 1;
         // For convenience, assume interatomic
     spacing to be unity, m
4 r = a/(2*sqrt(2)); // The atomic radius, m
5 V_atom = N*4/3*%pi*r^3; // Volume of atoms, metre
      cube
                 // Volume of unit cell, metre cube
6 V_uc = a^3;
7 printf("\nThe percentage of actual volume occupied
     by the spheres in fcc structure = \%4.2 f percent",
      V_atom/V_uc*100);
8
9 // Result
10 // The percentage of actual volume occupied by the
     spheres in fcc structure = 74.05 percent
```

Scilab code Exa 6.9 X ray Diffraction by crystal planes

```
1 // Scilab Code Ex6.9 : X-ray Diffraction by crystal
     planes: Page-137 (2010)
2 // For (221) planes
3 h = 2; k = 2; l = 1; // Miller Indices for planes in
      a cubic crystal
4 = 2.68e - 010;
                   // Interatomic spacing, m
5 n = 1; // First Order of diffraction
6 theta = 8.5; // Glancing angle at which Bragg's
     reflection occurs, degrees
7 d = a/(h^2+k^2+l^2)(1/2); // The interplanar
     spacing for cubic crystal, m
                              // Bragg's Law for
  lambda = 2*d*sind(theta);
8
     wavelength of X-rays, m
9 n = 2; // Second order of diffraction
10 theta = asind(n*lambda/(2*d)); // Angle at which
     second order Bragg reflection occurs, degrees
11 printf("\nThe interplanar spacing between
     consecutive (221) planes = \%5.3e^{\circ}, d);
12 printf("\nThe wavelength of X-rays = \%5.3 f angstrom"
      , lambda/1e-010);
13 printf("\nThe angle at which second order Bragg
     reflection occurs = \%4.1 \, \text{f} degrees", theta);
14
15 // Result
16 // The interplanar spacing between consecutive (221)
      planes = 8.933e - 011
17 // The wavelength of X-rays = 0.264 angstrom
18 // The angle at which second order Bragg reflection
     occurs = 17.2 degrees
```

Scilab code Exa 6.10 X ray Diffraction by crystal planes

```
a cubic crystal
3 n = 1; // First Order of diffraction
4 theta = 25; // Glancing angle at which Bragg's
     reflection occurs, degrees
5 lambda = 0.7e-010; // Wavelength of X-rays, m
6 // From Bragg's Law, n*lambda = 2*d*sind(theta),
     solving for d
7 d = n*lambda/(2*sind(theta)); // Interplanar
     spacing of cubic crystal, m
8 a = d*(h^2+k^2+l^2)(1/2); // The lattice parameter
      for cubic crystal, m
9 printf("\nThe lattice parameter for cubic crystal =
     \%4.2 \, f angstrom", a/1e-010);
10
11 // Result
12 // The lattice parameter for cubic crystal = 1.17
     angstrom
```

Scilab code Exa 6.11 Maximum order of diffraction

```
1 // Scilab Code Ex6.11 : Maximum order of diffraction
	: Page-138 (2010)
2 d = 0.31e-009; // Interplanar spacing, m
3 n = 1; // First Order of diffraction
4 theta = 9.25; // Glancing angle at which Bragg's
	reflection occurs, degrees
5 // From Bragg's Law, n*lambda = 2*d*sind(theta),
	solving for lambda
6 lambda = 2*d*sind(theta)/n; // Wavelength of X-
	rays, m (Bragg's Law)
7 theta_max = 90; // Maximum possible angle at
	which reflection can occur, degrees
8 n = 2*d*sind(theta_max)/lambda; // Maximum
	possible order of diffraction
9 printf("\nThe Maximum possible order of diffraction
```

```
= %1d",n);
10
11 // Result
12 // The Maximum possible order of diffraction = 6
```

Scilab code Exa 6.12 Bragg reflection angle for the second order diffraction

```
1 // Scilab Code Ex6.12 : Bragg reflection angle for
     the second order diffraction: Page-138 (2010)
2 // For (110) planes
3 h = 1, k = 1, l = 0; // Miller indices for (110)
     planes
4 d_110 = 0.195e-009; // Interplanar spacing
     between (110) planes, m
5 // As d_110 = a/(h^2 + k^2 + l^2)(1/2), solving for
      a
6 = d_{110} (h^2 + k^2 + 1^2) (1/2); // Lattice
     parameter for bcc crystal, m
7 // For (210) planes
8 h = 2, k = 1, l = 0; // Miller indices for (110)
     planes
9 d_210 = a/(h^2 + k^2 + l^2)(1/2); // Interplanar
      spacing between (210) planes, m
10 n = 2; // Seconds Order of diffraction
11 lambda = 0.072e-009; // Wavelength of X-rays, m
12 // From Bragg's Law, n*lambda = 2*d_210*sind(theta),
      solving for theta
13 theta = asind(n*lambda/(2*d_210));
                                     // Bragg
     reflection angle for the second order diffraction
     , degrees
14 printf("\nBragg reflection angle for the second
     order diffraction = \%5.2 \, \text{f} degrees", theta);
15
16 // Result
```

17 // Bragg reflection angle for the second order diffraction = 35.72 degrees

Scilab code Exa 6.13 Distance between nearest neighbours of NaCl

```
1 // Scilab Code Ex6.13 : Distance between nearest
     neighbours of NaCl: Page-138 (2010)
2 M = 23+35.5;
                   // Molecular weight of NaCl, kg
     per k-mole
                // Density of rock salt, kg per
3 d = 2.18e+03;
     metre cube
4 n = 4; // No. of atoms per unit cell for an fcc
     lattice of NaCl crystal
5 N = 6.023D+26; // Avogadro's No., atoms/k-mol
6 // Volume of the unit cell is given by
7 // a^3 = M*n/(N*d)
8 // Solving for a
9 a = (n*M/(d*N))^{(1/3)}; // Lattice constant of
     unit cell of NaCl
10 printf("\nThe distance between nearest neighbours of
      NaCl structure = \%5.3e^{\circ}, a/2);
11
12 // Result
13 // The distance between nearest neighbours of NaCl
     structure = 2.814 e - 010
```

Scilab code Exa 6.14 Effect of structural change on volume

```
1 // Scilab Code Ex6.14 : Effect of structural change
on volume : Page-139 (2010)
2 // For bcc structure
3 r = 1.258e-010; // Atomic radius of bcc structure
of iron, m
```

4 a = 4*r/sqrt(3); // Lattice parameter of bcc structure of iron, m

- 5 V = a^3; // Volume of bcc unit cell, metre cube 6 N = 2; // Number of atoms per unit cell in bcc structure
- 7 V_atom_bcc = V/N; // Volume occupied by one atom, metre cube
- 8 // For fcc structure
- 9 r = 1.292e-010; // Atomic radius of fcc structure of iron, m

10 a = 2*sqrt(2)*r; // Lattice parameter of fcc structure of iron, m

- 11 V = a^3; // Volume of fcc unit cell, metre cube
- 12 N = 4; // Number of atoms per unit cell in fcc structure
- 13 V_atom_fcc = V/N; // Volume occupied by one atom, metre cube

14 delta_V = (V_atom_bcc-V_atom_fcc)/V_atom_bcc*100; // Percentage change in volume due to structural change of iron

- 15 printf("\nThe percentage change in volume of iron = %4.2f percent", delta_V);
- 16
- 17 // Result
- 18 // The percentage change in volume of iron = 0.49percent

Chapter 7

SUPERCONDUCTIVITY

Scilab code Exa 7.2 Frequency of Josephson current

```
1 // Scilab Code Ex7.2 : Frequency of Josephson
        current : Page-152 (2010)
2 V = 1e-06; // DC voltage applied across the
        Josephson junction, volt
3 e = 1.6e-019; // Charge on an electron, C
4 h = 6.626e-034; // Planck's constant, Js
5 f = 2*e*V/h; // Frequency of Josephson current,
        Hz
6 printf("\nThe frequency of Josephson current = %5.1f
        MHz", f/1e+06);
7
8 // Result
9 // The frequency of Josephson current = 482.9 MHz
```

Scilab code Exa 7.3 Superconducting energy gap at 0K

```
1 // Scilab Code Ex7.3 : Superconducting energy gap at 0K : Page-152 (2010)
```

