Scilab Textbook Companion for Electronic Devices And Circuits by B. Kumar And S. B. Jain¹

Created by Vivek Sharma Bachelor of Engineering Instrumentation Engineering N. S. I. T. College Teacher Mr. Satish Chand Tiwari Cross-Checked by TechPassion

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Devices And Circuits
Author: B. Kumar And S. B. Jain
Publisher: PHI Learning Pvt. Ltd., New Delhi
Edition: 1
Year: 2007
ISBN: 978-81-203-2981-2

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Semiconductor Physics	11
2	The p n Junction Diode	15
3	Application of Diodes	28
4	Bipolar Junction Transistors	65
5	BJT Biasing and Stability	73
6	BJT Ampilifiers	86
7	Field Effect Transistors Characteristics and Biasing	94
8	FET Amplifiers	104
9	Multistage Amplifiers	108
10	Frequency Response of Amplifiers	117
11	Feedback Amplifiers	138
12	Oscillators	157
13	Power Amplifiers and Voltage Regulators	159

List of Scilab Codes

Exa 1.1	Electron concentration
Exa 1.2	Intrinsic Silicon
Exa 1.3	Extrinsic n type Silicon 12
Exa 1.4	Contact difference of potential 13
Exa 1.7	Potential barrier
$Exa \ 2.1$	Ideal diodes
Exa 2.2	Change in diode voltage
Exa 2.3	Germanium diode 17
Exa 2.4	Diode current
Exa 2.5	Change in diode voltage
Exa 2.6	Value of R
Exa 2.7	Solving a circuit with diode
$Exa \ 2.8$	Output voltage
Exa 2.9	Circuit parameters
Exa 2.11	Solving a circuit with diode
Exa 2.12	Diode small signal model
Exa 2.13	Barrier capacitance
Exa 2.14	Change in capacitance
Exa 2.18	Diffusion length
$Exa \ 2.19$	Two diodes in series
Exa 3.4	Full wave rectifier28
Exa 3.5	Full wave bridge rectifier29
Exa 3.6	Centre tapped full wave rectifier 30
Exa 3.7	Full scale reading31
Exa 3.8	Full scale reading31
$Exa \ 3.10$	Minimum and maximum value of zener diode current . 31
Exa 3.11	Safe voltage range 32
Exa 3.12	Voltage regulator

Exa 3.13	Range of load current	1
Exa 3.14	Zener diode	1
$Exa \ 3.15$	Zener diode regulator 35	5
Exa 3.16	Zener diode	3
Exa 3.17	Avalanche diode	3
Exa 3.18	Zener diode	7
Exa 3.19	Zener diode	3
Exa 3.20	Regulation range of zener diode)
Exa 3.21.a	Clipping circuits)
Exa 3.21.b	Range of load current 43	3
Exa 3.22	Transfer characteristics	7
Exa 3.23	Clipping circuit	3
Exa 3.24	Transfer characteristics)
Exa 3.25	Clipping circuit	2
Exa 3.26	Range of load current	1
Exa 3.27	Range of load current 55	5
Exa 3.28	Transfer characteristics	3
Exa 3.29	Output voltage	3
Exa 3.30	EX30)
Exa 3.31	Output waveform)
Exa 3.32	Clamping circuit	1
Exa 3.33	Clamping circuit	2
Exa 4.1	Value of Collector Current	5
Exa 4.2	CE transistor	5
Exa 4.3	CE transistor	3
Exa 4.4	Region of Operation	7
Exa 4.5	Saturation region	3
Exa 4.6	Output voltages)
Exa 4.7	pnp transistor)
Exa 4.8	Solving a circuit with transistor)
Exa 5.1	Fixed bias circuit	3
Exa 5.2	Determination of Q point	3
Exa 5.3	Self biased circuit	1
Exa 5.4	Amplifier circuit7575	5
Exa 5.5	Determination of Q point	3
Exa 5.6	Amplifier circuit 76	3
Exa 5.7	Amplifier circuit	7
Exa 5.8	Q point voltage	3

Exa 5.9	Stability factor	78
Exa 5.10	Self bias circuit	79
Exa 5.11	Stability factor	80
Exa 5.12	Variation of collector current	81
Exa 5.13	Current mirror	82
Exa 5.14	Widlar current source	83
Exa 5.15	Current Repeaters	83
Exa 5.16	Output current	84
Exa 5.17	Current mirror	84
Exa 5.18	Modified current mirror	85
Exa 6.2	Bipolar Junction Transistor	86
Exa 6.3	Hybrid h parameter model	86
Exa 6.4	Bipolar Junction Transistor	87
Exa 6.5	Simplified h parameter model	88
Exa 6.6	Hybrid pi model	89
Exa 6.7	CC amplifier	90
Exa 6.8	Voltage gain	91
Exa 6.9	Hybrid pi model	91
Exa 6.10	re model	92
Exa 7.1	Transfer curve of FET	94
Exa 7.2	NMOS transistor	94
Exa 7.3	n channel JFET	96
Exa 7.4	Self bias configuration	96
Exa 7.5	Operating point	98
Exa 7.6	n channel enhancement type MOSFET	100
Exa 7.7	Operating point of MOSFET	101
Exa 8.1	Transconductance	104
Exa 8.2	Fixed bias CS amplifier	104
Exa 8.3	Self bias CS amplifier	105
Exa 8.4	JFET source follower	105
Exa 8.5	Common gate JFET amplifier	106
Exa 8.6	E MOSFET amplifier	107
Exa 9.1	CE CC configuration	108
Exa 9.2	Two stage amplifier	109
Exa 9.3	CC CE composite pair	111
Exa 9.4	FET cascade	112
Exa 9.5	Three stage amplifier	112
Exa 9.6	FET and BJT cascade	114

Exa 9.7	Darlington emitter follower	114
Exa 9.8	Cascode circuit	115
Exa 10.1	Bode plots	117
Exa 10.2	Bode plots	121
Exa 10.3	Pole of transfer function	122
Exa 10.4	Low frequency response	123
Exa 10.5	Single pole model	123
Exa 10.7	Upper half power frequency	124
Exa 10.12	Dominant pole approximation	125
Exa 10.13	Cascode amplifier	127
Exa 10.15	Capacitances of transistor	128
Exa 10.16	Common emitter stage	128
Exa 10.17	Time constant method	129
Exa 10.18	Gain bandwidth product	130
Exa 10.19	Approximation of fH	131
Exa 10.20	Low and high 3 dB frequency	132
Exa 10.21	Dominant pole approximation	134
Exa 10.23	Time constant method	135
Exa 11.1	Feedback network	138
Exa 11.2	Amount of feedback	138
Exa 11.3	Second harmonic distortion	139
Exa 11.4	Closed loop parameters	140
Exa 11.5	Noise reduction	141
Exa 11.6	Non inverting configuration	141
Exa 11.7	Upper 3 dB frequency	142
Exa 11.9	Desensitivity	143
Exa 11.11	Transfer ratio	144
Exa 11.12	Gain with feedback	145
Exa 11.13	Transfer ratio	145
Exa 11.15	Small signal gain	146
Exa 11.16	Closed loop parameters	147
Exa 11.17	Feedback in MOSFETs	149
Exa 11.18	Open and closed loop gain	150
Exa 11.19	Closed loop parameters	151
Exa 11.20	Closed loop parameters	152
Exa 11.21	Voltage gain	154
Exa 11.22	Feedback in FETs	155
Exa 12.1	Phase shift oscillator	157

Exa 12.2	Wien Bridge oscillator	158
Exa 12.3	Hartley oscillator	158
Exa 13.1	Series fed amplifier	159
Exa 13.2	Transformer turn ratio	160
Exa 13.3	Class A amplifier	160
Exa 13.4	Class B push pull amplifier	160
Exa 13.5	Class B output stage	161
Exa 13.6	Thermal considerations	162

List of Figures

3.1	Clipping circuits	41
3.2	Clipping circuits	41
3.3	Range of load current	43
3.4	Range of load current	44
3.5	Transfer characteristics	46
3.6	Transfer characteristics	46
3.7	Clipping circuit	48
3.8	Clipping circuit	49
3.9	Transfer characteristics	50
3.10	Clipping circuit	51
3.11	Clipping circuit	52
3.12	Range of load current	53
3.13	Range of load current	54
3.14	Range of load current	56
3.15	Transfer characteristics	57
3.16	Output voltage	58
3.17	EX30	59
3.18	EX30	60
3.19	Output waveform	61
3.20	Clamping circuit	62
3.21	Clamping circuit	63
P 1		05
7.1	Transfer curve of FET	95
7.2	Self bias configuration	97
7.3	Operating point	98
7.4	n channel enhancement type MOSFE'I'	100
7.5	Operating point of MOSFET	102
10.1	Bode plots	118

10.2	Bode plots								•		•							118
10.3	Bode plots																	120
10.4	Bode plots		•								•	•	•			•		120

Chapter 1

Semiconductor Physics

Scilab code Exa 1.1 Electron concentration

1 // Example 1.1: Electron concentration 2 clc, clear 3 V=0.1; // Voltage in volts 4 I=5e-3; // Current in ampere 5 l_a=7e8; // Length to cross-sectional area ratio in metre inverse 6 mu=0.05; // Electron mobility in metre square per volt second 7 q=1.6e-19; // Charge on an electron in coulombs 8 n=(l_a*I)/(V*q*mu); // Electron concentration in inverse metres cube 9 n=n*1e-6; // Electron concentration in inverse centimetres cube 10 disp(n,"Electon concentration (cm^-3) = ");

Scilab code Exa 1.2 Intrinsic Silicon

1 // Example 1.2: Electric field intensity, Voltage

```
2 clc, clear
3 l=3e-3; // Length of the bar in metres
4 a=50*10*1e-12; // Cross-sectional area in metres
square
5 I=2e-6; // Current in amperes
6 rho=2.3e3; // Resistivity in ohm metres
7 E=I*rho/a; // Electric field intensity in volt per
metres
8 V=E*1; // Voltage across the bar in volt
9 disp(E,"Electic field intensity (V/m) = ");
10 disp(V,"Voltage across the bar (V) = ");
```

Scilab code Exa 1.3 Extrinsic n type Silicon

1 // Example 1.3: Electron concentration, Hole concentration, Conductivity, Voltage 2 clc, clear 3 1=3e-3; // Length on Si sample in metres 4 a=5e-9; // Cross-sectional area of Si sample in metres square 5 ND=5e20; // Donor concentration in inverse metres cube 6 I=2e-6; // Current flowing through the bar in amperes ni=1.45e16; // Intrinsic carrier concentration in 7 inverse metres cube 8 mu_n=0.15; // Mobility of electrons in metres square per volt second 9 q=1.6e-19; // Charge on an electron in coulombs 10 n=ND; // Electron concentration in inverse metres cube 11 p=ni*ni/n; // Hole concentration in inverse metres cube 12 sigma=q*n*mu_n; // Conductivity of Si sample in inverse ohm metres

- 13 V=(I*1)/(a*sigma); // Voltage across the bar in volts
- 14 n=n*1e-6; // Electron concentration in inverese centimetres cube

- 17 disp(n," Electron concentration $(cm^{-3}) = "$);
- 18 disp(p,"Hole concentration $(cm^{-3}) = "$);
- 19 disp(sigma, "Conductivity of Si sample (ohm^-1 cm^-1) = ");
- 20 disp(V,"Voltage across the bar (V) = ");

Scilab code Exa 1.4 Contact difference of potential

```
1 // Example 1.4: Contact difference of potential
2 clc, clear
3 N=5e22; // Number of acceptor or donor atoms per
metres cube of step graded p-n junction
4 ni=1.45e16; // Intrinsic carrier concentration in
inverse metres cube
5 VT=25e-3; // Voltage equivalent to temperatue at
room temperature in volts
6 Vo=VT*log(N^2/ni^2); // Contact difference of
potential in volts
7 Vo=Vo*1e3; // Contact difference of potential in
milivolts
```

8 disp(Vo, "Contact difference of potential (mV) = ");

Scilab code Exa 1.7 Potential barrier

1 // Example 1.7: Potential barrier

2 clc, clear

- 3 rho_p=0.05; // Resistivity of p side of step-graded junction in ohm metres
- 4 rho_n=0.025; // Resistivity of n side of step-graded junction in ohm metres
- 5 mu_p=475e-4; // Mobility of holes in metres square per volt second
- 6 mu_n=1500e-4; // Mobility of holes in metres square per volt second
- 7 ni=1.45e16; // Intrinsic carrier concentration in atoms per metres cube
- 8 q=1.6e-19; // Charge on an electron in coulombs
- 9 VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
- 10 NA=1/(q*mu_p*rho_p); // Acceptor concentration in atoms per metres cube
- 12 Vo=VT*log(NA*ND/ni^2); // Contact difference of potential in volts
- 13 Vo=Vo*1e3; // Contact difference of potential in milivolts
- 14 disp(Vo, "Contact difference of potential (mV) = ");

Chapter 2

The p n Junction Diode

Scilab code Exa 2.1 Ideal diodes

```
1 // Example 2.1: (a) I,Vo
2 / /
                   (b) I, Vo
3 clc, clear
4
5 disp("Part (a)");
6 // Applying Thevnin's theorem at XX', in Fig. 2.5(a)
7 Vth=15*20e3/(10e3+20e3); // Thevnin equivalent
     voltage in volts
8 Zth=10e3*20e3/(10e3+20e3); // Thevnin equivalent
     resistance in ohms
9 // From the figure 2.5(c)
10 I=Vth/(Zth+20e3); // Labelled current in amperes
11 Vo=I*20e3; // Labelled voltage in volts
12 I=I*1e3; // Labelled current in miliamperes
13 disp(I,"Labelled current I (mA) = ");
14 disp(Vo, "Labelled voltage Vo (V) = ");
15
16 disp("Part (b)");
17 // Applying Thevnin's theorem at XX' and YY', in Fig
     . 2.5(b)
18 Vth1=15*10e3/(10e3+10e3); // Thevnin equivalent
```

voltage at XX' in volts

- 19 Zth1=10e3*10e3/(10e3+10e3); // Thevnin equivalent resistance at YY' in ohms
- 20 Vth2=5; // Thevnin equivalent voltage at YY' in volts
- 21 Zth2=5e3; // Thevnin equivalent resistance at YY' in ohms
- 22 // From the figure 2.5(d)
- 23 I=0; // Labelled current in amperes
- 24 Vo=5-7.5; // Labelled voltage in volts
- 25 disp(I,"Labelled current I = ");
- 26 disp(Vo, "Labelled voltage Vo (V) = ");

Scilab code Exa 2.2 Change in diode voltage

```
1 // Example 2.2: Change in diode voltage
2 clc, clear
3 ID1=1; // Let the initial diode current be 1 A
4 ID2=15*ID1; // Final diode current
5 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
6 eta=1; // for Ge
7 deltaVD=eta*VT*log(ID2/ID1); // Change in diode
     voltage in volts
8 deltaVD=deltaVD*1e3; // Change in diode voltage in
      milivolts
9 disp(deltaVD,"Change in diode voltage (for Ge) (mV)
     = "):
10 eta=2; // for Si
11 deltaVD=eta*VT*log(ID2/ID1); // Change in diode
     voltage in volts
12 deltaVD=deltaVD*1e3; // Change in diode voltage in
     milivolts
13 disp(deltaVD," Change in diode voltage (for Si) (mV)
     = ");
```

Scilab code Exa 2.3 Germanium diode

```
1 // Example 2.3: (a) Voltage
2 //
                   (b) Ratio of current in forward bias
     to that in reverse bias
                   (c) Forward current
3 //
4 clc, clear
5
6 disp("Part (a)");
7 eta=1; // for Ge
8 T=300; // Room temperature in kelvins
9 VT=T/11600; // Voltage equivalent to temperatue at
     room temperature in volts
10 IS=1; // Let reverse saturation current be 1 A
11 I=-0.9*IS; // Reverse current
12 V=eta*VT*log(1+(I/IS)); // Voltagei in volts
13 V=V*1e3; // Voltage in milivolts
14 disp(V, "Voltage (mV) = ");
15
16 disp("Part (b)");
17 V=0.05; // Voltage in volts
18 If_Ir=(%e^(V/(eta*VT))-1)/(%e^(-V/(eta*VT))-1); //
     Ratio of current in forward bias to that in
     reverse bias
19 disp(If_Ir,"Ratio of current in forward bias to that
      in reverse bias = ");
20
21 disp("Part (c)");
22 IS=10e-6; // Reverse saturation current in amperes
23 V=0.1; // Voltage in volts
24 ID=IS*(%e^(V/(eta*VT))-1); // Forward current for
     0.1 V in amperes
25 ID=ID*1e6; // Forward current for 0.1 V in micro-
     amperes
```

```
26 disp(ID, "Forward current for 0.1 \text{ V} ( A ) = ");
27 V=0.2; // Voltage in volts
```

- 28 ID=IS*(%e^(V/(eta*VT))-1); // Forward current for 0.1 V in amperes
- 29 ID=ID*1e3; // Forward current for 0.1 V in miliamperes
- 30 disp(ID, "Forward current for 0.1 V (mA) = ");
- 31 V=0.3; // Voltage in volts
- 33 disp(ID, "Forward current for 0.1 V(A) = ");

Scilab code Exa 2.4 Diode current

```
1 // Example 2.4 (a) Current
2 //
                  (b) Current
3 //
                  (C) Current
4 clc, clear
5 IS=10e-6; // Reverse saturation current in amperes
6 eta=1; // for Ge
7 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
8
9 disp("Part (a)");
10 VD=-24; // Reverse bias in volts
11 ID=IS*(%e^(VD/(eta*VT))-1); // Current in amperes
12 ID=ID*1e6; // Current in micro-amperes
13 disp(ID, "Current ( A) = ");
14
15 disp("Part (b)");
16 VD=-0.02; // Reverse bias in volts
17 ID=IS*(%e^(VD/(eta*VT))-1); // Current in amperes
18 ID=ID*1e6; // Current in micro-amperes
19 disp(ID, "Current ( A) = ");
20
```

```
21 disp("Part (c)");
22 VD=0.3; // Forward bias in volts
23 ID=IS*(%e^(VD/(eta*VT))-1); // Current in amperes
24 disp(ID,"Current (A) = ");
```

Scilab code Exa 2.5 Change in diode voltage

```
1 // Example 2.2: Change in diode voltage
2 clc, clear
3 T=300; // Operating temperature in kelvins
4 VT=T/11600; // Voltage equivalent to temperatue at
     room temperature in volts
5 ID1=1; // Let the initial diode current be 1 A
6 ID2=10*ID1; // Final diode current
7 eta=1; // for Ge
8 deltaVD=eta*VT*log(ID2/ID1); // Change in diode
     voltage in volts
9 deltaVD=deltaVD*1e3; // Change in diode voltage in
     milivolts
10 disp(deltaVD, "Change in diode voltage (for Ge) (mV)
     = ");
11 eta=2; // for Si
12 deltaVD=eta*VT*log(ID2/ID1); // Change in diode
     voltage in volts
13 deltaVD=deltaVD*1e3; // Change in diode voltage in
     milivolts
14 disp(deltaVD," Change in diode voltage (for Si) (mV)
     = ");
```

Scilab code Exa 2.6 Value of R

```
1 // Example 2.6: R
2 clc, clear
```

- 3 // In the circuit given in Fig. 2.7
- 4 V=50e-3; // Output voltage
- 5 VD1=0.7; // Voltage across diode 1 in volts
- 6 I1=10e-3; // Current through diode 1 at 0.7 V in amperes
- 7 VD2=0.8; // Voltage across diode 2 in volts
- 8 I2=100e-3; // Current through diode 2 at 0.8 V in amperes
- 9 eta_VT=(VD2-VD1)/log(I2/I1); // Product of and VT

```
11 R=V/I;
```

12 disp(R, "R () = ");

Scilab code Exa 2.7 Solving a circuit with diode

```
1 // Example 2.7: Current, Diode voltage
2 clc, clear
3 VDD=5; // Applied voltage in volts
4 VD=0.7; // Diode voltage in volts
5 I1=1e-3; // Current in amperes at diode voltage =
     0.7 V
6 R=1000; // R in ohms
7 deltaVD=0.1; // Change in diode voltage in volts for
      every decade change in current
8 ratioI=10; // Decade change in current
9 eta_VT=deltaVD/log(ratioI); // Product of
                                                and VT
10 ID=(VDD-VD)/R; // Diode current in amperes
11 VD2=VD+eta_VT*log(ID/I1); // Diode voltage in volts
12 ID=ID*1e3; // Diode current in miliamperes
13 disp(ID, "Diode current (mA) = ");
14 disp(VD2, "Diode voltage (v) = ");
```

Scilab code Exa 2.8 Output voltage

```
1 // Example 2.8: (a) Output voltage
2 //
                   (b) Output voltage
3 //
                   (c) Output voltage
4 clc, clear
5
6 disp("Part (a)");
7 // Since both the diodes are in OFF state
8 Vo=5; // Output voltage in volts
9 disp(Vo, "Output voltage (V) = ");
10
11 disp("Part (b)");
12 //Since diode D1 is in OFF state and diode D2 is in
     ON state
13 // From Fig. 2.16(C)
14 I=(5-0.6)/(4.7e3+300); // Current flowing through
     the diode D2 in amperes
15 Vo=5-I*4.7e3; // Output voltage in volts
16 disp(Vo, "Output voltage (V) = ");
17
18 disp("Part (c)");
19 // Since both diodes are in ON state
20 // Applying KVL in Fig. 2.16(d)
21 I=(5-0.6)/(2*4.7e3+300); // Current flowing through
     diode D1 or diode D2 in amperes
22 Vo=5-2*I*4.7e3; // Output voltage in volts
23 disp(Vo, "Output voltage (V) = ");
```

Scilab code Exa 2.9 Circuit parameters

```
1 // Example 2.9 (a) Output voltage, Diode currents
2 // (b) Output voltage, Diode currents
3 clc, clear
4 Vy=0.7; // Cut-in voltage in volts
```

```
5 // In the Fig. 2.17
6 R1=5e3;
7 R2=10e3;
8
9 disp("Part (a)");
10 // Since diode D1 is OFF and diode D2 is ON
11 ID2=(5-Vy-(-5))/(R1+R2); // Current through diode D2
      in amperes
12 Vo=5-ID2*R1; // Output voltage
13 ID2=ID2*1e3; // Current through diode D2 in
      miliamperes
14 disp(Vo,"Output voltage (V) = ");
15 disp(0," Current through diode D1 =");
16 disp(ID2, "Current through diode D2 (mA) =");
17
18 disp("Part (b)");
19 // Since both the diodes are ON
20 VA=4-Vy; // In the fig.
21 Vo=VA+Vy; // Output voltage
22 ID2=(5-Vo)/R1; // Current through diode D2 in
     amperes
23 IR2=(VA-(-5))/R2; // Current through diode R2 in
     amperes
24 ID1=IR2-ID2; // Current through diode D1 in amperes
25 ID1=ID1*1e3; // Current through diode D1 in
     miliamperes
26 ID2=ID2*1e3; // Current through diode D2 in
      miliamperes
27 disp(Vo, "Output voltage (V) =");
28 disp(ID1, "Current through diode D1 (mA) =");
29 disp(ID2, "Current through diode D2 (mA) =");
```

Scilab code Exa 2.11 Solving a circuit with diode

```
1 // Example 2.11 (a) Alternating component of voltage
      acroos load resistance
                   (b) Total voltage across load
2 //
     resistance
3 //
                   (c) Total current
4 clc, clear
5 T=293; // Operating temperature in kelvins
6 VT=T/11600; // Voltage equivalent to temperatue at
     room temperature in volts
7 // In the Fig. 2.21(a)
8 VAA=9; // in volts
9 Vm=0.2; // in volts
10 RL=2e3; // Load resistance in ohms
11 Vy=0.6; // Cut-in voltage in volts
12 Rf=10; // Forward resistance of diode in ohms
13 eta=2;
14
15 disp("Part (a)")
16 // From DC model in Fig. 2.21(b)
17 IDQ=(VAA-Vy)/(RL+Rf); // DC current through diode or
      load resistance in amperes
18 rd=eta*VT/IDQ; // Dynamic resistance in ohms
19 // This dynamic resistance is used in AC model in
     Fig. 2.21(c)
20 Vom=Vm*RL/(RL+rd); // Amplitude of alternating
     component of the voltage across load resistance
     in volts
21 disp(Vom," Amplitude of alternating component of the
     voltage across load resistance (V) = ");
22 disp("Therefore, the alternating component of the
     voltage across load resistance is 0.199 sin t V
     ");
23
24 disp("Part (b)");
25 VDQ=IDQ*RL; // DC component of voltage across load
     resistance in volts
26 disp(VDQ,"DC component of voltage across load
     resistance (V) = ");
```

```
27 disp("Therefore, total voltage across load
      resistance is (8.36 + 0.199 \text{ sin } t) V");
28
29 disp("Part (C)");
30 IDQ=IDQ*1e3; // DC current through load resistance
      in miliamperes
31 idm=Vm/(RL+rd); // Amplitude of alternating
     component of the current across load resistance
     in amperes
32 idm=idm*1e3; // Amplitude of alternating component
     of the current across load resistance in
     miliamperes
33 disp(IDQ,"DC component of current across load
      resistance (mA) = ");
34 disp(idm," Amplitude of alternating component of the
     current across load resistance (mA) = ");
35 disp("Therefore, total current across load
```

resistance is (4.18 + 0.099 sin t) mA";

Scilab code Exa 2.12 Diode small signal model

```
1 //Example 2.12: (b) Vo
2 // (c) I
3 clc, clear
4
5 disp("Part (b)");
6 // In the Fig. 2.22 (a)
7 vs=10e-3; // in volts
8 Rs=1e3; // in ohms
9 eta=2;
10 VT=25e-3; // Voltage equivalent to temperatue at
room temperature in volts
11 I=1e-3; // in amperes
12 Vo=vs*eta*VT/(eta*VT+I*Rs); // in volts
13 Vo=Vo*1e3; // in milivolts
```

```
14 disp(Vo, "Vo for I= 1 mA (mV) =");
15 I=0.1e-3; // in amperes
16 Vo=vs*eta*VT/(eta*VT+I*Rs); // in volts
17 Vo=Vo*1e3; // in milivolts
18 disp(Vo, "Vo for I= 0.1 mA (mV) =");
19 I=1e-6; // in amperes
20 Vo=vs*eta*VT/(eta*VT+I*Rs); // in volts
21 Vo=Vo*1e3; // in milivolts
22 disp(Vo, "Vo for I= 1 A (mV) =");
23
24 disp("Part (c)");
25 Vo=vs/2; // in volts
26 I=eta*VT*(vs-Vo)/(Vo*Rs); // in amperes
27 I=I*1e6; // in micro-amperes
28 disp(I,"I ( A ) =");
```

Scilab code Exa 2.13 Barrier capacitance

```
1 // Example 2.13: Barrier capacitance
2 clc, clear
3 A=1e-3*1e-3; // Area of p-n junction in metres
square
4 W=2e-6; // Space charge thickness in metres
5 E=16; // Dielectric constant of Ge
6 Eo=1/(36*%pi*1e9); // Absolute permittivity of air
7 C=E*Eo*A/W; // Barrier capacitance in farads
8 C=C*1e12; // Barrier capacitance in pico-farads
9 disp(C,"Barrier capacitance (pF) =");
```

Scilab code Exa 2.14 Change in capacitance

1 // Example 2.14: (a) Change in capacitance 2 // (b) Change in capacitance

```
3 clc, clear
4 C=4e-12; // Depletion capacitance in farads
5 V=4; // in volts
6 K=C*sqrt(V); // a constant
\overline{7}
8 disp("Part (a)");
9 V=4+0.5; // in volts
10 C_new=K/sqrt(V); // in farads
11 deltaC=C_new-C; // Change in capacitande in farads
12 deltaC=deltaC*1e12; // Change in capacitande in pico
     -farads
13 disp(deltaC, "Change in capacitance (pF) =");
14
15 disp("Part (b)");
16 V=4-0.5; // in volts
17 C_new=K/sqrt(V); // in farads
18 deltaC=C_new-C; // Change in capacitande in farads
19 deltaC=deltaC*1e12; // Change in capacitande in pico
     -farads
20 disp(deltaC, "Change in capacitance (pF) =");
```

Scilab code Exa 2.18 Diffusion length

```
1 // Example 2.18: Diffusion length
2 clc, clear
3 I=1e-3; // Forward bias current in amperes
4 C=1e-6; // Diffusion capacitance in farads
5 Dp=13; // Diffusion constant for Si
6 eta=2; // for Si
7 VT=26e-3; // Voltage equivalent to temperatue at
room temperature in volts
8 Lp=sqrt(C*Dp*eta*VT/I); // Diffusion length in
metres
9 Lp=Lp*1e2; // Diffusion length in centimetres
10 disp(Lp," Diffusion length (cm) =");
```

Scilab code Exa 2.19 Two diodes in series

```
1 // Example 2.19 (a) Vd1 and Vd2
2 //
                   (b) Current in the circuit
3 clc, clear
4 eta_VT=0.026; // Product of
                               and VT
5
6 disp("Part (a)");
7 // From the Fig. 2.19(a)
8 Is=5e-6; // Reverse saturation current through diode
      D2 in amperes
  Id1=Is; // Forward current through diode D1 in
9
     amperes
10 Vd1=eta_VT*log(1+(Id1/Is)); // in volts
11 Vd2=5-Vd1; // in volts
12 disp(Vd1, "Vd1 (V) =");
13 disp(Vd2, "Vd2 (V) =");
14
15 disp("Part (b)");
16 // From the Fig. 2.19(b)
17 Vz=4.9; // Zener voltage in volts
18 Vd1=5-Vz; // in volts
19 I=Is*(%e^(Vd1/eta_VT)-1); // Current in the circuit
     in amperes
20 I=I*1e6; // Current in the circuit in micro-amperes
21 disp(I, "Current in the circuit ( A) =");
```

Chapter 3

Application of Diodes

Scilab code Exa 3.4 Full wave rectifier

1 // Example 3.4: (a) DC load current 2 // (b) DC power in load 3 // (c) Rectification efficiency 4 // (d) Percentage regulation 5 // (e) PIV of each diode 6 clc, clear 7 Vrms=40; // Input in volts 8 Rf=1; // Forward conduction resistance of diodes in ohms 9 RL=29; // Load resistance in ohms 10 Vmax=Vrms*sqrt(2); // in volts 11 Imax=Vmax/(Rf+RL); // in amperes 1213 disp("Part (a)"); 14 Idc=2*Imax/%pi; // DC load current in amperes 15 disp(Idc, "DC load current (A) ="); 1617 disp("Part (b)"); 18 Pdc=Idc^2*RL; // DC power in load in watts 19 disp(Pdc,"DC power in load (W) ="); 20

```
21 disp("Part (c)");
22 Pac=Vrms^2/(Rf+RL); // AC power in load
23 eta=Pdc/Pac; // Rectification efficiency
24 disp(eta,"Rectification efficiency =");
25
26 disp("Part (d)");
27 reg=Rf*100/RL; // Percentage regulation
28 disp(reg,"Percentage regulation (%) =");
29
30 disp("Part (e)");
31 PIV=2*Vmax; // in volts
32 disp(PIV,"PIV for each diode (V) =");
```