```
2 T_c = 0.517; // Critical temperature for cadmium,

K
3 k = 1.38e-023; // Boltzmann constant, J/K
4 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
5 E_g = 3.5*k*T_c/e; // Superconducting energy gap
at absolute zero, eV
6 printf("\nThe superconducting energy gap for Cd at
absolute zero = %4.2e eV", E_g);
7
8 // Result
9 // The superconducting energy gap for Cd at absolute
zero = 1.56e-004 eV
```

Scilab code Exa 7.4 Wavelength of photon to break up a Cooper pair

1 // Scilab Code Ex7.4 : Wavelength of photon to break up a Cooper-pair: Page-152 (2010)2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV3 c = 3e+08; // Speed of light in free space, m/s 4 h = 6.626e-034; // Planck's constant, Js $5 E_g = 1.5e - 004;$ // Superconducting energy gap for a material, eV 6 // As $E_g = h*f = h*c/lambda$, solving for lambda lambda = h*c/(E_g*e); // Wavelength of photon to 7 break up a Cooper-pair, m 8 printf("\nThe wavelength of photon to break up a Cooper-pair = $\%4.2 \,\mathrm{e}$ m", lambda); 9 10 // Result 11 // The wavelength of photon to break up a Cooperpair = 8.28 e - 003 m

Scilab code Exa 7.5 Variation of London penetration depth with temperature

- 1 // Scilab Code Ex7.5: Variation of London penetration depth with temperature: Page-153 (2010)
- 2 lambda_0 = 37e-009; // Penetration depth of lead at 0 kelvin, m
- 3 T_c = 7.193; // Critical temperature of superconducting transition for lead, kelvin 4 T = 5.2; // Temperature at which penetration depth for lead becomes lambda_T, kelvin
- 5 lambda_T = lambda_0*(1-(T/T_c)^4)^(-1/2); // Penetration depth of lead at 5.2 kelvin, m

```
6 printf("\nThe penetration depth of lead at \%3.1 \text{ f K} = \%4.1 \text{ f nm}",T, lambda_T/1e-009);
```

- 7
- 8 // Result
- 9 // The penetration depth of lead at 5.2 $\rm K=$ 43.4 nm

Scilab code Exa 7.6 Isotope Effect in mercury

```
1 // Scilab Code Ex7.6: Isotope Effect in mercury:
Page-153 (2010)
```

```
2 M1 = 199; // Mass of an isotope of mercury, amu
```

- 3 T_C1 = 4.185; // Transition temperature of the isoptope of Hg, K
- 4 T_C2 = 4.153; // Transition temperature of another isoptope of Hg, K
- 5 alpha = 0.5; // Isotope coefficient
- 6 M2 = M1*(T_C1/T_C2)^(1/alpha); // Mass of another isotope of mercury, amu
- 7 printf("\nThe mass of another isotope of mercury at %5.3 f K = %6.2 f amu",T_C2, M2);

```
8
```

9 // Result 10 // The mass of another isotope of mercury at 4.153 K = 202.08 amu

Chapter 8

SPECIAL THEORY OF RELATIVITY

Scilab code Exa 8.1 Relativistic length contraction

1 // Scilab Code Ex8.1: Page-171 (2010) 2 L_O = 1; // For simplicity, we assume classical length to be unity, m 3 c = 1; // For simplicity assume speed of light to be unity, m/s // Relativistic length, m $4 L = (1-1/100) * L_0;$ 5 // Relativistic length contraction gives $6 // L = L_0 * \operatorname{sqrt}(1 - v^2 / c^2)$, solving for v 7 v = $sqrt(1-(L/L_0)^2)*c$; // Speed at which relativistic length is 1 percent of the classical length, m/s8 printf("\nThe speed at which relativistic length is 1 percent of the classical length = %5.3 fc", v); 9 10 // Result 11 // The speed at which relativistic length is 1 percent of the classical length = 0.141c

Scilab code Exa 8.2 Time Dilation

```
1 // Scilab Code Ex8.2: Page-171 (2010)
2 c = 1;
         // For simplicity assume speed of light to
      be unity, m/s
              // Speed at which beam of particles
3 v = 0.9 * c;
     travel, m/s
4 delta_t = 5e-006; // Mean lifetime of particles
     as observed in the Lab. frame, s
5 delta_tau = delta_t*sqrt(1-(v/c)^2);
                                         // Proper
     lifetime of particle as per Time Dilation rule, s
6 printf("\nThe proper lifetime of particle = \%4.2 \text{ e s}"
     , delta_tau);
7
8 // Result
9 // The proper lifetime of particle = 2.18e-006 s
```

Scilab code Exa 8.4 Relativistic velocity addition

```
1 // Scilab Code Ex8.4: Page-172 (2010)
2 c = 1; // For simplicity assume speed of light to
        be unity, m/s
3 v = 0.6*c; // Speed with which the rocket leaves
        the earth, m/s
4 u_prime = 0.9*c; // Relative speed of second
        rocket w.r.t. the first rocket, m/s
5 u = (u_prime+v)/(1+(u_prime*v)/c^2); // Speed of
        second rocket for same direction of firing as per
        Velocity Addition Rule, m/s
6 printf(") pThe speed of second rocket for same
```

```
6 printf("\nThe speed of second rocket for same
    direction of firing = %5.3 fc", u);
```

```
7 u = (-u_prime+v)/(1-(u_prime*v)/c^2); // Speed of
second rocket for opposite direction of firing
as per Velocity Addition Rule, m/s
8 printf("\nThe speed of second rocket for opposite
direction of firing = %5.3 fc", u);
9
10 // Result
11 // The speed of second rocket for same direction of
firing = 0.974c
12 // The speed of second rocket for opposite direction
of firing = -0.652c
```

Scilab code Exa 8.5 Relativistic effects as observed for spaceship

1 // Scilab Code Ex8.5: Page-172 (2010) 2 c = 1; // For simplicity assume speed of light to be unity, m/s 3 LO = 1; // For simplicity assume length in spaceship's frame to be unity, m // Length as observed on earth, m 4 L = 1/2 * L0;5 // Relativistic length contraction gives $6 //L = L_0 * \operatorname{sqrt}(1 - v^2 / c^2)$, solving for v 7 v = $sqrt(1-(L/L0)^2)*c$; // Speed at which length of spaceship is observed as half from the earth frame, m/s $8 \, tau = 1;$ // Unit time in the spaceship's frame, s 9 t = tau/sqrt(1-(v/c)^2); // Time dilation of the spaceship's unit time, s 10 printf("\nThe speed at which length of spaceship is observed as half from the earth frame = %5.3 fc", v); 11 printf("\nThe time dilation of the spaceship unit time = %1g*tau", t); 1213 // Result

```
14 // The speed at which length of spaceship is
observed as half from the earth frame = 0.866c
15 // The time dilation of the spaceship write time.
```

15 // The time dilation of the spaceship unit time = 2* tau

Scilab code Exa 8.6 Time difference and distance between the events

1 // Scilab Code Ex8.6: Page - 172 (2010)2 c = 3e + 008;// Speed of light in vacuum, m/s 3 v = 0.6*c;// Velocity with which S2 frame moves relative to S1 frame, m/s 4 L_factor = $1/sqrt(1-(v/c)^2)$; // Lorentz factor 5 t1 = 2e-007; // Time for which first event occurs , s6 t2 = 3e-007; // Time for which second event occurs, s 7 x1 = 10; // Position at which first event occurs, m 8 x2 = 40; // Position at which second event occurs , m delta_t = L_factor*(t2 - t1)+L_factor*v/c^2*(x1 - x2 9); // Time difference between the events, s 10 delta_x = L_factor*(x2 - x1)-L_factor*v*(t2 - t1); // Distance between the events, m 11 printf("\nThe time difference between the events = $\%3.1 \, \mathrm{e} \, \mathrm{s}$ ", delta_t); 12 printf("\nThe distance between the events = %2d m", delta_x); 1314 // Result 15 // The time difference between the events = 5.0e-00816 // The distance between the events = 15 m

Scilab code Exa 8.7 Speed of unstable particle in the Laboratory frame

```
1 // Scilab Code Ex8.7: Page-173 (2010)
2 c = 3e+008; // Speed of light in vacuum, m/s
3 tau = 2.6e-008; // Mean lifetime the particle in
     its own frame, s
4 d = 20;
          // Distance which the unstable particle
     travels before decaying, m
5 // As t = d/v and also t = tau/sqrt(1-(v/c)^2), so
     that
6 // d/v = tau/sqrt(1-(v/c)^2), solving for v
7 v = sqrt(d^2/(tau^2+(d/c)^2)); // Speed of the
     unstable particle in Lab. frame, m/s
8 printf("\nThe speed of the unstable particle in Lab.
      frame = \%3.1 \, \text{em/s}", v)
9
10 // Result
11 // The speed of the unstable particle in Lab. frame
     = 2.8 e + 008 m/s
```

Scilab code Exa 8.8 Relativistic effects applied to mu meson

```
3 me = 1; // For simplicity assume mass of electron
to be unity, kg
```

- 4 tau = 2.3e-006; // Average lifetime of mu-meson in rest frame, s
- 5 t = 6.9e-006; // Average lifetime of mu-meson in laboratory frame, s

```
6 // Fromm Time Dilation Rule, tau = t * sqrt(1-(v/c)^2)
     , solving for v
7 v = sqrt(1-(tau/t)^2)*c; // Speed of mu-meson in
     the laboratory frame, m/s
8 c
9 m0 = 207*me; // Rest mass of mu-meson, kg
10 m = m0/sqrt(1-(v/c)^2); // Relativistic variation
      of mass with velocity, kg
11 me = 9.1e-031; // Mass of an electron, kg
12 c = 3e+008; // Speed of light in vacuum, m/s
13 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
14 T = (m*me*c^2 - m0*me*c^2)/e; // Kinetic energy
     of mu-meson, J
15 printf("\nThe speed of mu-meson in the laboratory
     frame = \%6.4 \, \text{fc}", v);
16 printf("\nThe effective mass of mu-meson = \%3d me",
     m);
17 printf("\nThe kinetic energy of mu-meson = \%5.1 f MeV
     ", T/1e+006);
18
19 // Result
20 // The speed of mu-meson in the laboratory frame =
     0.9428c
21 // The effective mass of mu-meson = 620 me
22 // The kinetic energy of mu-meson = 211.9 MeV
```

Scilab code Exa 8.9 Speed of moving mass

1 // Scilab Code Ex8.9: Page-174 (2010)
2 c = 1; // For simplicity assume speed of light to
 be unity, m/s
3 m0 = 1; // For simplicity assume rest mass to be
 unity, kg
4 m = (20/100+1)*m0; // Mass in motion, kg
5 // As m = m0/sqrt(1-(u/c)^2), solving for u

Scilab code Exa 8.10 Rate of decreasing mass of sun

```
1 // Scilab Code Ex8.10: Page-175 (2010)
2 c = 3e+008; // Speed of light in vacuum, m/s
3 dE = 4e+026; // Energy radiated per second my the
    sun, J/s
4 dm = dE/c^2; // Rate of decrease of mass of sun,
    kg/s
5 printf("\nThe rate of decrease of mass of sun = %4.2
    e kg/s", dm);
6
7 // Result
8 // The rate of decrease of mass of sun = 4.44e+009
    kg/s
```

Scilab code Exa 8.11 Relativistic mass energy relation

```
1 // Scilab Code Ex8.11: Page-175 (2010)
2 c = 1; // For simplicity assume speed of light to
        be unity, m/s
3 m0 = 9.1e-031; // Mass of the electron, kg
4 E0 = 0.512; // Rest energy of electron, MeV
5 T = 10; // Kinetic energy of electron, MeV
6 E = T + E0; // Total energy of electron, MeV
7 // From Relativistic mass-energy relation
8 // E<sup>2</sup> = c<sup>2</sup>*p<sup>2</sup> + m0<sup>2</sup>*c<sup>4</sup>, solving for p
```

```
9 p = sqrt(E^2-m0^2*c^4)/c; // Momentum of the
electron, MeV
10 // As E = E0/sqrt(1-(u/c)^2), solving for u
11 u = sqrt(1-(E0/E)^2)*c; // Velocity of the
electron, m/s
12 printf("\nThe momentum of the electron = %4.1 f/c MeV
", p);
13 printf("\nThe velocity of the electron = %6.4 fc", u)
;
14
15 // Result
16 // The momentum of the electron = 10.5/c MeV
17 // The velocity of the electron = 0.9988c
```

Scilab code Exa 8.13 Mass from relativistic energy

```
1 // Scilab Code Ex8.13: Page-176 (2010)
2 c = 3e+008; // Speed of light in vacuum, m/s
3 E = 4.5e+017; // Total energy of object, J
4 px = 3.8e+008; // X-component of momentum, kg-m/s
5 py = 3e+008; // Y-component of momentum, kg-m/s
6 pz = 3e+008; // Z-component of momentum, kg-m/s
7 p = sqrt(px^2+py^2+px^2); // Total momentum of
     the object, kg-m/s
8 // From Relativistic mass-energy relation
9 // E^2 = c^2 p^2 + m0^2 c^4, solving for m0
10 m0 = sqrt(E^2/c^4 - p^2/c^2); // Rest mass of the
      body, kg
11 printf("\nThe rest mass of the body = \%4.2 \text{ f kg}", m0)
     ;
12
13 // Result
14 // The rest mass of the body = 4.56 kg
```

Scilab code Exa 8.14 Relativistic momentum of high speed probe

```
1 // Scilab Code Ex8.14: Page-176 (2010)
2 c = 3e+008; // Speed of light in vacuum, m/s
3 m = 50000; // Mass of high speed probe, kg
4 u = 0.8*c; // Speed of the probe, m/s
5 p = m*u/sqrt(1-(u/c)^2); // Momentum of the probe
, kg-m/s
6 printf("\nThe momentum of the high speed probe = %1g
kg-m/s", p);
7
8 // Result
9 // The momentum of the high speed probe = 2e+013 kg-
m/s
```

Scilab code Exa 8.15 Moving electron subjected to the electric field

```
1 // Scilab Code Ex8.15: Page-177 (2010)
2 e = 1.6e-019; // Electronic charge, C = Energy
      equivalent of 1 eV, J/eV
3 mO = 9.11e-031; // Rest mass of electron, kg
4 c = 3e+008; // Speed of light in vacuum, m/s
5 u1 = 0.98*c; // Inital speed of electron, m/s
6 u2 = 0.99*c; // Final speed of electron, m/s
7 m1 = m0/sqrt(1-(u1/c)^2); // Initial relativistic
      mass of electron, kg
8 \text{ m2} = \text{m0/sqrt}(1-(u2/c)^2); // Final relativistic
     mass of electron, kg
9
  dm = m2 - m1;
                  // Change in relativistic mass of
      the electron, kg
10 W = dm*c^2; // Work done on the electron to
      change its velocity, J
```

- 11 // As W = eV, V = accelerating potential, solving for V
- 12 V = W/e; // Accelerating potential, volt

- 15 printf("\nThe accelerating potential = %4.2e volt", V);

16

- 17 // Result
- 18 // The change in relativistic mass of the electron = 1.9e-030 kg
- 19 // The work done on the electron to change its velocity = 1.06 MeV
- 20 // The accelerating potential = 1.06e+006 volt

Chapter 9

QUANTUM MECHANICS

Scilab code Exa 9.1 De broglie wavelength of an electron from accelerating potential

```
1 // Scilab Code Ex9.1: De-broglie wavelength of an
electron from accelerating potential : Page-202
(2010)
2 V = 100; // Accelerating potential for electron,
volt
3 lambda = sqrt(150/V)*1e-010; // de-Broglie
wavelength of electron, m
4 printf("\nThe De-Broglie wavelength of electron = %4
.2e m", lambda);
5
6 // Result
7 // The De-Broglie wavelength of electron = 1.22e-010
m
```

Scilab code Exa 9.2 De broglie wavelength of an electron from kinetic energy

```
1 // Scilab Code Ex9.2: De-broglie wavelength of an
      electron from kinetic energy : Page-203 (2010)
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 h = 6.626e-034; // Planck's constant, Js
4 m = 9.1e-031; // Mass of the electron, kg
5 Ek = 10; // Kinetic energy of electron, eV
6 // Ek = p^2/(2*m), solving for p
7 p = sqrt(2*m*Ek*e); // Momentum of the electron,
     kg - m/s
  lambda = h/p ; // de-Broglie wavelength of
8
      electron from De-Broglie relation, m
  printf("\nThe de-Broglie wavelength of electron = \%4
      .2 \, e \, nm", lambda/1e-009);
10
11 // Result
12 // The de-Broglie wavelength of electron = 3.88e-001
      nm
```

Scilab code Exa 9.4 Uncertainty principle for position and momentum