Scilab code Exa 3.5 Full wave bridge rectifier

```
1 // Example 3.5: (a) DC voltage at load
2 //
                   (b) PIV rating of each diode
                   (c) Maximum current through each
3 //
     diode
4 //
                   (d) Required power rating
5 clc, clear
6 Vrms=120; // Input voltage in volts
7 RL=1e3; // Load resistance in ohms
8 Vy=0.7; // Cut-in voltage in volts
9
10 disp("Part (a)");
11 Vmax=Vrms*sqrt(2); // in volts
12 Imax=(Vmax-2*Vy)/RL; // in amperes
13 Idc=2*Imax/%pi; // in amperes
14 Vdc=Idc*RL; // in volts
15 disp(Vdc, "DC voltage at load (V) =");
16
17 disp("Part (b)");
18 disp(Vmax,"PIV rating of each diode (V) =");
19
```

```
20 disp("Part (c)");
21 Imax=Imax*1e3; // in miliamperes
22 disp(Imax,"Maximum current through each diode (mA) =
        ");
23
24 disp("Part (d)");
25 Pmax=Vy*Imax; // Required power rating in mili-watts
26 disp(Pmax,"Required power rating (mW) =");
```

Scilab code Exa 3.6 Centre tapped full wave rectifier

```
1 // Example 3.6: (a) Peak value of current
2 //
                   (b) DC value of current
3 //
                   (c) Ripple factor
                   (d) Rectification efficiency
4 //
5 clc, clear
6 // From the Fig. 2.16
7 RL=1e3; // Load resistance in ohms
8 rd=10; // Forward bias dynamic resistance of diodes
     in ohms
9 Vmax=220; // Amplitude of input voltage in volts
10
11 disp("Part (a)");
12 Imax=Vmax/(rd+RL); // Peak value of current in
     amperes
13 disp(Imax, "Peak value of current (A) =");
14
15 disp("Part (b)");
16 Idc=2*Imax/%pi; // DC value of current in amperes
17 disp(Idc, "DC value of current (A) =");
18
19 disp("Part (C)");
20 ripl=sqrt((Imax/(Idc*sqrt(2)))^2-1);
21 disp(ripl," Ripple factor =");
22
```

```
23 disp("Part (d)");
24 eta=8/(%pi^2*(1+(rd/RL))); // Rectification
efficiency
25 disp(eta," Rectification efficiency =");
```

Scilab code Exa 3.7 Full scale reading

```
1 // Example 3.7: Full scale reading
2 clc, clear
3 Idc=1e-3; // in amperes
4 Rf=10; // in ohms
5 RL=5e3; // in ohms
6 Vrms=Idc*(RL+Rf)*%pi/(2*sqrt(2)); // Full-scale
        deflection in volts
7 disp(Vrms, "Full-scale deflection (V) =");
```

Scilab code Exa 3.8 Full scale reading

```
1 // Example 3.8: Full-scale reading
2 clc, clear
3 Idc=5e-3; // in amperes
4 Rf=40; // in ohms
5 RL=20e3; // in ohms
6 Vrms=Idc*(RL+Rf)*%pi/(2*sqrt(2)); // Full-scale
        deflection in volts
7 disp(Vrms, "Full-scale deflection (V) =");
```

Scilab code Exa 3.10 Minimum and maximum value of zener diode current

```
1 // Example 3.10: Minimum and maximum value of zener
     diode current
2 clc, clear
3 // From the Fig. 3.33
4 Vsmin=120; // in volts
5 Vsmax=170; // in volts
6 Vz=50; // in volts
7 Rs=5e3; // in ohms
8 RLmin=5e3; // in ohms
9 RLmax=10e3; // in ohms
10 ILmin=Vz/RLmax; // in amperes
11 ILmax=Vz/RLmin; // in amperes
12 Izmin=((Vsmin-Vz)/Rs)-ILmax; // Minimum value of
     zener diode current in amperes
13 Izmin=Izmin*1e3; // Minimum value of zener diode
     current in miliamperes
14 Izmax=((Vsmax-Vz)/Rs)-ILmin; // Maximum value of
     zener diode current in amperes
15 Izmax=Izmax*1e3; // Maximum value of zener diode
     current in miliamperes
16 disp(Izmin," Minimum value of zener diode current (mA
     ) =");
17 disp(Izmax," Maximum value of zener diode current (mA
     ) =");
```

Scilab code Exa 3.11 Safe voltage range

```
1 // Example 3.11: (a) V
2 // (b) Voltage range of V
3 clc, clear
4 Vz=50; // Zener voltage in volts
5 Izmin=1e-3; // in amperes
6 Izmax=5e-3; // in amperes
7
8 disp("Part (a)");
```

```
9 ILmin=0;
10 Rs=5e3; // in ohms
11 V=Vz+Rs*(Izmax+ILmin); // in volts
12 disp(V,"V (V) =");
13
14 disp("Part (b)");
15 IL=(50/15)*1e-3; // in amperes
16 Vmin=Vz+Rs*(Izmin+IL); // in volts
17 Vmax=Vz+Rs*(Izmax+IL); // in volts
18 disp(Vmin,"Vmin (V) =");
19 disp(Vmax,"Vmax (V) =");
```

Scilab code Exa 3.12 Voltage regulator

```
1 // Example 3.12: Zener diode current, Power
      dissipation in zener diode and resistor
2 clc, clear
3 // In the Fig. 3.35
4 Vz=6.8; // in volts
5 R=100; // in ohms
6
7 disp("Normal situation");
8 Vs=9; // in volts
9 I = (Vs - Vz)/R; // in amperes
10 Pzener=I*Vz; // in watts
11 Presistor=I^2*R; // in watts
12 I=I*1e3; // in miliamperes
13 Pzener=Pzener*1e3; // in miliwatts
14 Presistor=Presistor*1e3; // in miliwatts
15 disp(I,"Zener diode current (mA) =");
16 disp(Pzener,"Power dissipation in zener diode (mW) =
     "):
17 disp(Presistor," Power dissipation in resistor (mW) =
     ");
18
```

```
19 disp("Aberrant situation");
20 Vs=15; // in volts
21 I=(Vs-Vz)/R; // in amperes
22 Pzener=I*Vz; // in watts
23 Presistor=I^2*R; // in watts
24 I=I*1e3; // in miliamperes
25 Pzener=Pzener*1e3; // in miliwatts
26 Presistor=Presistor*1e3; // in miliwatts
27 disp(I,"Zener diode current (mA) =");
28 disp(Pzener,"Power dissipation in zener diode (mW) =
        ");
29 disp(Presistor,"Power dissipation in resistor (mW) =
        ");
```

Scilab code Exa 3.13 Range of load current

```
1 // Example 3.13: Range of load current
2 clc, clear
3 Vz=5; // in volts
4 Izmin=50e-3; // in amperes
5 Izmax=1; // in amperes
6 Vmin=7.5; // in volts
7 Vmax=10; // in volts
8 Rs=4.75; // in ohms
9 ILmin=((Vmax-Vz)/Rs)-Izmax; // in amperes
10 ILmin=ILmin*1e3; // in miliamperes
11 ILmax=((Vmin-Vz)/Rs)-Izmin; // in amperes
12 ILmax=ILmax*1e3; // in miliamperes
13 disp(ILmin,"ILmin (mA) =");
14 disp(ILmax,"ILmax (mA) =");
```

Scilab code Exa 3.14 Zener diode

```
1 // Exmaple 3.14: Load-current range, Series
     resistance in redesigned circuit
2 clc, clear
3 // In Fig. 3.37
4 Vz=6.8; // in volts
5 Izk=0.1e-3; // in amperes
6 Vs=10; // in volts
7 Rs=1e3; // in ohms
8 ILmax=((Vs-Vz)/Rs)-Izk; // in amperes
9 ILmax=ILmax*1e3; // in miliamperes
10 disp(0,"ILmin =");
11 disp(ILmax, "ILmax (mA) =");
12
13 disp("Redesigned Part")
14 RL=1e3; // in ohms
15 Izk=Izk*10; // in amperes
16 I=Izk+(Vz/RL); // in amperes
17 R=(Vs-Vz)/I; // in ohms
18 disp(R, "Series resistance () =");
```

Scilab code Exa 3.15 Zener diode regulator

```
1 // Example 3.15: (a) Series resistance
2 // (b) Power dissipation rating of
zener diode
3 clc, clear
4 // In Fig. 3.38
5 Vz=6; // in volts
6 ILmin=0;
7 ILmax=0.5; // in amperes
8 Vmin=8; // in volts
9 Vmax=10; // in volts
10 Izmin=0;
11
12 disp("Part (a)");
```
```
13 Rs=(Vmin-Vz)/(ILmax+Izmin); // Series resistance in
ohms
14 disp(Rs, "Series resistance ( ) =");
15
16 disp("Part (b)");
17 Izmax=((Vmax-Vz)/Rs)-ILmin; // in amperes
18 Pzmax=Vz*Izmax; // in watts
19 disp(Pzmax, "Power dissipation rating of zener diode
(W) =");
```

Scilab code Exa 3.16 Zener diode

```
1 // Example 3.16: Series resistance R, Maximum zener
     current
2 clc, clear
3 // In Fig. 3.39
4 Vz=7.2; // in volts
5 ILmin=12e-3; // in amperes
6 ILmax=100e-3; // in amperes
7 Vs=20; // in volts
8 Izmin=10e-3; // in amperes
9 Rs=(Vs-Vz)/(ILmax+Izmin); // Series resistance in
     ohms
10 disp(Rs, "Series resistance () =");
11 // For ILmin=0
12 Izmax=((Vs-Vz)/Rs); // in amperes
13 Izmax=Izmax*1e3; // in miliamperes
14 disp(Izmax, "Maximum zener current (mA) =");
```

Scilab code Exa 3.17 Avalanche diode

1 // Example 3.17: (a) R, maximum possible value of load current

```
(b) Range of V
2 //
3 clc, clear
4 Vz=50; // Diode voltage in volts
5 Izmin=5e-3; // in amperes
6 Izmax=40e-3; // in amperes
7
8 disp("Part (a)");
9 ILmin=0;
10 V=200; // Input voltage in volts
11 R=(V-Vz)/(Izmax-ILmin); // in ohms
12 ILmax=((V-Vz)/R)-Izmin; // in amperes
13 Rk=R*1e-3; // in kilo-ohms
14 ILmax=ILmax*1e3; // in miliamperes
15 disp(Rk, "R(k) =");
16 disp(ILmax," Maximum possible value of load current (
     mA) = ");
17
18 disp("Part (b)");
19 IL=25e-3;
20 Vmin=Vz+R*(Izmin+IL); // in volts
21 Vmax=Vz+R*(Izmax+IL); // in volts
22 disp(Vmin, "Minimum value of V (V) =");
23 disp(Vmax, "Maximum value of V (V) =");
```

Scilab code Exa 3.18 Zener diode

```
1 // Example 3.18: R, ILmax, Power rating of zener
diode
2 clc, clear
3 // In Fig. 3.41
4 Vz=6; // in volts
5 V=22; // in volts
6 Izmin=10e-3; // in amperes
7 Izmax=40e-3; // in amperes
8 ILmin=0;
```

```
9 R=(V-Vz)/(Izmax-ILmin); // in ohms
10 ILmax=((V-Vz)/R)-Izmin; // in amperes
11 P=Izmax*Vz; // Power rating of zener diode in watts
12 ILmax=ILmax*1e3; // in miliamperes
13 P=P*1e3; // Power rating of zener diode in mili-
watts
14 disp(R,"R( ) =");
15 disp(ILmax,"ILmax (mA) =");
16 disp(P,"Power rating of zener diode (mW) =");
```

Scilab code Exa 3.19 Zener diode

```
1 // Example 3.19: (a) VL, IL, Iz, IR
2 //
                    (b) RL for maximum power
      dissipation for zener diode
3 //
                   (c) Maximum value of RL for zener
     diode to remain ON
4 clc, clear
5 // From Fig. 3.42
6 Vs=25; // in volts
7 Rs=220; // in ohms
8 Vz=10; // in volts
9 Pzmax=400; // in mili-watts
10 Izmax=Pzmax/Vz; // in miliamperes
11 Izmin=Izmax*10/100; // in miliamperes
12
13 disp("Part (a)");
14 RL=180; // in ohms
15 VL=Vz; // in volts
16 IL=Vz/RL; // in amperes
17 IL=IL*1e3; // in miliamperes
18 IR=(Vs-Vz)/Rs; // in amperes
19 IR=IR*1e3; // in miliamperes
20 Iz=IR-IL; // in miliamperes
21 disp(VL, "VL (V) =");
```

```
22 disp(IL,"IL (mA) =");
23 disp(Iz, "Iz (mA) =");
24 disp(IR, "IR (mA) =");
25
26 disp("Part (b)");
27 RL=Vz*1e3/(IR-Izmax); // in ohms
28 disp(RL,"RL for maximum power dissipation for zener
      diode ( ) =");
29
30 disp("Part (c)");
31 RL=Vz*1e3/(IR-Izmin); // in ohms
32 disp(RL," Maximum value of RL for zener diode to
     remain ON () = ");
33 disp("If Izmin=0");
34 RL=Vz*1e3/IR; // in ohms
35 disp(RL," Maximum value of RL for zener diode to
     remain ON () = ");
```

Scilab code Exa 3.20 Regulation range of zener diode

```
1 // Example 3.20: Range and average watage of Rs
2 clc, clear
3 // From Fig. 3.43
4 Vsmin=20; // in volts
5 Vsmax=30; // in volts
6 RLmin=1; // in ohms
7 RLmax=10; // in ohms
8 Izmin=10e-3; // in amperes
9 Pzmax=50; // in watts
10 Vz=10; // in volts
11 ILmin=Vz/RLmax; // in amperes
12 ILmax=Vz/RLmin; // in amperes
13 Izmax=Pzmax/Vz; // in amperes
14 Rs1=(Vsmin-Vz)/(ILmax+Izmin); // in ohms
15 Rs2=(Vsmax-Vz)/(ILmin+Izmax); // in ohms
```

```
16 disp(Rs1, "Rs <= ");
17 disp(Rs2, "Rs >= ");
18 disp("To meet the load current variation from 1 A to
      10 A a zener of specification Izmin = 0.01 A to
     Izmax = 5 A cannot meet the requirement for any
     value of Rs")
19 // Let
20 RLmin=1e3; // in ohms
21 RLmax=10e3; // in ohms
22 ILmin=Vz/RLmax; // in amperes
23 ILmax=Vz/RLmin; // in amperes
24 Rsmin=(Vsmax-Vz)/(ILmin+Izmax); // in ohms
25 Rsmax=(Vsmin-Vz)/(ILmax+Izmin); // in ohms
26 disp(Rsmin,"Minimum value of Rs (
                                       ) = ");
27 disp(Rsmax, "Maximum value of Rs ( ) =");
28 Rs=4; // in ohms
29 W=Rs*(ILmax+Izmax)^2; // in watts
30 disp(W,"Average wattage of Rs (W) =");
```

Scilab code Exa 3.21.a Clipping circuits

```
1 // Example 3.21: (a) Transfer characteristics and
output
2 // (b) Transfer characteristics and
output
3 clc, clear
4 Vy=0.6; // in volts
5 Rf=100; // in ohms
6 t=[-40:0.001:40];
7 vin=40*sin(2*%pi*t/80); // Input voltage in volts
8
```