```
1 // Scilab Code Ex9.4: Uncertainty principle for
	position and momentum: Page-203 (2010)
2 h = 6.626e-034; // Planck's constant, Js
3 m = 9.1e-031; // Mass of the electron, kg
4 v = 1.1e+006; // Speed of the electron, m/s
5 p = m*v; // Momentum of the electron, kg-m/s
6 dp = 0.1/100*p; // Uncertainty in momentum, kg-m/
	s
7 h_bar = h/(2*%pi); // Reduced Planck's constant,
	Js
8 // From Heisenberg uncertainty principle,
9 // dx*dp = h_bar/2, solving for dx
10 dx = h_bar/(2*dp); // Uncertainty in position, m
11 printf("\nThe uncertainty in position of electron =
	%4.2e m", dx);
```

```
12
13 // Result
14 // The uncertainty in position of electron = 5.27e
-008 m
```

Scilab code Exa 9.5 Uncertainty principle for energy and time

```
1 // Scilab Code Ex9.5: Uncertainty principle for
      energy and time: Page-203 (2010)
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 h = 6.626e-034; // Planck's constant, Js
4 dt = 1e-008; // Uncertainty in time, s
5 h_bar = h/(2*%pi); // Reduced Planck's constant,
      Js
6 // From Heisenberg uncertainty principle,
7 // dE*dt = h_bar/2, solving for dE
8 dE = h_bar/(2*dt*e); // Uncertainty in energy of
      the excited state, m
  printf("\nThe uncertainty in energy of the excited
9
      state = \%4.2 \, e \, eV", dE);
10
11 // Result
12 // The uncertainty in energy of the excited state =
      3.30 e - 008 eV
```

Scilab code Exa 9.6 Width of spectral line from Uncertainty principle

```
1 // Scilab Code Ex9.6: Width of spectral line from
Uncertainty principle: Page-204 (2010)
2 c = 3e+008; // Speed of light, m/s
3 dt = 1e-008; // Average lifetime, s
4 lambda = 400e-009; // Wavelength of spectral line
, m
```

```
5 // From Heisenberg uncertainty principle,
6 // dE = h_bar/(2*dt) and also dE = h*c/lambda^2*
    d_lambda, which give
7 // h_bar/(2*dt) = h*c/lambda^2*d_lambda, solving for
    d_lambda
8 d_lambda = lambda^2/(4*%pi*c*dt); // Width of
    spectral line, m
9 printf("\nThe width of spectral line = %4.2e m",
    d_lambda);
10
11 // Result
12 // The width of spectral line = 4.24e-015 m
```

Scilab code Exa 9.14 Probability of electron moving in 1D box

1 // Scilab Code Ex9.14: Probability of electron moving in 1D box : Page - 207 (2010)2 a = 2e - 010;// Width of 1D box, m 3 x1 = 0; // Position of first extreme of the box, m 4 x2 = 1e-010;// Position of second extreme of the box, m 5 P = integrate($'2/a*(sin(2*\%pi*x/a))^2'$, 'x', x1, x2) ; // The probability of finding the electron between x = 0 and x = 1e-0106 printf("\nThe probability of finding the electron between x = 0 and x = 1e-010 = %3.1 f", P); 7 8 // Result 9 // The probability of finding the electron between x = 0 and x = 1e - 010 = 0.5

Chapter 10

STATISTICAL MECHANICS

Scilab code Exa 10.1 Ratio of occupancy of two states

1 // Scilab Code Ex10.1: Page-222 (2010) 2 k = 1.38 e-023; // Boltzmann constant, J/K // Energy equivalent of 1 eV, J/eV 3 e = 1.6e - 0.19;4 g1 = 2; // The degeneracy of ground state // The degeneracy of excited state 5 g2 = 8;6 delta_E = 10.2; // Energy of excited state above the ground state, eV 7 T = 6000;// Temperature of the state, K 8 D_ratio = g2/g1; // Ratio of degeneracy of states 9 N_ratio = D_ratio*exp(-delta_E/(k*T/e)); // Ratio of occupancy of the excited to the ground state 10 printf("\nThe ratio of occupancy of the excited to the ground state at %d K = %4.2e", T, N_ratio); 11 12 // Result 13 // The ratio of occupancy of the excited to the ground state at 6000 K = 1.10 e - 008

Scilab code Exa 10.4 Number density and fermi energy of silver

```
1 // Scilab Code Ex10.4: Page-223 (2010)
                  // Energy equivalent of 1 eV, J/eV
2 e = 1.6e - 0.19;
3 N_A = 6.023e+023; // Avogadro's number
4 h = 6.626e-034; // Planck's constant, Js
5 me = 9.1e-031; // Mass of electron, kg
6 rho = 10.5; // Density of silver, g per cm
7 m = 108; // Molecular mass of silver, g/mol
8 \text{ N_D} = \text{rho*N_A/(m*1e-006)}; // Number density of
      conduction electrons, per metre cube
9 E_F = h^2/(8*me)*(3/%pi*N_D)^(2/3);
10 printf("\nThe number density of conduction electrons
       = %4.2e per metre cube", N_D);
11 printf("\nThe Fermi energy of silver = \%4.2 f eV",
      E_F/e;
12
13 // Result
14 // The number density of conduction electrons = 5.86
      e+028 per metre cube
15 // The Fermi energy of silver = 5.51 \text{ eV}
```

Scilab code Exa 10.5 Electronic contribution to the molar heat capacity of silver

```
1 // Scilab Code Ex10.5: Page-224 (2010)
2 N_A = 6.023e+023; // Avogadro's number
3 k = 1.38e-023; // Boltzmann constant, J/K
4 T = 293; // Temperature of sodium, K
5 E_F = 3.24; // Fermi energy of sodium, eV
6 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
7 C_v = %pi^2*N_A*k^2*T/(2*E_F*e); // Molar
        specific heat of sodium, J/mole/K
8 printf("\nThe molar specific heat of sodium = %4.2f
        J/mole/K", C_v);
9
10 // Result
```

Scilab code Exa 10.6 Fermi energy and mean energy of aluminium

1 // Scilab Code Ex10.6: Page-224 (2010) 2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV3 h = 6.626e-034; // Planck's constant, Js 4 m = 9.1e-031; // Mass of the electron, kg 5 $N_D = 18.1e+028$; // Number density of conduction electrons in Al, per metre cube 6 E_F = h^2/(8*m)*(3/%pi*N_D)^(2/3); // Fermi energy of aluminium, J 7 $Em_0 = 3/5 * E_F$; // Mean energy of the electron at OK, J 8 printf("\nThe Fermi energy of aluminium = %5.2 f eV", E_F/e ; 9 printf("\nThe mean energy of the electron at 0K =%4.2 f eV", Em_0/e); 10 11 // Result 12 // The Fermi energy of aluminium = 11.70 eV 13 // The mean energy of the electron at 0K = 7.02 eV

Chapter 11

LASERS

Scilab code Exa 11.1 Ratio of spontaneous and stimulated emission

```
1 // Scilab Code Ex11.1: Page-249 (2010)
2 h = 6.626e-034; // Planck's constant, Js
              // Speed of light in free space, m/s
3 c = 3e + 08;
4 k = 1.38e-023; // Boltzmann constant, J/K
5 T = 300; // Temperature at absolute scale, K
6 lambda = 5500e-010; // Wavelength of visible
     light, m
  rate_ratio = exp(h*c/(lambda*k*T))-1; // Ratio of
7
      spontaneous emission to stimulated emission
8 printf("\nThe ratio of spontaneous emission to
     stimulated emission for visible region = \%1.0e^{\circ},
     rate_ratio);
9 \text{ lambda} = 1e - 02;
                   // Wavelength of microwave, m
10 rate_ratio = exp(h*c/(lambda*k*T))-1;
                                            // Ratio of
      spontaneous emission to stimulated emission
11 printf("\nThe ratio of spontaneous emission to
     stimulated emission for microwave region = \%6.4 f"
     , rate_ratio);
12
13 // Result
14 // The ratio of spontaneous emission to stimulated
```

```
emission for visible region = 8e+037
15 // The ratio of spontaneous emission to stimulated
emission for microwave region = 0.0048
```

Scilab code Exa 11.2 Energy of excited state of laser system

```
1 // Scilab Code Ex11.2: Page-250 (2010)
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 h = 6.626e-034; // Planck's constant, Js
4 c = 3e+08; // Speed of light in free space, m/s
5 lambda = 690e-009; // Wavelength of laser light,
     m
6 E_lower = 30.5; // Energy of lower state, eV
7 E = h*c/(lambda*e); // Energy of the laser light,
      eV
8 E_ex = E_lower + E; // Energy of excited state of
      laser system, eV
9 printf("\nThe energy of excited state of laser
     system = \%4.1 \, \text{f} \, \text{eV}", E_ex);
10
11 // Result
12 // The energy of excited state of laser system =
     32.3 eV
```

Scilab code Exa 11.3 Condition of equivalence of stimulated and spontaneous emission

```
6 A = log(2)*k/h; // Frequency per unit
temperature, Hz/K
7 printf("\nThe stimulated emission equals spontaneous
emission iff f/T = %4.2e Hz/K", A);
8
9 // Result
10 // The stimulated emission equals spontaneous
emission iff f/T = 1.44e+010 Hz/K
```

Scilab code Exa 11.4 Area and intensity of image formed by laser

```
1 // Scilab Code Ex11.4: Page-250 (2010)
2 lambda = 500e-009; // Wavelength of laser light,
     m
3 f = 15e-02; // Focal length of the lens, m
4 d = 2e-02; // Diameter of the aperture of source,
      m
5 a = d/2;
            // Radius of the aperture of source, m
                 // Power of the laser, W
6 P = 5e - 003;
7 A = \text{%pi*lambda}^2 \text{f}^2/\text{a}^2; // Area of the spot at
     the focal plane, metre square
8 I = P/A;
             // Intensity at the focus, W per metre
     square
9 printf("\nThe area of the spot at the focal plane =
     \%4.2e metre square", A);
10 printf("\nThe intensity at the focus = \%4.2e watt
     per metre square", I);
11
12 // Result
13 // The area of the spot at the focal plane = 1.77e
     -010 metre square
14 // The intensity at the focus = 2.83e+007 watt per
     metre square
```
Scilab code Exa 11.5 Rate of energy released in a pulsed laser

```
1 // Scilab Code Ex11.5: Page-251 (2010)
2 h = 6.626e-034; // Planck's constant, Js
3 c = 3e+08; // Speed of light in free space, m/s
4 lambda = 1064e-009; // Wavelength of laser light,
      \mathbf{m}
5 P = 0.8; // Average power output per laser pulse,
      W
6 dt = 25e-003; // Pulse width of laser, s
7 E = P*dt; // Energy released per pulse, J
8 N = E/(h*c/lambda); // Number of photons in a
     pulse
9 printf("\nThe energy released per pulse = \%2.0 \,\mathrm{e} J",
     E);
10 printf("\nThe number of photons in a pulse = \%4.2e",
      N);
11
12 // Result
13 // The energy released per pulse = 2e - 002 J
14 // The number of photons in a pulse = 1.07 e+017
```

Scilab code Exa 11.6 Angular and linear spread of laser beam

```
1 // Scilab Code Ex11.6:Page-251 (2010)
2 lambda = 693e-009; // Wavelength of laser beam, m
3 D = 3e-003; // Diameter of laser beam, m
4 d_theta = 1.22*lambda/D; // Angular spread of
        laser beam, rad
5 d = 300e+003; // Height of a satellite above the
        surface of earth, m
```

```
6 a = d_theta*d; // Diameter of the beam on the
satellite , m
7 printf("\nThe height of a satellite above the
surface of earth = %4.2e rad", d_theta);
8 printf("\nThe diameter of the beam on the satellite
= %4.1f m", a);
9
10 // Result
11 // The height of a satellite above the surface of
earth = 2.82e-004 rad
12 // The diameter of the beam on the satellite = 84.5
m
```

HOLOGRAPHY AND FIBRE OPTICS

Scilab code Exa 12.1 Parameters of step index fibre

1 // Scilab Code Ex12.1: Parameters of step index fibre : Page - 271 (2010) 2 n1 = 1.43; // Refractive index of fibre core 3 n2 = 1.4; // Refractive index of fibre cladding 4 // As sin (alpha_c) = n2/n1, solving for alpha_c // Critical angle for $5 \text{ alpha_c} = \text{asind}(n2/n1);$ optical fibre, degrees $6 // AS \cos(\text{theta_c}) = n2/n1$, solving for theta_c 7 theta_c = acosd(n2/n1); // Critical propagation angle for optical fibre, degrees 8 NA = $sqrt(n1^2 - n2^2)$; // Numerical aperture for optical fibre 9 printf("\nThe critical angle for optical fibre = %5.2 f degrees", alpha_c); 10 printf("\nThe critical propagation angle for optical fibre = $\%5.2 \, \text{f}$ degrees", theta_c); 11 printf("\nNumerical aperture for optical fibre = %4.2 f", NA); 12

13 // Result

- 14 // The critical angle for optical fibre = 78.24 degrees
- 15 // The critical propagation angle for optical fibre = 11.76 degrees
- 16 // Numerical aperture for optical fibre = 0.29

Scilab code Exa 12.2 Parameters of optical fibre

```
1 // Scilab Code Ex12.2: Parameters of optical fibre :
      Page - 271 (2010)
              // Refractive index of fibre core
2 n1 = 1.45;
3 n2 = 1.4; // Refractive index of fibre cladding
4 NA = sqrt(n1^2 - n2^2); // Numerical aperture for
      optical fibre
5 // As sin(theta_a) = sqrt(n1^2 - n2^2), solving for
     theta_a
6 theta_a = asind(sqrt(n1^2 - n2^2));
                                      // Half of
     acceptance angle of optical fibre, degrees
7 theta_accp = 2*theta_a; // Acceptance angle of
     optical fibre
8 Delta = (n1 - n2)/n1; // Relative refractive
     index difference
9 printf("\nNumerical aperture for optical fibre = \%5
     .3 f", NA);
10 printf("\nThe acceptance angle of optical fibre = \%4
     .1f degrees", theta_accp);
11 printf("\nRelative refractive index difference = \%5
     .3f", Delta);
12
13 // Result
14 // Numerical aperture for optical fibre = 0.377
15 // The acceptance angle of optical fibre = 44.4
     degrees
16 // Relative refractive index difference = 0.034
```

Scilab code Exa 12.3 Numerical aperture and acceptance angle of step index fibre

```
1 // Scilab Code Ex12.3: Numerical aperture and
      acceptance angle of step index fibre : Page-271
      (2010)
2 n1 = 1.55; // Refractive index of fibre core
3 n2 = 1.53; // Refractive index of fibre cladding
4 nO = 1.3; // Refractive index of medium
5 NA = sqrt(n1^2 - n2^2); // Numerical aperture for
       optical fibre
6 / (n0 * sin(theta_a) = sqrt(n1^2 - n2^2) = NA, solving
       for theta_a
7 theta_a = asind(sqrt(n1^2 - n2^2)/n0); // Half of
       acceptance angle of optical fibre, degrees
8 theta_accp = 2*theta_a; // Acceptance angle of
      optical fibre
9 printf("\nNumerical aperture for step index fibre =
     %5.3 f", NA);
10 printf("\nThe acceptance angle of step index fibre =
      \%2d degrees", theta_accp);
11
12 // Result
13 // Numerical aperture for step index fibre = 0.248
14 // The acceptance angle of step index fibre = 22
      degrees
```

Scilab code Exa 12.5 Output power in fibre optic communication

1 // Scilab Code Ex12.5: Output power in fibre optic communication : Page-272 (2010)

```
// Power loss through optical fibre,
2 \text{ alpha} = 2;
     dB/km
3 P_in = 500; // Poer input of optical fibre, micro
     -watt
4 z = 10;
           // Length of the optical fibre, km
5 // As alpha = 10/z * log10 (P_in/P_out), solving for
     P_out
6 P_out = P_in/10^(alpha*z/10);
                                   // Output power in
      fibre optic communication, W
7 printf("\nThe output power in fibre optic
     communication = %1d micro-watt", P_out);
8
9 // Result
10 // The output power in fibre optic communication = 5
      micro-watt
```

DIELECTRIC PROPERTIES OF MATERIALS

Scilab code Exa 13.1 Electronic Polarizability of atom