Figure 3.1: Clipping circuits

Figure 3.2: Clipping circuits

```
9 // Part (a)
10 // From Fig. 3.49(a)
11 // Sketching of transfer characteristics
12 for i=1:length(vin)
13
      if vin(i) < 5.6 then
14
           vo(i)=vin(i); // in volts
15
      else
           ID=(vin(i)-5.6)/(4.9e3+Rf); // in amperes
16
           vo(i)=vin(i)-ID*4.9e3; // in volts
17
18
       end
19 end
20 plot(vin,vo);
21 xtitle("Part (a) - Transfer characteristics", "vin","
      vo");
22 // Sketching of output
23 scf(1);
24 plot(t,vin,"---");
25 plot(t,vo);
26 xtitle("Part (a) - Output voltage and input voltage"
     ," t ","vo,vin");
27 legend("vin","vo");
28
29 // Part (b)
30 // From Fig. 3.49(b)
31 // Sketching of transfer characteristics
32 for i=1:length(vin)
33
       if vin(i)>-0.6 then
           vo(i)=vin(i); // in volts
34
35
       else
           ID = (vin(i) + 0.6) / (9.9e3 + Rf); // in amperes
36
           vo(i)=vin(i)-ID*9.9e3; // in volts
37
38
       end
39 end
40 scf(2);
41 plot(vin,vo);
42 xtitle("Part (b) - Transfer characteristics", "vin","
      vo");
43 // Sketching of output
```


Figure 3.3: Range of load current

```
44 scf(3);
45 plot(t,vin,"---");
46 plot(t,vo);
47 xtitle("Part (b) - Output voltage and input voltage"
        ," t","vo,vin");
48 legend("vin","vo");
```

Scilab code Exa 3.21.b Range of load current

```
1 // Example 3.21: (a) Transfer characteristics and
output
2 // (b) Transfer characteristics and
output
```


Figure 3.4: Range of load current

```
3 clc, clear
4 Vy=0.6; // in volts
5 Rf=100; // in ohms
6 t = [-40:0.001:40];
7 vin=40*sin(2*%pi*t/80); // Input voltage in volts
8
9 // Part (a)
10 // From Fig. 3.49(a)
11 // Sketching of transfer characteristics
12 for i=1:length(vin)
13
       if vin(i) < 5.6 then
           vo(i)=vin(i); // in volts
14
15
       else
           ID=(vin(i)-5.6)/(4.9e3+Rf); // in amperes
16
           vo(i)=vin(i)-ID*4.9e3; // in volts
17
18
       end
19 end
20 plot(vin,vo);
21 xtitle("Part (a) - Transfer characteristics", "vin","
```

```
vo");
22 // Sketching of output
23 scf(1);
24 plot(t,vin,"---");
25 plot(t,vo);
26 xtitle("Part (a) - Output voltage and input voltage"
     ," t ","vo,vin");
27 legend("vin","vo");
28
29 // Part (b)
30 // From Fig. 3.49(b)
31 // Sketching of transfer characteristics
32 for i=1:length(vin)
       if vin(i)>-0.6 then
33
           vo(i)=vin(i); // in volts
34
35
       else
           ID = (vin(i) + 0.6) / (9.9e3 + Rf); // in amperes
36
37
           vo(i)=vin(i)-ID*9.9e3; // in volts
38
       end
39 end
40 scf(2);
41 plot(vin,vo);
42 xtitle("Part (b) - Transfer characteristics", "vin","
      vo");
43 // Sketching of output
44 scf(3);
45 plot(t,vin,"---");
46 plot(t,vo);
47 xtitle("Part (b) - Output voltage and input voltage"
     ," t ","vo,vin");
48 legend("vin","vo");
```


Figure 3.5: Transfer characteristics

Figure 3.6: Transfer characteristics

Scilab code Exa 3.22 Transfer characteristics

```
1 // Example 3.22: (a) Transfer characteristics
2 //
                     (b) Transfer characteristics
3 clc, clear
4 t=[0:0.1:20]; // in mili-seconds
5 vin=30*t/10; // Input voltage in volts
6 // From Fig. 3.52(b)
7
8 // Part {a}
9 // Sketching of transfer characteristics
10 for i=1:length(vin)
11
       if vin(i)>25 then
           vo(i)=5; // in volts
12
13
      else
           IL=vin(i)/(200+50); // in amperes
14
           vo(i)=IL*50; // in volts
15
16
       end
17 end
18 plot2d(vin,vo,rect=[0,0,60,6]);
19 xtitle("Part (a) - Transfer characteristics", "vin","
     vo");
20
21 // Part (b)
22 // Sketching of transfer characteristics
23 Vy=0.5; // in volts
24 Rf=40; // in ohms
25 VA=5+0.5; // in volts
26 for i=1:length(vin)
27
       if vin(i) <27.5 then
           IL=vin(i)/(200+50); // in amperes
28
29
           vo(i)=IL*50; // in volts
30
       else
31
           IL=(vin(i)+27.5)/500; // in amperes
           vo(i)=IL*50; // in volts
32
33
       end
34 end
35 scf(1);
```


Figure 3.7: Clipping circuit

Scilab code Exa 3.23 Clipping circuit

```
1 // Example 3.23: Output voltage and transfer
characteristic curve
2 clc, clear
3 t=[-6:0.001:6];
4 vin=6*sin(2*%pi*t/12); // Input voltage in volts
5 // Sketching of output voltage
6 for i=1:length(vin)
```


Figure 3.8: Clipping circuit

```
if vin(i)>=2 then
7
           // From Fig. 3.54(b), D1 ON and D2 OFF
8
           I1=(vin(i)-2)/(10e3+10e3); // in amperes
9
           vo(i)=vin(i)-I1*10e3; // in volts
10
       elseif vin(i)>=-4 then
11
12
           // both D1 and D2 OFF
13
           vo(i)=vin(i);
14
       else
           // From Fig. 3.54(c), D1 OFF and D2 ON
15
           vo(i) = -4; // in volts
16
17
       end
18 end
19 plot(t,vin,"---");
20 plot(t,vo);
21 xtitle("Output voltage and input voltage"," t","vo,
      vin");
22 legend("vin","vo");
23 // Sketching of transfer characteristic curve
24 scf(1);
```


Figure 3.9: Transfer characteristics

```
25 plot2d(vin,vo,rect=[-6,-6,6,6]);
26 xtitle("Transfer characteristic curve","vin","vo");
```

Scilab code Exa 3.24 Transfer characteristics

```
1 // Example 3.24: Voltage transfer characteristics
2 clc, clear
3 vin=[-2.5:2.5]; // Input voltage in volts
4 // Obtaining thevnin's equivalent circuit on LHS of
XX'
5 V_th=vin*7.5e3/(7.5e3+15e3); // in volts
6 R_th=15e3*7.5e3/(15e3+7.5e3); // in ohms
7 // Sketching of voltage transfer characteristics
8 // From thevnin's equivalent circuit in Fig. 3.55(b)
9 for i=1:length(vin)
```


Figure 3.10: Clipping circuit

```
if vin(i)>1.8 then
10
            I1=(V_th(i)-0.6)/(5e3+R_th); // in amperes
11
            vo(i)=I1*5e3; // in volts
12
       elseif vin(i)>-1.8 then
13
14
            vo(i)=0;
15
       else
16
            I2=(V_th(i)+0.6)/(4e3+R_th); // in amperes
            vo(i)=I2*5e3; // in volts
17
18
       end
19 \quad \texttt{end}
20 plot(vin,vo);
21 xtitle("Voltage transfer characteristics", "vin", "vo"
      );
```


Figure 3.11: Clipping circuit

Scilab code Exa 3.25 Clipping circuit

```
1 // Example 3.25: (a) Output voltage waveform
2 //
                     (b) Transfer curve
3 clc, clear
4 t = [0:0.001:12];
5 vin=15*sin(2*%pi*t/12); // Input voltage in volts
6 // From Fig. 3.56(a)
  // Sketching of output voltage waveform
7
8
  for i=1:length(vin)
       if vin(i) <16/3 then
9
           // D1 OFF and D2 ON
10
           I2=(10-3)/(20e3+10e3); // in amperes
11
12
           vo(i)=10-I2*20e3; // in volts
13
       elseif vin(i) <=10 then</pre>
           // both D1 and D2 ON
14
```


Figure 3.12: Range of load current

```
vo(i)=vin(i);
15
16
       else
           // D1 ON and D2 OFF
17
           vo(i)=10; // in volts
18
19
       end
20 \text{ end}
21 plot(t,vin,"---");
22 plot(t,vo);
23 xtitle("Output voltage and input voltage"," t","vo,
      vin");
24 legend("vin","vo");
25 // Sketching of transfer curve
26 scf(1);
27 plot2d(vin,vo,rect=[0,0,15,12]);
28 xtitle("Transfer characteristic curve", "vin", "vo");
```


Figure 3.13: Range of load current

Scilab code Exa 3.26 Range of load current

```
1 // Example 3.26: Transfer characteristics and output
      and input voltage
2 clc, clear
3 T=60; // Let T = 60 seconds
4 t = [0:T];
5 vin=120*t/T; // Input voltage in volts
6 // From Fig. 3.57(a)
7
  // Sketching of transfer characteristics
8 for i=1:length(vin)
       if vin(i) <=15 then</pre>
9
           // Both D1 and D2 OFF
10
           vo(i)=15; // in volts
11
```

```
12
       elseif vin(i) <=105 then</pre>
13
           // D1 OFF and D2 ON
           I2=(vin(i)-15)/(100e3+200e3); // in amperes
14
           vo(i)=vin(i)-I2*100e3; // in volts
15
16
       else
17
           // Both D1 and D2 ON
           vo(i)=75; // in volts
18
19
       end
20 end
21 plot(vin,vo);
22 xtitle("Transfer characteristics","vin","vo");
23 // Sketching of output
24 scf(1);
25 plot(t,vin,"---");
26 plot(t,vo);
27 xtitle("Output voltage and input voltage"," t","vo,
      vin");
28 legend("vin", "vo");
```

Scilab code Exa 3.27 Range of load current

```
1 // Example 3.27: vo vs vin
2 clc, clear
3 vin=[0:50]; // Input voltage in volts
4 // Sketching of vo vs vin
5 for i=1:length(vin)
6
       if vin(i)<3 then</pre>
           // From Fig. 3.58(b), D1 ON, D2 and D3 OFF
7
           I1=6/(5e3+5e3); // in amperes
8
           vo(i)=I1*5e3; // in volts
9
       elseif vin(i)<9 then</pre>
10
           // From Fig. 3.58(c), D1 and D3 ON, D2 OFF
11
           // Applying Kirchoff's laws
12
```


Figure 3.14: Range of load current

```
vo(i)=0.5*vin(i)+1.5; // in volts
13
       elseif vin(i)<30 then</pre>
14
           // From Fig. 3.58(d), D3 ON, D1 and D2 OFF
15
16
           I3=vin(i)/(2.5e3+5e3); // in amperes
           vo(i)=I3*5e3; // in volts
17
18
       else
           // From Fig. 3.58(e), D2 and D3 ON, D1 OFF
19
           // Applying Kirchoff's laws
20
21
           vo(i)=4*vin(i)/7+20/7; // in volts
22
       end
23 end
24 plot(vin,vo);
25 xtitle("Voltage transfer characteristics", "vin", "vo"
      );
```


Figure 3.15: Transfer characteristics

Scilab code Exa 3.28 Transfer characteristics

```
1 // Example 3.28: Output voltage
2 clc, clear
3 t=[0:5]; // in seconds
4 vs=10*t/5; // Input voltage in volts
  // Output voltage
5
  for i=1:length(vs)
6
7
       if vs(i) <6 then
           // Diode is OFF
8
           vo(i)=6; // in volts
9
10
       else
11
           // From Fig. 3.65(c), Diode is ON
           I=(vs(i)-6)/(200+200); // in amperes
12
           vo(i)=6+I*200; // in volts
13
14
       end
15 \text{ end}
16 plot2d(t,vo,rect=[0,0,5,8]);
17 xtitle("Output voltage","t,ms","vo(t)");
```


Figure 3.16: Output voltage

Scilab code Exa 3.29 Output voltage

```
1 // Example 3.29: Output voltage
2 clc, clear
3 Vy=0.5; // in volts
4 Rf=50; // in ohms
5 t=[0:5]; // in seconds
6 vs=10*t/5; // Input voltage in volts
  // Output voltage
7
8
  for i=1:length(vs)
9
       if vs(i)<6.5 then
            // Diode is OFF
10
            vo(i)=6; // in volts
11
12
       else
```


Figure 3.17: EX30

Scilab code Exa 3.30 EX30

```
1 // Example 3.30: (a) Output waveform
2 // (b) Output waveform
3 clc, clear
```


Figure 3.18: EX30

```
4 t=[0:0.001:12];
5 vin=15*sin(2*%pi*t/12); // Input voltage in volts
6
7 // Part (a), From Fig. 3.67(a)
8 vo=vin-15; // in volts
9 plot(t,vo);
10 xtitle("Part (a) - Output voltage","t","vo");
11
12 // Part(b), From Fig. 3.67(b)
13 vo=vin-10; // in volts
14 scf(1);
15 plot(t,vo);
16 xtitle("Part (b) - Output voltage","t","vo");
```

Scilab code Exa 3.31 Output waveform

Figure 3.19: Output waveform

```
1 // Example 3.31: Output voltage
2 clc, clear
3 t=[0:0.1:9*%pi];
4 vin=15*squarewave(t)-5; // Input wave in volts
5 vo=vin+25; // in volts
6 plot2d(t,vo,rect=[0,0,9*%pi,40]);
7 xtitle("Output voltage","t","vo");
```

Scilab code Exa 3.32 Clamping circuit

```
1 // Example 3.32: Output voltage
2 clc, clear
3 t1=[0:20];
4 vin1=t1;
5 t2=[20:60];
```


Figure 3.20: Clamping circuit

```
6 vin2=40-t2;
7 t3=[60:80];
8 vin3=-80+t3;
9 t=[t1 t2 t3];
10 vin=[vin1 vin2 vin3]; // Input wave in volts
11 vo=vin+25; // in volts
12 plot(t,vo);
13 xtitle("Output voltage","t","vo");
```

Scilab code Exa 3.33 Clamping circuit

```
1 // Example 3.33: vo
2 clc, clear
3 t=[0:0.001:12];
4 vin=10*sin(2*%pi*t/4); // Input voltage in volts
```


Figure 3.21: Clamping circuit

```
5 // From Fig. 3.73
6 vint=vin+5;
7 for i=1:length(vint)
       if vint(i)>0 then
8
            // Diode is OFF
9
            vo(i)=vint(i); // in volts
10
11
       else
12
            break;
13
       end
14
  end
15 for i=i:length(vint)
       if vint(i)==-5 then
16
17
            break;
18
       else
            // Diode is ON
19
            vo(i)=0;
20
21
       end
22 \text{ end}
23 for i=i:length(vint)
```

Chapter 4

Bipolar Junction Transistors

Scilab code Exa 4.1 Value of Collector Current

```
1 // Example 4.1: New value of Ic

2 clc, clear

3 VA=100; // Early voltage in volts

4 VCE_old=1; // in volts

5 Ic_old=1e-3; // in amperes

6 VCE_new=11; // in volts

7 ro=VA/Ic_old; // Output resistance in ohms

8 Ic_new=(VCE_new-VCE_old+Ic_old*ro)/ro; // in amperes

9 Ic_new=Ic_new*1e3; // in miliamperes

10 disp(Ic_new,"New value of Ic (mA) =");
```

Scilab code Exa 4.2 CE transistor

```
1 // Example 4.2: Region of operation, All the node
      voltages and currents
2 clc, clear
3 betaf=100; // Current gain
4 disp("Let us assume that the transistor is in active
      region.");
```

```
5 VBE_active=0.7; // in volts
6 // From the equivalent circuit in Fig. 4.18(b)
7 VCC=10; // in volts
8 VBB=4; // in volts
9 RE=3.3e3; // in ohms
10 RC=5e3; // in ohms
11 VE=VBB-VBE_active; // in volts
12 // Writing KVL for base emitter loop and putting Ic =
        F * Ib
13 IB=VE/((1+betaf)*RE); // in amperes
14 IB=IB*1e3; // in miliamperes
15 IC=betaf*IB; // in miliamperes
16 IE=IB+IC; // in miliamperes
17 VC=VCC-IC*RC*1e-3; // in volts
18 disp(VC, "VC (V) =");
19 disp(VE, "VE (V) =");
20 disp(VBB, "VB (V) =");
21 disp(IC,"IC (mA) =");
22 disp(IE, "IE (mA) =");
23 disp(IB, "IB (mA) =");
24 disp("Since the base is at 4 V and the collector is
     at 5.05 V, so the collector junction is reverse
     biased by 1.05 V. The transistor is indeed in
     forward active region as assumed.")
```