```
1 // Scilab Code Ex13.1: Electronic Polarizability of
     atom : Page -287 (2010)
2 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, farad per metre
3 R = 0.52e-010; // Radius of hydrogen atom,
     angstrom
4 n = 9.7e + 026;
                // Number density of hydrogen, per
     metre cube
5 alpha_e = 4*%pi*epsilon_0*R^3; // Electronic
     polarizability of hydrogen atom, farad-metre
     square
6 printf("\nThe electronic polarizability of hydrogen
     atom = \%4.2 \,\mathrm{e} farad-metre square", alpha_e);
\overline{7}
8 // Result
9 // The electronic polarizability of hydrogen atom =
     1.56e-041 farad-metre square
```

Scilab code Exa 13.2 Parallel plate capacitor

1 // Scilab Code Ex13.2: Parallel plate capacitor: Page - 287 (2010)2 epsilon_0 = 8.854e-012; // Absolute electrical permittivity of free space, farad per metre 3 A = 100e-004; // Area of a plate of parallel plate capacitor, metre square // Distance between the plates of the $4 \, d = 1e - 002;$ capacitor, m 5 V = 100;// Potential applied to the plates of the capacitor, volt 6 C = epsilon_0*A/d; // Capacitance of parallel plate capacitor, farad 7 Q = C/V; // Charge on the plates of the capacitor , coulomb 8 printf("\nThe capacitance of parallel plate capacitor = $\%5.3 \,\mathrm{e}$ F", C); printf("\nThe charge on the plates of the capacitor 9 $= \%5.3 \, e \, C$ ", Q); 10 11 // Result 12 // The capacitance of parallel plate capacitor =8.854 e - 012 F13 // The charge on the plates of the capacitor = 8.854e-014 C

Scilab code Exa 13.3 Dielectric displacement of medium

1 // Scilab Code Ex13.3: Dielectric displacement of medium: Page-288 (2010)

```
2 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, farad per metre
3 epsilon_r = 5.0; // Dielectric constant of the
     material between the plates of capacitor
4 V = 15; // Potential difference applied between
     the plates of the capacitor, volt
5 d = 1.5e-003; // Separation between the plates of
      the capacitor, m
6 // Electric displacement, D = epsilon_0 * epsilon_r * E,
      as E = V/d, so
7 D = epsilon_0*epsilon_r*V/d; // Dielectric
     displacement, coulomb per metre square
8 printf("\nThe dielectric displacement = \%5.3 \,\mathrm{e}
     coulomb per metre square", D);
9
10 // Result
11 // The dielectric displacement = 4.427e - 007 coulomb
     per metre square
```

Scilab code Exa 13.4 Relative dielectric constant

```
1 // Scilab Code Ex13.4: Relative dielectric constant

: Page-288 (2010)

2 epsilon_0 = 8.854e-012; // Absolute electrical

permittivity of free space, farad per metre

3 N = 3.0e+028; // Number density of solid

elemental dielectric, atoms per metre cube

4 alpha_e = 1e-040; // Electronic polarizability,

farad metre square

5 epsilon_r = 1 + N*alpha_e/epsilon_0; // Relative

dielectric constant of the material

6 printf("\nThe Relative dielectric constant of the

material = %5.3f", epsilon_r);

7

8 // Result
```

9 // The Relative dielectric constant of the material = 1.339

Scilab code Exa 13.5 Atomic polarizability of sulphur

```
1 // Scilab Code Ex13.5: Atomic polarizability of
     sulphur : Page - 288 (2010)
2 N_A = 6.023e+023; // Avogadro's number, per mole
3 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, farad per metre
4 epsilon_r = 3.75; // Relative dielectric constant
5 d = 2050; // Density of sulphur, kg per metre
     cube
6 y = 1/3; // Internal field constant
7 M = 32; // Atomic weight of sulphur, g/mol
8 N = N_A*1e+03*d/M; // Number density of atoms of
     sulphur, per metre cube
9 // Lorentz relation for local fields give
10 // E_local = E + P/(3*epsilon_0) which gives
11 // (epsilon_r - 1)/(epsilon_r + 2) = N*alpha_e/(3*
     epsilon_0), solving for alpha_e
12 alpha_e = (epsilon_r - 1)/(epsilon_r + 2)*3*
     epsilon_0/N; // Electronic polarizability of
     sulphur, farad metre square
13 printf("\nThe electronic polarizability of sulphur =
      %5.3e farad metre square", alpha_e);
14
15 // Result
16 // The electronic polarizability of sulphur = 3.292e
     -040 farad metre square
```

Scilab code Exa 13.6 Electronic polarizability from refractive index

```
1 // Scilab Code Ex13.6: Electronic polarizability
     from refractive index : Page-289 (2010)
                 // Number density of atoms of
2 N = 3e + 028;
     dielectric material, per metre cube
3 epsilon_0 = 8.854e-012; // Absolute electrical
     permittivity of free space, farad per metre
4 n = 1.6; // Refractive index of dielectric
     material
5 // As (n^2 - 1)/(n^2 + 2) = N*alpha_e/(3*epsilon_0),
      solving for alpha_e
6 alpha_e = (n^2 - 1)/(n^2 + 2)*3*epsilon_0/N;
     Electronic polarizability of dielectric material,
      farad metre square
7 printf("\nThe electronic polarizability of
     dielectric material = \%4.2e farad metre square",
     alpha_e);
8
9 // Result
10 // The electronic polarizability of dielectric
     material = 3.03e - 040 farad metre square
```

Scilab code Exa 13.7 Ratio of electronic polarizability to ionic polarizability

- 1 // Scilab Code Ex13.7: Ratio of electronic polarizability to ionic polarizability: Page-289 (2010)
- 2 epsilon_r = 4.9; // Absolute relative dielectric constant of material, farad per metre
- 3 n = 1.6; // Refractive index of dielectric material
- 4 // As $(n^2 1)/(n^2 + 2)*(alpha_e + alpha_i)/(alpha_e = N*(alpha_e + alpha_i)/(3*epsilon_0) = (epsilon_r 1)/(epsilon_r + 2), solving for alpha_i/alpha_e$

5 alpha_ratio = ((epsilon_r - 1)/(epsilon_r + 2)*(n^2 + 2)/(n^2 - 1) - 1)^(-1); // Ratio of electronic polarizability to ionic polarizability 6 printf("\nThe ratio of electronic polarizability to ionic polarizability = %4.2 f", alpha_ratio); 7 8 // Result 9 // The ratio of electronic polarizability to ionic polarizability = 1.53

MAGNETIC PROPERTIES OF MATERIALS

Scilab code Exa 14.1 Spontaneous magnetisation of the substance

```
1 // Scilab Code Ex14.1: Spontaneous magnetisation of
     the substance: Page-306 (2010)
2 N = 6.023e+023; // Avogadro's number. per mole
3 A = 56; // Atomic weight of the substance, g/mole
4 d = 7.9;
             // Density of the substance, gram per cm
      cube
5 \text{ m}_B = 9.27 \text{e}-024; // Bohr's Magneton, joule per
     tesla
6 m = 2.2*m_B; // Magnetic moment of substance,
     joule per tesla
7 n = d*N/A*1e+006; // Number of atoms per unit
     volume of the substance, per metre cube
8 M = n*m; // Spontaneous magnetisation of the
     \operatorname{substance}, ampere per metre
9 printf("\nThe spontaneous magnetisation of the
     substance = \%4.2e ampere per metre", M);
10
11 // Result
12 // The spontaneous magnetisation of the substance =
```

Scilab code Exa 14.2 Relative permeability of ferromagnetic material

```
1 // Scilab Code Ex14.2: Relative permeability of
     ferromagnetic material : Page-307 (2010)
2 H = 200; // Field strength to which the
     ferromagnetic material is subjected, ampere per
     metre
3 M = 3100; // Magnetisation of the ferromagnetic
    material, ampere per metre
4 chi = M/H; // Magnetic susceptibility
5 mu_r = 1 + chi; // Relative permeability of
     ferromagnetic material
6 printf("\nThe relative permeability of ferromagnetic
      material = \%4.1 \, \text{f}", mu_r);
7
8 // Result
9 // The relative permeability of ferromagnetic
     material = 16.5
```

Scilab code Exa 14.3 Relative permeability from magnetisation

- 1 // Scilab Code Ex14.3: Relative permeability from magnetisation : Page-307 (2010)
- 2 H = 300; // Field strength to which the ferromagnetic material is subjected, ampere per metre
- 3 M = 4400; // Magnetisation of the ferromagnetic material, ampere per metre
- 4 chi = M/H; // Magnetic susceptibility
- 5 mu_r = 1 + chi; // Relative permeability of ferromagnetic material

```
6 printf("\nThe relative permeability of ferromagnetic
	material = %5.2f", mu_r);
7
8 // Result
9 // The relative permeability of ferromagnetic
	material = 15.67
```

Scilab code Exa 14.4 Magnetic flux density and magnetisation of diamagnetic material

```
1 // Scilab Code Ex14.4: Magnetic flux density and
     magnetisation of diamagnetic material : Page-307
     (2010)
2 mu_0 = 4*%pi*1e-07; // Magnetic permeability of
     free space, tesla metre per ampere
  H = 10000; // Field strength to which the
3
     diamagnetic material is subjected, ampere per
     metre
4 chi = -0.4e-005; // Magnetic susceptibility
5 M = chi*H; // Magnetisation of the diamagnetic
     material, ampere per metre
6 B = mu_0 * (H + M);
                      // Magnetic flux density of
     diamagnetic material, T
7 printf("\nThe magnetisation of diamagnetic material
     = %4.2 f ampere per metre", M);
8 printf("\nThe magnetic flux density of diamagnetic
     material = \%6.4 \text{ f} T", B);
9
10 // Result
11 // The magnetisation of diamagnetic material = -0.04
      ampere per metre
12 // The Magnetic flux density of diamagnetic material
      = 0.0126 T
```

Scilab code Exa 14.5 Magnetisation Magnetic flux density relative permeability of diamagnetic material

```
1 // Scilab Code Ex14.5: Magnetisation-Magnetic flux
     density-relative permeability of diamagnetic
     material : Page-307 (2010)
                          // Magnetic permeability of
2 \text{ mu_0} = 4*\% \text{pi}*1e-07;
     free space, tesla metre per ampere
3 H = 1.2e+005; // Field strength to which the
     diamagnetic material is subjected, ampere per
     metre
4 chi = -4.2e-006; // Magnetic susceptibility
5
  M = chi * H;
              // Magnetisation of the diamagnetic
     material, ampere per metre
6 B = mu_0 * (H + M);
                       // Magnetic flux density of
     diamagnetic material, T
                      // The relative permeability of
7
  mu_r = M/H + 1;
      diamagnetic material
  printf("\nThe magnetisation of diamagnetic material
8
     = %5.3 f ampere per metre", M);
9 printf("\nThe magnetic flux density of diamagnetic
      material = \%5.3 f T", B);
10 printf("\nThe relative permeability of diamagnetic
     material = \%f T", mu_r);
11 // Result
```

- 12 // The magnetisation of diamagnetic material = -0.504 ampere per metre
- 13 // The magnetic flux density of diamagnetic material = 0.151 T
- 14 // The relative permeability of diamagnetic material = 0.999996 T

Scilab code Exa 14.6 Mean radius of body centered cubic structure

```
1 // Scilab Code Ex14.6: Mean radius of body centered
     cubic structure: Page-308 (2010)
                   // Magnetic susceptibility of
2 \text{ chi} = 5.6e - 006;
     diamagnetic material
3 \text{ m} = 9.1 \text{e}-031; // Mass of an electron, kg
4 mu_0 = 4*%pi*1e-07; // Magnetic permeability of
     free space, tesla metre per ampere
  Z = 1; /// Atomic number
5
6 = 1.6e-019; // Electronic charge, C
7 a = 2.53e-010; // Lattice parameter of bcc
     structure, m
              // The number of electrons per unit
8 N = 2/a^3;
     volume, per metre cube
9 r = sqrt(chi*6*m/(mu_0*Z*e^2*N)); // Mean radius
     of body centered cubic structure as per Langevin
     relation for Diamagnetic susceptibility, m
10 printf("\nThe mean radius of body centered cubic
     structure = \%5.3 e angstrom", r/1e-010);
11
12 // Result
13 // The mean radius of body centered cubic structure
     = 8.773 e - 001 angstrom
```

Scilab code Exa 14.7 Susceptibility and magnetisation of paramagnetic salt

- 1 // Scilab Code Ex14.7: Susceptibility and magnetisation of paramagnetic salt: Page-308 (2010)
- 2 mu_0 = 4*%pi*1e-07; // Magnetic permeability of free space, tesla metre per ampere

```
3 N_A = 6.02e+026; // Avogadro's number, per kmol
4 rho = 4370; // Density of paramegnetic salt, kg
```

per metre cube

```
5 M = 168.5;
                 // Molecular weight of paramagnetic
     salt, g/mol
6 T = 27+273; // Temperature of paramagnetic salt,
     Κ
7 H = 2e+005; // Field strength to which the
     paramagnetic salt is subjected, ampere per metre
8 \text{ mu}_B = 9.27 \text{e} - 024;
                        // Bohr's magneton, ampere
     metre square
          // Number of Bohr magnetons per molecule
9 p = 2;
10 k = 1.38e-023; // Boltzmann constant, J/K
                    // Total density of atoms in the
11 N = rho*N_A/M;
     paramagnetic salt, per metr cube
12 chi = mu_0 * N * p^2 * mu_B^2/(3 * k * T);
                                        // Magnetic
     susceptibility of paramagnetic salt
               // Magnetisation of paramagnetic salt,
13 M = chi * H;
      ampere per metre
14 printf("\nThe magnetic susceptibility of
     paramagnetic salt = \%4.2e per metre", chi);
15 printf("\nThe magnetisation of paramagnetic salt =
     \%4.2e ampere per metre", M);
16
17 // Result
18 // The magnetic susceptibility of paramagnetic salt
     = 5.43 e - 004 per metre
19 // The magnetisation of paramagnetic salt = 1.09e
     +002 ampere per metre
```

Chapter 15 THERMAL PROPERTIES

Scilab code Exa 15.1 Debye temperature of aluminium

```
1 // Scilab Code Ex15.1: Page-323 (2010)
2 k = 1.38e-023; // Boltzmann constant, J/K
3 h = 6.626e-034; // Planck's constant, Js
4 f_D = 64e+011; // Debye frequency for Al, Hz
5 theta_D = h*f_D/k; // Debye temperature, K
6 printf("\nThe Debye temperature of aluminium = %5.1f
K", theta_D);
7
8 // Result
9 // The Debye temperature of aluminium = 307.3 K
```

Scilab code Exa 15.2 Lattice specific heat of carbon

```
1 // Scilab Code Ex15.2: Page-323 (2010)
2 N = 6.02e+026; // Avogadro's number, per kmol
3 k = 1.38e-023; // Boltzmann constant, J/K
4 h = 6.626e-034; // Planck's constant, Js
5 f_D = 40.5e+012; // Debye frequency for Al, Hz
```

```
6 T = 30; // Temperature of carbon, Ks
7 theta_D = h*f_D/k; // Debye temperature, K
8 C_l = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice
    specific heat of carbon, J/k-mol/K
9 printf("\nThe lattice specific heat of carbon = %4.2
    f J/k-mol/K", C_l);
10
11 // Result
12 // The lattice specific heat of carbon = 7.13 J/k-
    mol/K
```

Scilab code Exa 15.3 Einstein frequency for Cu

```
1 // Scilab Code Ex15.3: Page-323 (2010)
2 k = 1.38e - 023;
                   // Boltzmann constant, J/K
                   // Planck's constant, Js
3 h = 6.626 e - 0.034;
4 theta_E = 1990; // Einstein temperature of Cu, K
5 f_E = k*theta_E/h; // Einstein frequency for Cu,
     Κ
6 printf("\nThe Einstein frequency for Cu = \%4.2 \, e \, Hz",
      f E):
  printf("\nThe frequency falls in the near infrared
7
     region");
8
9 // Result
10 // The Einstein frequency for Cu = 4.14e+013 Hz
11 // The frequency falls in the near infrared region
```

Scilab code Exa 15.4 Electronic and lattice heat capacities for Cu

```
1 // Scilab Code Ex15.4: Page-323 (2010)
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
3 N = 6.02e+023; // Avogadro's number, per mol
```