Scilab code Exa 4.3 CE transistor

```
1 // Example 4.3: Region of operation, Node currents
and voltages
2 clc, clear
3 betaf=100; // Current gain
4 disp("Let us assume that the transistor is in active
region.");
5 VBE_active=0.7; // in volts
6 // From Fig. 4.19
```

```
7 VCC=10; // in volts
8 VBB=5; // in volts
9 RB=100e3; // in ohms
10 RE=2e3; // in ohms
11 RC=2e3; // in ohms
12 // Writing KVL to the base circuit and putting Ic =
       F *Ib
13 IB=(VBB-VBE_active)/(RB+(1+betaf)*RE); // in amperes
14 IB=IB*1e3; // in miliamperes
15 IC=betaf*IB; // in miliamperes
16 IE=IB+IC; // in miliamperes
17 VB=VBB-IB*RB*1e-3; // in volts
18 VE=IE*RE*1e-3; // in volts
19 VC=VCC-IC*RC*1e-3; // in volts
20 disp(VC, "VC (V) =");
21 disp(VE, "VE (V) =");
22 disp(VB, "VB (V) =");
23 disp(IC,"IC (mA) =");
24 disp(IE, "IE (mA) =");
25 disp(IB, "IB (mA) =");
26 disp("Since base voltage VB is 3.6 V and collector
     is at 7.2 V, so collector-base junction is
     reverse biased by 3.6 V. Thus our assumption that
      the transistor is in active region is valid.")
```

Scilab code Exa 4.4 Region of Operation

```
1 // Example 4.4: Region of operation
2 clc, clear
3 betaf=100; // Current gain
4 disp("Let us assume that the transistor is in
saturation region.");
5 VBE_sat=0.8; // in volts
6 VCE_sat=0.2; // in volts
7 // From Fig. 4.21
```

```
8 VCC=10; // in volts
9 VBB=5; // in volts
10 RB=50e3; // in ohms
11 RC=2e3; // in ohms
12 // From the base loop
13 IB=(VBB-VBE_sat)/RB; // in amperes
14 IB=IB*1e3; // in miliamperes
15 IC_sat=(VCC-VCE_sat)/RC; // in amperes
16 IC_sat=IC_sat*1e3; // in miliamperes
17 IB_min=IC_sat/betaf; // in miliamperes
18 disp(IB_min," Minimum IB required to saturate the
      transistor (mA) = ");
19 disp(IB,"IB in the circuit (mA) =");
20 disp("Since IB in the circuit is calculated as 0.084
      mA, so it is greater than IB, min. Thus the
      transistor is indeed in saturation mode.")
```

Scilab code Exa 4.5 Saturation region

```
1 // Example 4.5: Value of RB so as to drive the
     transistor into saturation
2 clc, clear
3 bta=50; // Current gain
4 VBE_sat=0.8; // in volts
5 VCE_sat=0.2; // in volts
6 // From Fig. 4.22
7 VCC=10; // in volts
8 VBB=5; // in volts
9 RC=1e3; // in ohms
10 IC_sat=(VCC-VCE_sat)/RC; // in amperes
11 IB_min=IC_sat/bta; // Minimum base current in
     amperes to saturate the transistor
12 // Then base current can be taken as
13 IB=10*IB_min; // in amperes
14 RB=(VBB-VBE_sat)/IB; // in ohms
```

```
15 RB=RB*1e-3; // in kilo-ohms
16 disp(RB, "Value of RB so as to drive the transistor
            into saturation ( k ) =");
```

Scilab code Exa 4.6 Output voltages

```
1 // Example 4.6: Vo1, Vo2
2 clc, clear
3 betaf=100; // Current gain
4 disp("Let us assume that the transistor is in active
      region.");
5 VBE_active=-0.7; // in volts
6 // From Fig. 4.23
7 VCC=-10; // in volts
8 VEE=10; // in volts
9 VBB=2.5; // in volts
10 RE=6.8e3; // in ohms
11 RB=100e3; // in ohms
12 RC=10e3; // in ohms
13 // Writing KVL for base-emitter circuit and putting
     Ic = F * Ib
14 IB=(VEE-VBB+VBE_active)/(RB+(1+betaf)*RE); // in
     amperes
15
16 IC=betaf*IB; // in amperes
17 IE=IB+IC; // in amperes
18 Vo1=VCC+IC*RC; // in volts
19 Vo2=VEE-IE*RE; // in volts
20 VB=VBB+IB*RB; // in volts
21 disp(Vo1, "Vo1 (V) =");
22 disp(Vo2, "Vo2 (V) =");
23 disp(VB, "Voltage at base (V) =")
24 disp("As base voltage, VB is 3.36 V and voltage at
      collector is -1.4 V, collector base junction is
     reverse biased. Thus the transistor is indeed in
```

Scilab code Exa 4.7 pnp transistor

```
1 // Example 4.7: Value of RC to obtain VC = +5 V
2 clc, clear
3 betaf=50; // Current gain
4 disp("Let us assume that the transistor is in active
      region.");
5 disp("When current gain = 50")
6 VBE_active=-0.7; // in volts
7 // From Fig. 4.24
8 VC=5; // in volts
9 VEE=10; // in volts
10 RB=100e3; // in ohms
11 // Writing KVL for base circuit and putting Ic = F *
     Ib
12 IB=(VEE+VBE_active)/RB; // in amperes
13 IC=IB*betaf; // in amperes
14 RC=VC/IC; // in ohms
15 RC=RC*1e-3; // in kilo-ohms
16 disp(RC, "Value of RC to obtain VC = +5 V (k) =");
17 disp("When current gain = 100");
18 IC=IB*100; // in amperes
19 VC=IC*RC*1e3; // in volts
20 disp(VC, "Collector voltage (V) =");
21 disp("Since collector voltage is greater than the
     base voltage, the transistor goes into saturation
      as collector junction gets forward biased.");
```

Scilab code Exa 4.8 Solving a circuit with transistor

1 // Example 4.8: :Labelled voltages and currents

```
2 clc, clear
3 betaf=100; // Current gain
4 disp("Let us assume that the transistor is in active
      region.");
5 VBE_active=-0.7; // in volts
6 // From Fig. 4.25(a)
7 VCC=-10; // in volts
8 VEE=10; // in volts
9 RE=6.8e3; // in ohms
10 RC=10e3; // in ohms
11 R1=300e3; // in ohms
12 R2=180e3; // in ohms
13 // Applying Thevnin's theorem at point B
14 R_th=R1*R2/(R1+R2); // in ohms
15 V_th=VEE-(R2*(VEE-VCC)/(R1+R2)); // in volts
16 // From the Thevnin equivalent circuit in Fig. 4.25(
     b)
17 // Writing KVL for base-emitter circuit and putting
     Ic = F * Ib
18 IB=(VEE-V_th+VBE_active)/(R_th+(1+betaf)*RE); // in
     amperes
19 IB=IB*1e3; // in miliamperes
20 IC=betaf*IB; // in miliamperes
21 IE=IB+IC; // in miliamperes
22 VC=VCC+IC*RC*1e-3; // in volts
23 VE=VEE-IE*RE*1e-3; // in volts
24 VB=V_th+IB*R_th*1e-3; // in volts
25 I1=(VEE-VB)/R2; // in amperes
26 I1=I1*1e3; // in miliamperes
27 I2=I1+IB; // in miliamperes
28 disp(IC,"IC (mA) =");
29 disp(IE, "IE (mA) =");
30 disp(IB, "IB (mA) =");
31 disp(I1, "I1 (mA) =");
32 disp(I2, "I2 (mA) =");
33 disp(VC, "VC (V) =");
34 disp(VE, "VE (V) =");
35 disp(VB, "VB (V) =");
```
Chapter 5

BJT Biasing and Stability

Scilab code Exa 5.1 Fixed bias circuit

```
1 // Example 5.1: RB, RC

2 clc, clear

3 IB=40e-6; // in amperes

4 VCE=6; // in volts

5 VCC=12; // in volts

6 betaf=80;

7 VBE=0.7; // in volts

8 RB=(VCC-VBE)/IB; // in ohms

9 RC=(VCC-VCE)/(betaf*IB); // in ohms

10 RB=RB*1e-3; // in kilo-ohms

11 RC=RC*1e-3; // in kilo-ohms

12 disp(RB,"RB ( k ) =");

13 disp(RC,"RC ( k ) =");
```

Scilab code Exa 5.2 Determination of Q point

```
1 // Example 5.2: VCEQ, ICQ
2 clc, clear
```

```
3 VBE=0.7; // in volts
4 betaf=50;
5 // From Fig. 5.11(a)
6 VCC=18; // in volts
7 R1=82e3; // in ohms
8 R2=22e3; // in ohms
9 RC=5.6e3; // in ohms
10 RE=1.2e3; // in ohms
11 // Using Thevnin's theorem to obtain equivalent
      circuit given in Fig. 5.11(b)
12 VBB=R2*VCC/(R1+R2); // in volts
13 RB=R1*R2/(R1+R2); // in ohms
14 IB=(VBB-VBE)/(RB+(1+betaf)*RE); // in amperes
15 IC=betaf*IB; // in amperes
16 VCE=VCC-IC*(RC+RE)-IB*RE; // in volts
17 IC=IC*1e3; // in mili-amperes
18 disp(VCE, "VCEQ (V) =");
19 disp(IC, "ICQ (mA) =");
```

Scilab code Exa 5.3 Self biased circuit

```
1 // Example 5.3: R1, R2, RC, RE
2 clc, clear
3 IC=1e-3; // in amperes
4 VCC=12; // in volts
5 betaf=100;
6 VBE=0.7; // in volts
7 // As suggested in the design constraints, allocate
1/3VCC to RC, another 1/3VCC to R2 leaving 1/3VCC
for VCEQ.
8 VB=4; // in volts
9 VE=VB-VBE; // in volts
10 // Neglecting base current,
11 RE=VE/IC; // in ohms
```

```
12 // Select the current through R1R2 equal to 0.1\,\mathrm{IC}
```

```
13 R1_plus_R2=VCC/(0.1*IC); // in ohms
14 R2=VB*R1_plus_R2/VCC; // in ohms
15 R1=R1_plus_R2-R2; // in ohms
16 RC=VCC/(3*IC); // in ohms
17 R1=R1*1e-3; // in kilo-ohms
18 R2=R2*1e-3; // in kilo-ohms
19 RC=RC*1e-3; // in kilo-ohms
20 RE=RE*1e-3; // in kilo-ohms
21 disp(R1,"R1 (k) =");
22 disp(R2,"R2 (k) =");
23 disp(RC,"RC (k) =");
```

Scilab code Exa 5.4 Amplifier circuit

```
1 // Example 5.4: VCEQ, ICQ
2 clc, clear
3 VBE=0.7; // in volts
4 betaf=45;
5 // From Fig. 5.14
6 VEE=9; // in volts
7 RB=100e3; // in ohms
8 RC=1.2e3; // in ohms
9 // Applying KVL in the clockwise direction base
     emitter loop
10 IB=(VEE-VBE)/RB; // in amperes
11 IC=betaf*IB; // in amperes
12 // Writing KVL for the collector loop
13 VCE=VEE-IC*RC; // in volts
14 IC=IC*1e3; // in mili-amperes
15 disp(VCE, "VCEQ (V) =");
16 disp(IC, "ICQ (mA) =");
```

Scilab code Exa 5.5 Determination of Q point

```
1 // Example 5.5: VCEQ, ICQ
2 clc, clear
3 VBE=0.7; // in volts
4 betaf=120;
5 // From Fig. 5.15
6 VCC=20; // in volts
7 VEE=20; // in volts
8 R1=8.2e3; // in ohms
9 R2=2.2e3; // in ohms
10 RC=2.7e3; // in ohms
11 RE=1.8e3; // in ohms
12\ //\ Using Thevnin's theorem to obtain equivalent
      circuit given in Fig. 5.16(b)
13 RB=R1*R2/(R1+R2); // in ohms
14 // From Fig. 5.16(a)
15 I = (VCC + VEE) / (R1 + R2); // in amperes
16 VBB=I*R2-VEE; // in volts
17 // Writing KVL for the base emitter loop and putting
      Ic= F * Ib gives
18 IB=(VEE+VBB-VBE)/(RB+(1+betaf)*RE); // in amperes
19 IC=betaf*IB; // in amperes
20 // KVL for the collector loop gives
21 VCE=VCC+VEE-IC*(RC+RE)-IB*RE; // in volts
22 IC=IC*1e3; // in mili-amperes
23 disp(VCE, "VCEQ (V) =");
24 disp(IC, "ICQ (mA) =");
```

Scilab code Exa 5.6 Amplifier circuit

```
1 // Example 5.6: RF so that IE=+2 mA
2 clc, clear
3 IE=2e-3; // in amperes
4 VBE=0.7; // in volts
```

```
5 betaf=49;
6 // From Fig. 5.17
7 VCC=12; // in volts
8 RB=25e3; // in ohms
9 RC=2e3; // in ohms
10 I1=VBE/RB; // in amperes
11 IB=IE/(1+betaf); // in amperes
12 // KVL for the indicated loop gives
13 RF=(VCC-RC*(I1+(1+betaf)*IB)-VBE)/(I1+IB); // in
ohms
14 RF=RF*1e-3; // in kilo-ohms
15 disp(RF, "RF so that IE=+2 mA ( k ) =");
```

Scilab code Exa 5.7 Amplifier circuit

```
1 // Example 5.7: RCQ, RE
2 clc, clear
3 VCEQ=3; // in volts
4 VBE=0.7; // in volts
5 betaf=200;
6 // From Fig. 5.18(a)
7 VCC=6; // in volts
8 VEE=6; // in volts
9 R1=90e3; // in ohms
10 R2=90e3; // in ohms
11 // Using Thevnin's theorem to obtain equivalent
      circuit given in Fig. 5.18(b)
12 RB=R1*R2/(R1+R2); // in ohms
13 VBB=R2*(VCC+VEE)/(R1+R2); // in volts
14 // In the output loop
15 x = VEE - VCEQ; // x = (IC+IB)RE in volts
16 // Applying KVL in the base emitter loop
17 IB = (VEE - VBE - x) / RB; // in amperes
18 IC=betaf*IB; // in amperes
19 // In the output loop
```

```
20 RC=VCC/IC; // in ohms
21 RE=x/(IC+IB); // in ohms
22 RC=RC*1e-3; // in kilo-ohms
23 RE=RE*1e-3; // in kilo-ohms
24 disp(RC,"RC ( k ) =");
25 disp(RE,"RE ( k ) =");
```

Scilab code Exa 5.8 Q point voltage

```
1 // Example 5.8: VCEQ
2 clc, clear
3 VBE=-0.7; // in volts
4 betaf=120;
5 // From Fig. 5.19(a)
6 VCC=18; // in volts
7 R1=47e3; // in ohms
8 R2=10e3; // in ohms
9 RC=2.4e3; // in ohms
10 RE=1.1e3; // in ohms
11 // Using Thevnin's theorem to obtain equivalent
     circuit given in Fig. 5.19(b)
12 VBB=R2*VCC/(R1+R2); // in volts
13 RB=R1*R2/(R1+R2); // in ohms
14 // Applying KVL in the base emitter loop and putting
      Ic = F * Ib
15 IB=(VBB+VBE)/(RB+(1+betaf)*RE); // in amperes
16 IC=betaf*IB; // in amperes
17 // In the collector emitter loop
18 VCE=-VCC+IC*(RC+RE)+IB*RE; // in volts
19 disp(VCE, "VCEQ (V) =");
```

Scilab code Exa 5.9 Stability factor

```
1 // Example 5.9 :(i) RB
2 //
                  (ii) Stability factor
3 //
                 (iii) IC at 100 C
4 clc, clear
5 bta=50;
6 VBE=0.7; // in volts
7 VCE=5; // in volts
8 // From Fig. 5.21
9 VCC=24; // in volts
10 RC=10e3; // in ohms
11 RE=500; // in ohms
12
13 disp("Part (i)");
14 // Applying KVL to the collector emitter circuit and
      putting Ic = F * Ib
15 IB=(VCC-VCE)/((RC+RE)*(bta+1)); // in amperes
16 IC=bta*IB; // at 25 C in amperes
17 RB=(VCE-VBE)/IB; // in ohms
18 RB=RB*1e-3; // in kilo-ohms
19 disp(RB, "RB (k) =")
20
21 disp("Part (ii)");
22 S=(1+bta)/(1+bta*(RC+RE)/(RC+RE+RB*1e3)); //
     Stability factor
23 disp(S, "Stability factor =");
24
25 disp("Part (iii)");
26 // From Table 5.1
27 del_ICO=(20-0.1)*1e-9; // in amperes
28 del_IC=S*del_ICO; // in amperes
29 IC=IC+del_IC; // at 100 C in amperes
30 IC=IC*1e3; // at 100 C in mili-amperes
31 disp(IC,"IC at 100 C (mA) =");
```

Scilab code Exa 5.10 Self bias circuit

```
1 // Example 5.10: (i) S(ICO) for RB/RE=10 and change
     in IC
2 //
                   (ii) S(VBE) for RB = 240 k, RE = 1
       k
           and change in IC
3 clc, clear
4 bta=100;
5
6 disp("Part (i)");
7 RB_RE=10; // RB/RE
8 S_ICO=(1+bta)*(1+RB_RE)/(1+bta+RB_RE);
9 // From Table 5.1
10 del_ICO=(20-0.1)*1e-9; // in amperes
11 del_IC=S_ICO*del_ICO; // in amperes
12 del_IC=del_IC*1e6; // in micro-amperes
13 disp(S_ICO, "S(ICO) for RB/RE=10");
14 disp(del_IC, "Change in IC ( A) =");
15
16 disp("Part (ii)");
17 RB=240e3; // in kilo-ohms
18 RE=1e3; // in kilo-ohms
19 S_VBE=-bta/(RB+(1+bta)*RE);
20 // From Table 5.1
21 del_VBE=0.48-0.65; // in volts
22 del_IC=S_VBE*del_VBE; // in amperes
23 del_IC=del_IC*1e6; // in micro-amperes
24 disp(S_VBE, "S(VBE) for (RB = 240 \text{ k}, RE = 1 \text{ k}) ="
     );
25 disp(del_IC, "Change in IC ( A ) =");
```

Scilab code Exa 5.11 Stability factor

1 // Example 5.11: S(), IC at 100 C 2 clc, clear 3 IC=2e-3; // at 25 C in amperes 4 // From Table 5.1

```
5 bta1=50; // at 25 C
6 bta2=80; // at 100 C
7 RB_RE=10; // RB/RE
8 S=IC*(1+RB_RE)/(bta1*(1+bta2+RB_RE));
9 del_bta=bta2-bta1;
10 del_IC=S*del_bta; // in amperes
11 IC=IC+del_IC; // at 100 C in amperes
12 IC=IC*1e3; // at 100 C in mili-amperes
13 disp(S,"S() =");
14 disp(IC,"IC at 100 C (mA) =");
```

Scilab code Exa 5.12 Variation of collector current

```
1 // Example 5.12: Variation of IC over the
     temperature range -65 C to 175 C
2 clc, clear
3 RB_RE=2; // RB/RE
4 RE=4.7e3; // in ohms
5 IC=2e-3; // at 25 C in amperes
6 // From Table 5.1
7 bta=50; // at 25 C
8 S_ICO=(1+bta)*(1+RB_RE)/(1+bta+RB_RE);
9 S_VBE=-bta/(RE*(1+bta+RB_RE));
10 // From Table 5.1
11 bta1=20; // at -65 C
12 bta2=120; // at 175 C
13 S_bta1=IC*(1+RB_RE)/(bta*(1+bta1+RB_RE)); // For 25
       C to -65 C
14 S_bta2=IC*(1+RB_RE)/(bta*(1+bta2+RB_RE)); // For 25
       C to 175 C
15 // From Table 5.1
16
17 // For 25 C to -65 C
18 del_ICO=(0.2e-3-0.1)*1e-9; // in amperes
19 del_VBE=0.85-0.65; // in volts
```

```
20 del_bta=bta1-bta;
21 del_IC=S_ICO*del_ICO+S_VBE*del_VBE+S_bta1*del_bta;
     // in amperes
22 IC1=IC+del_IC; // at -65 C in amperes
23 IC1=IC1*1e3; // at -65 C in mili-amperes
24 disp(IC1,"IC at -65 C (mA) =");
25
26 // For 25 C to 175 C
27 del_ICO=(3.3e3-0.1)*1e-9; // in amperes
28 del_VBE=0.30-0.65; // in volts
29 del_bta=bta2-bta;
30 del_IC=S_ICO*del_ICO+S_VBE*del_VBE+S_bta2*del_bta;
     // in amperes
31 IC2=IC+del_IC; // at 175 C in amperes
32 IC2=IC2*1e3; // at 175 C in mili-amperes
33 disp(IC2,"IC at 175 C (mA) =");
```

Scilab code Exa 5.13 Current mirror

```
1 // Example 5.13: (i) R1
2 //
                   (ii) R1 for IC = 10 A
3 clc, clear
4 IC=1e-3; // in amperes
5 VCC=10; // in volts
6 bta=125;
7 VBE=0.7; // in volts
8
9 disp("Part (i)");
10 R1=bta*(VCC-VBE)/((bta+2)*IC); // in ohms
11 R1=R1*1e-3; // in kilo-ohms
12 disp(R1,"R1 ( k ) =");
13
14 disp("Part (i)");
15 IC=10e-6; // in amperes
16 R1=bta*(VCC-VBE)/((bta+2)*IC); // in ohms
```

```
17 R1=R1*1e-3; // in kilo-ohms
18 disp(R1,"R1 for (IC = 10 A) (k) =");
```

Scilab code Exa 5.14 Widlar current source

```
1 // Example 5.14: R1, RE
2 clc, clear
3 Io=10e-6; // in amperes
4 VCC=10; // in volts
5 bta=125;
6 VBE=0.7; // in volts
7 VT=25e-3; // in volts
8 // Let
9 I_ref=1e-3; // in amperes
10 R1=(VCC-VBE)/I_ref; // in ohms
11 R1=R1*1e-3; // in kilo-ohms
12 RE=VT*log(I_ref/Io)/((1+1/bta)*Io); // in ohms
13 RE=RE*1e-3; // in kilo-ohms
14 disp(R1,"R1 ( k ) =");
15 disp(RE,"RE ( k ) =");
```

Scilab code Exa 5.15 Current Repeaters

```
1 // Example 5.11: IC1, IC2, IC3
2 clc, clear
3 bta=125;
4 VBE=0.7; // in volts
5 VT=25e-3; // Voltage equivalent to temperatue at
    room temperature in volts
6 // From Fig. 5.27
7 VC=9; // in volts
8 RC=30; // in kilo-ohms
9 RE=1.94; // in kilo-ohms
```

Scilab code Exa 5.16 Output current

```
1 // Example 5.16: Io
2 clc, clear
3 bta=100;
4 VBE=0.7; // in volts
5 // From Fig. 5.30
6 // Writing KVL for the indicated loop
7 I_ref=(10-VBE)/10; // in mili-amperes
8 Io=bta*I_ref/(2*(1+bta)); // in mili-amperes
9 disp(Io,"Io (mA) =");
```

Scilab code Exa 5.17 Current mirror

```
1 // Example 5.17: (i) IC1 and IC2
2 // (ii) RC so that Vo = 6 V
3 clc, clear
4 bta=200;
5 // From Fig. 5.31
6
7 disp("Part (i)");
8 I_ref=(12-0.7)/15; // in amperes
```

```
9 I1=0.7/2.8; // in amperes
10 IC=(I_ref-I1)*bta/(bta+2); // in mili-amperes
11 disp(IC,"IC1 (mA) =");
12 disp(IC,"IC2 (mA) =");
13
14 disp("Part (ii)");
15 Vo=6; // in volts
16 RC=(12-Vo)/IC; // in kilo-ohms
17 disp(RC,"RC so that (Vo = 6 V) (k) =");
```

Scilab code Exa 5.18 Modified current mirror

```
1 // Example 5.18: Emitter current in transistor Q3
2 clc, clear
3 bta=100;
4 VBE=0.75; // in volts
5 // From Fig. 5.32
6 I=(10-VBE)/4.7; // in mili-amperes
7 IE=I/2; // in mili-amperes
8 disp(IE,"Emitter current in transistor Q3 (mA) =");
```

Chapter 6

BJT Ampilifiers

Scilab code Exa 6.2 Bipolar Junction Transistor

```
1 // Example 6.2: r , gm

2 clc, clear

3 IBQ=7.6e-6; // in amperes

4 bta=104;

5 VT=25e-3; // Voltage equivalent to temperatue at

room temperature in volts

6 ICQ=IBQ*bta; // in amperes

7 gm=ICQ/VT; // in ampere per volt

8 gm=gm*1e3; // in mili-ampere per volt

9 r_pi=bta/gm; // in kilo-ohms

10 disp(r_pi,"r (k) =");

11 disp(gm,"gm (mA/V) =");
```

Scilab code Exa 6.3 Hybrid h parameter model

```
1 // Example 6.3: AI, Ri, AV, AVs, Ro, Ro'
2 clc, clear
3 hie=1e3; // in ohms
```

```
4 hfe=100;
5 hre=2e-4;
6 hoe=20e-6; // in amperes per volt
7 RC=5e3; // in ohms
8 Rs=1e3; // in ohms
9 // From Table 6.3
10 AI = -hfe/(1+hoe*RC);
11 Ri=hie+hre*AI*RC; // in ohms
12 AV=AI*RC/Ri;
13 AVs=AV*Ri/(Ri+Rs);
14 Yo=hoe-hfe*hre/(hie+Rs); // in ohms inverse
15 Ro=1/Yo; // in ohms
16 Ro_dash=Ro*RC/(Ro+RC); // in ohms
17 Ri=Ri*1e-3; // in kilo-ohms
18 Ro=Ro*1e-3; // in kilo-ohms
19 Ro_dash=Ro_dash*1e-3; // in kilo-ohms
20 disp(AI, "AI =");
21 disp(Ri, "Ri (k) =");
22 disp(AV, "AV =");
23 disp(AVs, "AVs =");
24 disp(Ro, "Ro (k) = ");
25 disp(Ro_dash, "Ro'' (k) =");
```

Scilab code Exa 6.4 Bipolar Junction Transistor

```
1 // Example 6.4: AI', AVs, Ri, eff, Ro, Ro'
2 clc, clear
3 hie=2e3; // in ohms
4 hfe=50;
5 hre=2e-4;
6 hoe=20e-6; // in amperes per volt
7 // From Fig. 6.22(a)
8 Rs=2e3; // in ohms
9 R1=90e3; // in ohms
10 R2=10e3; // in ohms
```

```
11 RC=5e3; // in ohms
12 // From the Table 6.3
13 RB=R1*R2/(R1+R2); // in ohms
14 AI = -hfe/(1+hoe*RC);
15 Ri=hie+hre*AI*RC; // in ohms
16 Ri_eff=RB*Ri/(RB+Ri); // in ohms
17 AI_dash=AI*RB/(RB+Ri);
18 AVs=AI*RC*Ri_eff/(Ri*(Rs+Ri_eff));
19 Rs_eff=Rs*RB/(Rs+RB); // in ohms
20 Yo=hoe-hfe*hre/(hie+Rs_eff); // in ohms inverse
21 Ro=1/Yo; // in ohms
22 Ro_dash=Ro*RC/(Ro+RC); // in ohms
23 Ri_eff=Ri_eff*1e-3; // in kilo-ohms
24 Ro=Ro*1e-3; // in kilo-ohms
25 Ro_dash=Ro_dash*1e-3; // in kilo-ohms
26 disp(AI_dash, "AI'' =");
27 disp(AVs, "AVs =");
28 disp(Ri_eff, "Ri, eff (k) =");
29 disp(Ro, "Ro (k) = ");
30 disp(Ro_dash, "Ro'' (k) =");
```

Scilab code Exa 6.5 Simplified h parameter model

```
1 // Example 6.5: AI, AVs, Ri, Ro'

2 clc, clear

3 hie=4e3; // in ohms

4 hfe=200;

5 // From Fig. 6.27(a)

6 Rs=5e3; // in ohms

7 R1=90e3; // in ohms

8 R2=10e3; // in ohms

9 RC=5e3; // in ohms

10 RE=1e3; // in ohms

11 // From Fig 6.27(b)

12 RB=R1*R2/(R1+R2); // in ohms
```

```
13 Ri=hie+(1+hfe)*RE; // in ohms
14 Ri_eff=RB*Ri/(RB+Ri); // in ohms
15 AI=-hfe*RB/(RB+Ri);
16 AVs=-hfe*RC*Ri_eff/(Ri*(Rs+Ri_eff));
17 Ro_dash=RC; // in ohms
18 Ri=Ri*1e-3; // in kilo-ohms
19 Ro_dash=Ro_dash*1e-3; // in kilo-ohms
20 disp(AI, "AI =");
21 disp(AVs, "AVs =");
22 disp(Ri, "Ri (k) =");
23 disp(Ro_dash, "Ro'' (k) =");
```

Scilab code Exa 6.6 Hybrid pi model

```
1 // Example 6.6: AI, Ri, AVs
2 clc, clear
3 bta=100;
4 VBE=0.7; // Cut-in voltage in volts
5 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
6 // From Fig. 6.33
7 RB=100e3; // in ohms
8 RC=3e3; // in ohms
9 VBB=3; // in volts
10
11 // DC analysis
12 // From dc equivalent circuit in Fig. 6.34(a)
13 IBQ=(VBB-VBE)/RB; // in amperes
14 ICQ=bta*IBQ; // in amperes
15 gm=ICQ/VT; // in ampere per volt
16 r_pi=bta/gm; // in ohms
17
18 // AC analysis
19 // From ac equivalent circuit using approximate
     hybrid – model in Fig. 6.34(b)
```

```
20 AI=-bta;
21 Ri=RB+r_pi; // in ohms
22 AVs=-bta*RC/(RB+r_pi);
23 Ri=Ri*1e-3; // in kilo-ohms
24 disp(AI, "AI =");
25 disp(Ri, "Ri (k) =");
26 disp(AVs, "AVs =");
```

Scilab code Exa 6.7 CC amplifier

```
1 // Example 6.7: (a) Load resistance RE to make Ri
          500 k
2 //
                   (b) AV, Ro, Ro'
3 clc, clear
4 IC=2e-3; // in amperes
5 Rs=5e3; // Source resistance in ohms
6 bta=125;
7 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
8
9 disp("Part (a)");
10 Ri=500e3; // in ohms
11 gm=IC/VT; // in mho
12 r_pi=bta/gm; // in ohms
13 RE=(Ri-r_pi)/(1+bta); // in ohms
14 REk=RE*1e-3; // in kilo-ohms
15 disp(REk, "RE (k) = ");
16
17 disp("Part (b)");
18 AV = (1+bta) * RE/(Rs+Ri);
19 Ro=(Rs+r_pi)/(1+bta); // in ohms
20 Ro_dash=Ro*RE/(Ro+RE); // in ohms
21 disp(Ro, "Ro ( ) =");
22 disp(Ro_dash, "Ro'' () =");
```