```
4 T = 0.05; // Temperature of Cu, K
5 E_F = 7; // Fermi energy of Cu, eV
6 \text{ k} = 1.38\text{e-023}; // Boltzmann constant, J/K
7 h = 6.626e-034; // Planck's constant, Js
8 theta_D = 348; // Debye temperature of Cu, K
9 C_e = %pi^2*N*k^2*T/(2*E_F*e); // Electronic heat
       capacity of Cu, J/mol/K
10 C_V = 12/5*%pi^4*N*k*(T/theta_D)^3; // Lattice heat
      capacity of Cu, J/mol/K
11 printf("\nThe electronic heat capacity of Cu = \%4.2e
       J/mol/K", C_e);
12 printf("\nThe lattice heat capacity of Cu = \%4.2 \text{ e J}/
      mol/K", C_V);
13
14 // Result
15 // The electronic heat capacity of Cu = 2.53 e - 005 J/
      mol/K
16 // The lattice heat capacity of Cu = 5.76 e - 009 J/mol
      /\mathrm{K}
```

Scilab code Exa 15.5 Einstein lattice specific heat

```
1 // Scilab Code Ex15.5: Page-324 (2010)
2 T = 1; // For simplicity assume temperature to be
    unity, K
3 R = 1; // For simplicity assume molar gas
    constant to be unity, J/mol/K
4 theta_E = T; // Einstein temperature, K
5 C_V = 3*R*(theta_E/T)^2*exp(theta_E/T)/(exp(theta_E/
T)-1)^2; // Einstein lattice specific heat, J/
    mol/K
6 printf("\nThe Einstein lattice specific heat, C_V =
    %4.2 f X 3R", C_V/3);
7 8 // Result
```

9 // The Einstein lattice specific heat, $\rm C_v=0.92~X$ $_{\rm 3R}$

Scilab code Exa 15.6 Molar electronic heat capacity of zinc

```
1 // Scilab Code Ex15.6: Page-324 (2010)
2 e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
             // Valency of Zn atom
3 v = 2;
4 N = v*6.02e+023; // Avogadro's number, per mol
5 T = 300;
             // Temperature of Zn, K
6 \text{ E_F} = 9.38; // Fermi energy of Zn, eV
7 k = 1.38e-023; // Boltzmann constant, J/K
8 h = 6.626e-034; // Planck's constant, Js
9 C_e = %pi^2*N*k^2*T/(2*E_F*e);
                                     // Electronic heat
       capacity of Zn, J/mol/K
10 printf("\nThe molar electronic heat capacity of zinc
       = \%5.3 \, f \, J/mol/K", C_e);
11
12 // Result
13 // The molar electronic heat capacity of zinc =
      0.226 \text{ J/mol/K}
```

ULTRASONICS

Scilab code Exa 17.1 Thickness of vibrating quartz at resonance

```
1 // Scilab Code Ex17.1: Thickness of vibrating quartz
      at resonance : Page-352 (2010)
                  // Fundamental vibrational frequency
2 f = 3e + 006;
     of quartz crystal, MHz
3 Y = 7.9e+010; // Young's modulus of quartz,
     newton per metre
4 rho = 2650; // Density of quartz, kg per metre
     cube
5 // We have for resonant frequency
6 // f = 1/(2*1)*sqrt(Y/rho), solving for 1
7 l = 1/(2*f)*sqrt(Y/rho); // Thickness of
     vibrating quartz at resonance, m
8 printf("\nThe thickness of vibrating quartz at
     resonance = \%3.1 \, \text{f} \, \text{mm}, 1/1e-003);
9
10 // Result
11 // The thickness of vibrating quartz at resonance =
     0.9 mm
```

ACOUSTICS OF BUILDINGS

Scilab code Exa 18.1 Output power of the sound source

- 1 // Scilab Code Ex18.1: Output power of the sound source : Page-361 (2010)
- 2 r = 200; // Distance of the point of reduction from the source, m
- 3 I_0 = 1e-012; // Final intensity of sound, watt per metre square
- 4 I_f = 60; // Intensity gain of sound at the point of reduction, dB
- 5 // As $A_I = 10 * \log 10 (I/I_0)$, solving for I
- 6 I = I_0*10^(I_f/10); // Initial Intensity of sound, watt per metre square
- 7 P = 4*%pi*r^2*I; // Output power of the sound source, watt
- 8 printf("\nThe output power of the sound source = %3
 .1f W', P);
- 9

```
10 // Result
```

11 // The output power of the sound source = $0.5~\mathrm{W}$

Scilab code Exa 18.2 Change in sound level for doubling intensity

```
1 // Scilab Code Ex18.2: Change in sound level for
doubling intensity: Page-361 (2010)
2 I1 = 1; // For simplicity assume first intensity
level to be unity, W per metre square
3 I2 = 2*I1; // Intensity level after doubling,
watt per metre square
4 dA_I = 10*log10(I2/I1); // Difference in gain
level, dB
5 printf("\nThe sound intensity level is increased by
= %1d dB", dA_I);
6
7 // Result
8 // The sound intensity level is increased by = 3 dB
```

Scilab code Exa 18.3 Total absorption of sound in the hall

```
1 // Scilab Code Ex18.3: Total absorption of sound in
	the hall: Page-361 (2010)
2 V = 8000; // Volume of the hall, metre cube
3 T = 1.5; // Reverbration time of the hall, s
4 alpha_s = 0.167*V/T; // Sabine Formula giving
	total absorption of sound in the hall, OWU
5 printf("\nThe total absorption of sound in the hall
	= %5.1f OWU", alpha_s);
6
7 // Result
8 // The total absorption in the hall = 890.7 OWU
```

Scilab code Exa 18.4 Average absorption coefficient of the surfaces of the hall

```
1 // Scilab Code Ex18.4: Average absorption
     coefficient of the surfaces of the hall: Page-362
      (2010)
2 V = 25*20*8; // Volume of the hall, metre cube
3 S = 2*(25*20+25*8+20*8);
                             // Total surface area of
      the hall, metre square
4 T = 4;
         // Reverbration time of the hall, s
5 alpha = 0.167*V/(T*S); // Sabine Formule giving
     total absorption in the hall, OWU
6 printf("\nThe total absorption in the hall = \%5.3 f
    OWU per metre square", alpha);
7
8 // Result
9 // The total absorption in the hall = 0.097 OWU per
    metre square
```

Scilab code Exa 18.5 Reverbration time for the hall

```
1 // Scilab Code Ex18.5: Reverbration time for the
     hall : Page -362 (2010)
2 V = 475; // Volume of the hall, metre cube
3 s = [200, 100, 100]; // Area of wall, floor and
     ceiling of the hall resp., metre square
4 T = 4; // Reverbration time of the hall, s
5 alpha = [0.025, 0.02, 0.55]; // Absorption
     coefficients of the wall, ceiling and floor resp
     ., OWU per metre square
6 \text{ alpha}_s = 0;
7 for i=1:1:3
8
      alpha_s = alpha_s + alpha(i)*s(i);
9 end
10 T = 0.167*V/alpha_s; // Sabine Formula for
     reverbration time, s
11 printf("\nThe reverbration time for the hall = \%4.2 f
      s", T);
```

```
12
13 // Result
14 // The reverbration time for the hall = 1.28 s
```

Scilab code Exa 18.6 Gain of resultant sound intensity

```
1 // Scilab Code Ex18.6: Gain of resultant sound
     intensity: Page-362 (2010)
2 IO = 1; // For simplicity assume initial sound
     intensity to be unity, watt per metre square
3 A_I1 = 80; // First intensity gain of sound, dB
4 A_I2 = 70; // Second intensity gain of sound, dB
5 // As A_I = 10*\log 10(I/I_0), solving for I1 and I2
6 I1 = 10<sup>(A_I1/10)</sup>*I0; // First intensity of sound
      , watt per metre square
7 I2 = 10<sup>(A_I2/10)</sup>*I0; // Second intensity of
     sound, watt per metre square
8 I = I1 + I2; // Resultant intensity level of
     sound, watt per metre square
9 \text{ A}_{I} = 10 * \log 10 (I/I0);
                          // Intensity gain of
     resultant sound, dB
10 printf("\nThe intensity gain of resultant sound = \%6
      .3 f dB", A_I);
11
12 // Result
13 // The intensity gain of resultant sound = 80.414 dB
```