Scilab code Exa 6.8 Voltage gain

```
1 // Example 6.8: Ri, AVs
2 clc, clear
3 IC=0.2e-3; // in amperes
4 bta=125;
5 Rs=2e3; // in ohms
6 RE=100; // in ohms
7 RC=5e3; // in ohms
8 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
9 gm=IC/VT; // in mho
10 r_pi=bta/gm; // in ohms
11 Ri=r_pi+(1+bta)*RE; // in ohms
12 AVs=-bta*RC/(Rs+r_pi+(1+bta)*RE);
13 Ri=Ri*1e-3; // in kilo-ohms
14 disp(Ri,"Ri (k) =");
15 disp(AVs, "AVs =");
```

Scilab code Exa 6.9 Hybrid pi model

```
1 // Example 6.9: r , AI, Ri, AVs, Ro, Ro'
2 clc, clear
3 bta=200;
4 VT=25e-3; // Voltage equivalent to temperatue at
room temperature in volts
5 // From Fig. 6.39
6 VBE=0.7; // Cut-in voltage in volts
7 VCC=9; // in volts
8 RB=200e3; // in ohms
9 RC=2e3; // in ohms
10
```

```
11 // DC analysis
12 // From dc equivalent circuit in Fig. 6.40(a)
13 // Writing KVL from collector to base loop
14 IB=(VCC-VBE)/(RB+(1+bta)*RC); // in amperes
15 ICQ=bta*IB; // in amperes
16 gm=ICQ/VT; // in mho
17 r_pi=bta/gm; // in ohms
18
19 // AC analysis
20 // From ac equivalent circuit using Miller's theorem
      in Fig. 6.40(b)
21 // Assuming AV >> 1
22 RL=RB*RC/(RB+RC); // Effective load resistance in
     ohms
23 // Using hybrid – model and approximate resulta
     given in Table 6.5 for CE amplifier stage, we
     have
24 AI=-bta;
25 AV=-bta*RL/r_pi;
26 Ro=%inf;
27 r_pi=r_pi*1e-3; // in kilo-ohms
28 RL=RL*1e-3; // in kilo-ohms
29 disp(r_pi," r ( k ) =");
30 disp(AI, "AI =");
31 disp(AV, "AVs =");
32 disp(Ro, "Ro =");
33 disp(RL, "Ro'' (k) =");
```

Scilab code Exa 6.10 re model

```
1 // Example 6.10: Ri, eff, Ro, AV, AI
2 clc, clear
3 bta=200;
4 ro=50e3; // in ohms
5 VBE=0.7; // Cut-in voltage in volts
```

```
6 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
7 // From Fig. 6.44
8 VCC=16; // in volts
9 R1=90e3; // in ohms
10 R2=10e3; // in ohms
11 RC=2.2e3; // in ohms
12 RE=0.68e3; // in ohms
13
14 // DC analysis
15 // From the Thevnin's equivalent circuit in Fig.
      6.45(a)
16 RB=R1*R2/(R1+R2); // in ohms
17 VBB=VCC*R2/(R1+R2); // in volts
18 // From the base loop
19 IB=(VBB-VBE)/(RB+(1+bta)*RE); // in amperes
20 IE=(1+bta)*IB; // in amperes
21 re=VT/IE; // in ohms
22
23 // AC analysis
24 Ri=bta*re+(1+bta)*RE; // in ohms
25 Ri_eff=RB*Ri/(RB+Ri); // in ohms
26 AI=-bta*RB/(RB+bta*(re+RE));
27 \quad AV = -RC / RE;
28 Ri_eff=Ri_eff*1e-3; // in kilo-ohms
29 disp(Ri_eff, "Ri, eff (k) =");
30 disp(%inf, "Ro =");
31 disp(AI, "AI =");
32 disp(AV, "AVs =");
```

Chapter 7

Field Effect Transistors Characteristics and Biasing

Scilab code Exa 7.1 Transfer curve of FET

```
1 // Example 7.1: Transfer curve
2 clc, clear
3 IDSS=12; // in mili-amperes
4 VP=-5; // in volts
5 // Plotting transfer curve
6 VGS=[0:-0.01:VP]; // Gate source voltage in volts
7 // Using Shockley's equation
8 ID=IDSS*(1-VGS/VP)^2; // Drain current in mili-
amperes
9 plot(VGS,ID);
10 xtitle("Transfer Curve","VGS (V)","ID (mA)");
```

Scilab code Exa 7.2 NMOS transistor

Figure 7.1: Transfer curve of FET

```
1 // Example 7.2: (a) Region of operation
2 //
                   (b) Region of operation
3 //
                   (c) Region of operation
4 clc, clear
5 VT=2; // in volts
6 VGS=3; // in volts
7 disp(VGS-VT, "VGS - VT (V)");
8
9 disp("Part (a)");
10 disp(0.5, "VDS (V) =");
11 disp("Since VDS < VGS - VT, therefore transistor is
      in ohmic region.");
12
13 disp("Part (b)");
14 disp(1, "VDS (V) =");
15 disp("Since VDS = VGS - VT, therefore transistor is
      in saturation region.");
16
17 disp("Part (c)");
```

Scilab code Exa 7.3 n channel JFET

```
1 // Example 7.3: IDQ, VDSQ
2 clc, clear
3 IDSS=12; // in mili-amperes
4 VP=-4; // in volts
5 // From Fig. 7.28
6 VDD=12; // in volts
7 RD=1.2; // in kilo-ohms
8 // Since IG=0
9 VGS=-1.5; // in volts
10 // Using Shockley's equation
11 ID=IDSS*(1-VGS/VP)^2; // Drain current in mili-
amperes
12 VDS=VDD-ID*RD; // in volts
13 disp(ID, "IDQ (mA) =");
14 disp(VDS, "VDSQ (V) =");
```

Scilab code Exa 7.4 Self bias configuration

```
1 // Example 7.4: VDSQ, IDSQ, VD, VS
2 clc, clear
3 IDSS=6e-3; // in amperes
4 VP=-6; // in volts
5 // From Fig. 7.31
6 VDD=12; // in volts
7 RD=2.2e3; // in ohms
```


Figure 7.2: Self bias configuration

```
8 RS=1.6e3; // in ohms
9 // Plotting transfer characteristics
10 VGS=[0:-0.01:VP]; // Gate source voltage in volts
11 // Using Shockley's equation
12 ID=IDSS*(1-VGS/VP)^2; // Drain current in amperes
13 ID=ID*1e3; // Drain current in mili-amperes
14 plot(VGS, ID);
15 xtitle("Transfer Characteristics", "VGS (V)", "ID (mA)
     ");
16 // Plotting bias line
17 // From gate source circuit
18 ID=-VGS/RS; // Source current in amperes
19 ID=ID*1e3; // Source current in mili-amperes
20 plot(VGS, ID, "RED");
21 // Intersection of transfer characteristics with the
      bias curve
22 // Putting VGS = -ID*RS in Shockley's equation and
     solving, we get ID^2*RS^2 + (2*RS*VP - VP^2/IDSS)
     *ID + VP^2
```


Figure 7.3: Operating point

Scilab code Exa 7.5 Operating point

```
1 // Example 7.5: Operating point
2 clc, clear
3 VP=-5; // in volts
4 IDSS=12e-3; // in amperes
5 // From Fig. 7.34(a)
6 VDD=18; // in volts
7 R1=400; // in kilo-ohms
8 R2=90; // in kilo-ohms
9 RD=2e3; // in ohms
10 RS=2e3; // in ohms
11 // Applying Thevnin's theorem to obtain simplified
      circuit in Fig. 7.34(b)
12 VGG=VDD*R2/(R1+R2); // in volts
13 // Plotting transfer characteristics
14 VGS=[VGG:-0.01:VP]; // Gate source voltage in volts
15 // Using Shockley's equation
16 ID=IDSS*(1-VGS/VP)^2; // Drain current in amperes
17 ID=ID*1e3; // Drain current in mili-amperes
18 plot2d(VGS,ID,rect=[-5,0,3,12]);
19 xtitle("Transfer Characteristics", "VGS (V)", "ID (mA)
     ");
20 // Plotting bias line
21 // From the KVL for the gate-loop
22 ID=(-VGS+VGG)/RS; // Source current in amperes
23 ID=ID*1e3; // Source current in mili-amperes
24 plot(VGS, ID, "RED");
25 // Intersection of transfer curve with the bias
      curve
  // Putting VGS = VGG-ID*RS in Shockley's equation
26
     and solving, we get
  // ID<sup>2</sup>*RS<sup>2</sup> + (2*RS*VP - 2*VGG*RS - VP<sup>2</sup>/IDSS)*ID +
27
      (VGG-VP)^2
28 // Solving the equation
29 p_eq = poly([(VGG-VP)^2 (2*RS*VP-2*VGG*RS-VP^2/IDSS)
       RS<sup>2</sup>], "x", "coeff");
30 p_roots = roots(p_eq);
```


Figure 7.4: n channel enhancement type MOSFET

```
31 IDQ=p_roots(1); // in amperes
32 // Writing the KVL for the drain source loop
33 VDSQ=VDD-IDQ*(RD+RS); // in volts
34 IDQ=IDQ*1e3; // in mili-amperes
35 disp(VDSQ, "VDSQ (V) =");
36 disp(IDQ, "IDQ (mA) =");
```

Scilab code Exa 7.6 n channel enhancement type MOSFET

```
1 // Example 7.6: VDSQ, IDQ
2 clc, clear
3 ID=6e-3; // in amperes
4 VGS=8; // in volts
5 VT=3; // in volts
6 // From Fig. 7.37(a)
```

```
7 VDD=12; // in volts
8 RD=2e3; // in ohms
9 // Plotting transfer curve
10 k=ID/(VGS-VT)^2; // in amperes per volt square
11 VGS=[3:0.01:VDD]; // Gate source voltage in volts
12 ID=k*(VGS-VT)^2; // Drain current in amperes
      .... (i)
13 ID=ID*1e3; // Drain current in mili-amperes
14 plot(VGS, ID);
15 xtitle("Transfer Curve", "VGS (V)", "ID (mA)");
16 // Plotting bias line
17 // From the simplified dc equivalent circuit in Fig.
       7.37(b)
18 VGS=[0:0.01:VDD]; // Gate source voltage in volts
19 ID=(VDD-VGS)/RD; // Source current in amperes
20 ID=ID*1e3; // Source current in mili-amperes
21 plot(VGS, ID, "RED");
22 // Intersection of transfer curve with the bias
      curve
23 // Putting VGS = VDD-ID*RD in equation (i) and
     solving, we get ID<sup>2</sup>*RD<sup>2</sup> + (2*RD*VT - 2*VDD*RD -
      1/k + ID + (VDD-VT)<sup>2</sup>
24 // Solving the equation
25 p_eq = poly([(VDD-VT)^2 (2*RD*VT-2*VDD*RD-1/k) RD
      ^2],"x","coeff");
26 p_roots= roots(p_eq);
27 IDQ=p_roots(1); // in amperes
28 VGSQ=VDD-IDQ*RD; // in volts
29 IDQ=IDQ*1e3; // in mili-amperes
30 disp(VGSQ, "VDSQ (V) =");
31 disp(IDQ, "IDQ (mA) =");
```

Scilab code Exa 7.7 Operating point of MOSFET

Figure 7.5: Operating point of MOSFET

```
1 // Example 7.7: IDQ, VDSQ, VGSQ
2 clc, clear
3 ID=5e-3; // in amperes
4 VGS=6; // in volts
5 VT=3; // in volts
6 // From Fig. 7.39(a)
7 VDD=24; // in volts
8 R1=10; // in mega-ohms
9 R2=6.8; // in mega-ohms
10 RD=2.2e3; // in ohms
11 RS=0.75e3; // in ohms
12 // Applying Thevnin's theorem to obtain simplified
     circuit in Fig. 7.39(b)
13 VGG=VDD*R2/(R1+R2); // in volts
14 // Plotting transfer characteristics
15 k=ID/(VGS-VT)^2; // in amperes per volt square
16 VGS=[3:0.01:VGG]; // Gate source voltage in volts
17 ID=k*(VGS-VT)^2; // Drain current in amperes
      .... (i)
```

```
18 ID=ID*1e3; // Drain current in mili-amperes
19 plot(VGS,ID);
20 xtitle("Transfer Characteristics", "VGS (V)", "ID (mA)
      ");
21 // Plotting bias line
22 VGS=[0:0.01:VGG]; // Gate source voltage in volts
23 // Writing KVL for the gate-source loop
24 ID=(VGG-VGS)/RS; // Source current in amperes
25 ID=ID*1e3; // Source current in mili-amperes
26 plot(VGS, ID, "RED");
27 // Intersection of transfer curve with the bias
      curve
28 // Putting VGS = VGG-ID*RD in equation (i) and
      solving, we get ID^2*RS^2 + (2*RS*VT - 2*VGG*RS - 2*VGG*RS)
       1/k + ID + (VGG-VT)<sup>2</sup>
29 // Solving the equation
30 \text{ p_eq} = \text{poly}([(VGG-VT)^2 (2*RS*VT-2*VGG*RS-1/k) RS)]
      ^2],"x","coeff");
31 p_roots = roots(p_eq);
32 IDQ=p_roots(1); // in amperes
33 VGSQ=VGG-IDQ*RS; // in volts
34 // From the output circuit
35 VDSQ=VDD-IDQ*(RD+RS); // in volts
36 IDQ=IDQ*1e3; // in mili-amperes
37 disp(IDQ, "IDQ (mA) =");
38 \text{ disp}(VDSQ, "VDSQ (V) =");
39 disp(VGSQ, "VGSQ (V) =");
```

103

Chapter 8

FET Amplifiers

Scilab code Exa 8.1 Transconductance

```
1 // Example 8.1: gm
2 clc, clear
3 IDSS=12; // in mili-amperes
4 Vp=-5; // in volts
5 VGS=-1.5; // in volts
6 gmo=2*IDSS/abs(Vp); // in mili-Siemens
7 gm=gmo*(1-VGS/Vp); // in mili-Siemens
8 disp(gm,"gm (mS) =");
```

Scilab code Exa 8.2 Fixed bias CS amplifier

```
1 // Example 8.2: Voltage gain
2 clc, clear
3 gm=2; // in mili-ampere per volt
4 rd=10; // in kilo-ohms
5 // From Fig. 8.7
6 RD_eff=10*10/(10+10); // in kilo-ohms
7 AV=-gm*rd*RD_eff/(rd+RD_eff); // Voltage gain
8 disp(AV,"Voltage gain =");
```

Scilab code Exa 8.3 Self bias CS amplifier

```
1 // Example 8.3: gm, , Ri, Ro, AV
2 clc, clear
3 VGSQ=-2.6; // in volts
4 IDSS=8; // in mili-amperes
5 Vp=-6; // in volts
6 rd=50; // in kilo-ohms
7 // From Fig. 8.11
8 RD=3.3; // in kilo-ohms
9 RG=1; // in mega-ohms
10 RS=1; // in kilo-ohms
11 gmo=2*IDSS/abs(Vp); // in mili-ampere per volt
12 gm=gmo*(1-VGSQ/Vp); // in mili-ampere per volt
13 mu=rd*gm; //
14 Ro=(rd+(1+mu)*RS)*RD/(RD+rd+(1+mu)*RS); // in kilo-
     ohms
15 AV = -mu * RD / (RD + rd + (1 + mu) * RS);
16 disp(gm, "gm (mA/V) =");
17 disp(mu," =");
18 disp(RG, "Ri (M) = ");
19 disp(Ro,"Ro ( k ) =");
20 disp(AV, "AV =");
```

Scilab code Exa 8.4 JFET source follower

```
1 // Example 8.4: AV, Ri, Ro
2 clc, clear
3 IDSS=16; // in mili-amperes
4 Vp=-4; // in volts
5 rd=40; // in kilo-ohms
```

```
6 // From Fig. 8.14
7 RS=2.2; // in kilo-ohms
8 // Using dc analysis
9 VGSQ=-2.8; // in volts
10 gmo=2*IDSS/abs(Vp); // in mili-ampere per volt
11 gm=gmo*(1-VGSQ/Vp); // in mili-ampere per volt
12 mu=rd*gm; // Amplification factor
13 AV=mu*RS/(rd+(1+mu)*RS);
14 Ri=10; // in mega-ohms
15 Ro=rd*RS/(rd+(1+mu)*RS); // in kilo-ohms
16 disp(AV, "AV =");
17 disp(Ri, "Ri (M ) =");
18 disp(Ro, "Ro (k ) =");
```

Scilab code Exa 8.5 Common gate JFET amplifier

```
1 // Example 8.5: AV, Ri, Ro
2 clc, clear
3 VGSQ=-1.8; // in volts
4 rd=40; // in kilo-ohms
5 IDSS=8; // in mili-amperes
6 Vp=-2.8; // in volts
7 // From Fig. 8.16
8 RD=3.3; // in kilo-ohms
9 RS=1.5; // in kilo-ohms
10 gmo=2*IDSS/abs(Vp); // in mili-Siemens
11 gm=gmo*(1-VGSQ/Vp); // in mili-Siemens
12 mu=rd*gm; // Amplification factor
13 AV = (1 + mu) * RD / (rd + RD);
14 Ri_dash=(RD+rd)/(1+mu); // in kilo-ohms
15 Ri=Ri_dash*RS/(Ri_dash+RS); // in kilo-ohms
16 Ro=rd*RD/(rd+RD);
17 disp(AV, "AV =");
18 disp(Ri, "Ri (k) =");
19 disp(Ro, "Ro (k) = ");
```

Scilab code Exa 8.6 E MOSFET amplifier

```
1 // Example 8.6: gm, Ri, Ro, AV
2 clc, clear
3 VGSQ=8; // in volts
4 VT=3; // in volts
5 k=0.3e-3;
6 // From Fig. 8.18
7 RF=10e6; // in ohms
8 RD=2.2e3; // in ohms
9 gm=2*k*(VGSQ-VT); // in Siemens
10 Ri=RF/(1+gm*RD); // in ohms
11 Ro=RF*RD/(RF+RD); // in ohms
12 AV = -gm * Ro;
13 gm=gm*1e3; // in mili-Siemens
14 Ri=Ri*1e-6; // in mega-ohms
15 Ro=Ro*1e-3; // in kilo-ohms
16 disp(gm, "gm (mS) =");
17 disp(AV, "AV =");
18 disp(Ri,"Ri (M) =");
19 disp(Ro, "Ro (k) = ");
```
Chapter 9

Multistage Amplifiers

Scilab code Exa 9.1 CE CC configuration

```
1 // Exmaple 9.1: Overall voltage gain, Overall
     current gain
2 clc, clear
3 bta=100;
4 r_pi=0.5; // in kilo-ohms
5 // From Fig. 9.4
6 Rs=2; // in kilo-ohms
7 RC=2; // in kilo-ohms
8 RE=5; // in kilo-ohms
9 // As the first stage is a CE amplifier stage
10 AV1=-bta*RC/(Rs+r_pi); // Voltage gain of first
     amplifier
11 // The second stage is a CC amplifier
12 AV2=(1+bta)*RE/(Rs+r_pi+(1+bta)*RE); // Voltage gain
      of second amplifier
13 AV=AV1*AV2; // Overall voltage gain
14 AI=Rs*AV/RE; // Overall current gain
15 disp(AV, "Overall voltage gain =");
16 disp(AI, "Overall current gain =");
```

Scilab code Exa 9.2 Two stage amplifier

```
1 // Example 9.2: Overall voltage gain, Current gain,
     Input impedance, Output impedance
2 clc, clear
3 bta=100;
4 VBE=0.7; // in volts
5 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
6 // From Fig. 9.7
7 R1=22; // in kilo-ohms
8 R2=3.3; // in kilo-ohms
9 RC1=6; // in kilo-ohms
10 RE1=0.5; // in kilo-ohms
11 R3=16; // in kilo-ohms
12 R4=6.2; // in kilo-ohms
13 RC2=2; // in kilo-ohms
14 RE2=1; // in kilo-ohms
15 RL=10; // in kilo-ohms
16
17
18 // DC analysis
19
20 // From simplified dc equivalent circuit for stage 1
      in Fig. 9.8(a)
21 RB1=R1*R2/(R1+R2); // in kilo-ohms
22 VBB1=15*R2/(R1+R2); // in volts
23 IB1=(VBB1-VBE)/(RB1+(1+bta)*RE1); // in mili-amperes
24 IC1=bta*IB1; // in mili-amperes
25 gm1=IC1/VT; // in mili-Siemens
26 r_pi1=bta/gm1; // in kilo-ohms
27
28 // From simplified dc equivalent circuit for stage 2
      in Fig. 9.8(b)
```

```
29 RB2=R3*R4/(R3+R4); // in kilo-ohms
30 VBB2=15*R4/(R3+R4); // in volts
31 IB2=(VBB2-VBE)/(RB2+(1+bta)*RE2); // in mili-amperes
32 IC2=bta*IB2; // in mili-amperes
33 gm2=IC2/VT; // in mili-Siemens
34 r_pi2=bta/gm2; // in kilo-ohms
35
36
37 // AC analysis
38
39 // Applying Thevnin theorem at 1-1' in ac equivalent
      circuit in Fig. 9.9 to obtain equivalent circuit
      of stage 1 in Fig. 9.10(a)
40 RL1=RC1*RB2/(RC1+RB2); // Effective load for first
     stage in kilo-ohms
41 AV1=-bta*RL1/r_pi1; // Voltage gain of first stage
42
43 // Using the Thevnin's equivalent of first stage the
      equivalent circuit of second stage is shown in
     Fig. 9.10(b)
44 RL2=RC2*RL/(RC2+RL); // Effective load for second
     stage in kilo-ohms
45 AV2=-bta*RL2/(RL1+r_pi2); // Voltage gain of second
     stage
46
47 Io_Ic2=-RC2/(RC2+RL); // Io/Ic2
48 Ic2_Ib2=-bta; // Ic2/Ib2
49 //From simplified diagram in Fig. 9.11
50 Ib2_Ic1=-RL1/(RL1+r_pi2); // Ib2/Ic1
51 Ic1_Ib1=-bta; // Ic1/Ib1
52 Ib1_Ii=RB1/(RB1+r_pi1); // Ib1/Ii
53
54 AV=AV1*AV2; // Overall voltage gain
55 AI=Io_Ic2*Ic2_Ib2*Ib2_Ic1*Ic1_Ib1*Ib1_Ii; // Overall
      current gain
56 Ri=RB1*r_pi1/(RB1+r_pi1); // Input impedance in kilo
     -ohms
57 Ro=RC2*RL/(RC2+RL); // Output impedance in kilo-ohms
```

```
58 disp(AV, "Overall voltage gain =");
59 disp(AI, "Overall current gain =");
60 disp(Ri, "Imput impedance (k) =");
61 disp(Ro, "Output impedance (k) =");
```

Scilab code Exa 9.3 CC CE composite pair

```
1 // Example 9.3: Voltage gain
2 clc, clear
3 bta=150;
4 VA=130; // in volts
5 IC=100; // in micro-amperes
6 Rs=50; // in kilo-ohms
7 RC=250; // in kilo-ohms
8 VT=25; // Voltage equivalent to temperatue at room
     temperature in mili-volts
9 gm=IC/VT; // in mili-Siemens
10 ro=VA/IC; // in Megaohms
11 ro=ro*1e3; // in kilo-ohms
12 r_pi=bta/gm; // in kilo-ohms
13 // From ac equivalent circuit of the first CC stage
     using hybrid – model in Fig. 9.13(a)
14 // Voltage gain of CC stage
15 AV1=(1+bta)*ro/(Rs+r_pi+(1+bta)*ro); // Voltage gain
      of first stage
16 Ro1=(Rs+r_pi)/(1+bta); // in kilo-ohms
17 Ro1_dash=ro*Ro1/(ro+Ro1); // in kilo-ohms
18 // From the ac equivalent circuit of second stage in
      Fig. 9.13(b)
19 RL=ro*RC/(ro+RC); // Effective load for second stage
      in kilo-ohms
20 AV2=-bta*RL/(Ro1_dash+r_pi); // Voltage gain of
     second stage
21 AV=AV1*AV2; // Overall voltage gain
22 disp(AV, "Voltage gain =");
```

Scilab code Exa 9.4 FET cascade

```
1 // Example 9.4: (i) Voltage gain, Input impedance,
     Output impedance
2 //
                  (ii) Output voltage
3 clc, clear
4 gm=2.5; // in mili-Siemens
5 // From Fig. 9.14(a)
6 RG=3; // in Mega-ohms
7 RD=2.2; // in kilo-ohms
8
9 disp("Part (i)");
10 AV1=-gm*RD; // Voltage gain of both individual
     stages
11 AV=AV1^2; // Overall voltage gain
12 disp(AV, "Voltage gain =");
13 disp(RG, "Input impedance (M) =");
14 disp(RD, "Output impedance (k) =");
15
16 disp("Part (ii)");
17 Vi=10; // in mili-volts
18 RD_dash=RD*10/(RD+10); // Effective load of secong
     stage in kilo-ohms
19 // Now the gain of second stage
20 AV2=-gm*RD_dash;
21 AV=AV1*AV2; // Overall voltage gain
22 Vo=Vi*AV; // Output voltage in mili-volts
23 disp(Vo, "Output voltage (mV) =");
```

Scilab code Exa 9.5 Three stage amplifier

```
1 // Example 9.5: (i) Gain of each stage
2 //
                  (ii) Overall voltage gain
3 //
                 (iii) Output resistance Ro'
4 clc, clear
5 gm=1 // in mili-mho
6 rd=40; // in kilo-ohms
7 // From Fig. 9.14(b)
8 RD1=40 // in kilo-ohms
9 RS1=2 // in kilo-ohms
10 RD2=10 // in kilo-ohms
11 RS3=5 // in kilo-ohms
12 mu=rd*gm; // Amplification factor
13
14 disp("Part (i)");
15 AV1=-mu*RD1/(rd+RD1+(1+mu)*RS1); // Voltage gain of
      first stage (CS amplifier with RS1)
16 AV2=-mu*RD2/(rd+RD2); // Voltage gain of second
      stage (CS amplifier stage)
17 AV3=mu*RS3/(rd+(1+mu)*RS3); // Voltage gain of third
      stage (CD amplifier stage)
18
  disp(AV1, "Voltage gain of first stage (CS amplifier
     with RS1) =");
  disp(AV2, "Voltage gain of second stage (CS amplifier
19
      stage) =");
20 disp(AV3," Voltage gain of third stage (CD amplifier
     stage) =");
21
22 disp("Part (ii)");
23 AV=AV1*AV2*AV3; // Overall voltage gain
24 disp(AV, "Overall voltage gain =");
25
26 disp("Part (iii)");
27 // Last stage is a CD amplifier, therefore
28 Ro=rd/(1+mu); // in kilo-ohms
29 Ro_dash=Ro*RS3/(Ro+RS3); // in kilo-ohms
30 disp(Ro_dash, "Output resistance (k) =");
```

Scilab code Exa 9.6 FET and BJT cascade

```
1 // Example 9.6: Input impedance, Output impedance,
     Voltage gain
2 clc, clear
3 gm=2.5; // in mili-Siemens
4 r_pi=1.3; // in kilo-ohms
5 bta=200;
6 // From Fig. 9.14(c)
7 Ri2=15*4.7*1.3/(15*4.7+15*1.3+4.7*1.3); // Input
     impedance of second stage in kilo-ohms
8 RD_dash=1.8*Ri2/(1.8+Ri2); // Effective load for the
      first stage in kilo-ohms
9 AV1=-gm*RD_dash; // Voltage gain of the loaded 1st
     stage
10 AV2=-bta*2.7/r_pi; // Voltage gain of the 2nd stage
11 AV=AV1*AV2; // Overall voltage gain
12 disp(10, "Input impedance (M) =");
13 disp(2.7, "Output impedance (k) = ");
14 disp(AV, "Voltage gain =");
```

Scilab code Exa 9.7 Darlington emitter follower

```
1 // Example 9.7: AV, Ri, Ro
2 clc, clear
3 RE=0.5; // in kilo-ohms
4 Rs=50; // in kilo-ohms
5 Ic1=15e-3; // in mili-amperes
6 Ic2=1; // in mili-amperes
7 VA=100; // in volts
8 bta=150;
```

```
9 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
10 // For Q1
11 gm1=Ic1/VT; // in mili-mho
12 r_pi1=bta/gm1; // in kilo-ohms
13 ro1=VA/Ic1; // in kilo-ohms
14 // For Q2
15 gm2=Ic2/VT; // in mili-mho
16 r_pi2=bta/gm2; // in kilo-ohms
17 ro2=VA/Ic2; // in kilo-ohms
18 // From ac equivalent circuit in Fig. 9.17
19 RE2=ro2*RE/(ro2+RE); // Effective load for stage Q2
     in kilo-ohms
20 Ri2=r_pi2+(1+bta)*RE2; // Input resistance for
     second stage in kilo-ohms
21 AV2=(1+bta)*RE2/Ri2; // Voltage gain of the second
     stage
22 RE1=ro1*Ri2/(ro1+Ri2); // Effective load for the
     first stage in kilo-ohms
23 Ri1=r_pi1+(1+bta)*RE1; // Input resistance for first
      stage in kilo-ohms
24 AV1=(1+bta)*RE1/Ri1; // Voltage gain of first stage
25 AV=AV1*AV2; // Overall voltage gain
26 Ro=ro2*(r_pi2+ro1)/(ro2*(1+bta)+r_pi2+ro1); //
     Output resistance in kilo-ohms
27 Ri1=Ri1*1e-3; // in Mega-ohms
28 disp(AV, "AV =");
29 disp(Ri1, "Ri (M) =");
30 disp(Ro, "Ro (k) = ");
```

Scilab code Exa 9.8 Cascode circuit

```
1 // Example 9.8:Gain
2 clc, clear
3 IC=1; // in mili-amperes
```

4 bta=120;

- 5 VT=25e-3; // Voltage equivalent to temperatue at room temperature in volts
- 6 // From Fig. 9.20
- 7 RC=6; // in kilo-ohms
- 8 AV1=-1; // Voltage gain of CE stage (from Eqn. 9.35)
- 9 gm=IC/VT; // in mili-mho
- 10 AV2=gm*RC; // Voltage gain of CB stage
- 11 AV=AV1*AV2; // Overall voltage gain
- 12 disp(AV, "Gain =");

Chapter 10

Frequency Response of Amplifiers

Scilab code Exa 10.1 Bode plots

```
1 // Example 10.1: Asymptotic magnitude and phase
      response curves
2 clc, clear
3 w = [0:70];
4 // Asymptotic magnitude response curve
5 for i=1:length(w)
6
       a(i)=32;
7
       if w(i) <10 then
            b(i)=0;
8
            c(i)=0;
9
10
        elseif w(i) <50</pre>
11
            b(i) = 14*(w(i) - 10)/40;
12
            c(i) = 0;
13
        else
14
            b(i) = 20 * \log 10 (w(i) / 10);
```


Figure 10.1: Bode plots

Figure 10.2: Bode plots

```
15
            c(i) = -20 * \log 10 (w(i) / 50);
16
        end
17 end
18 A=a+b+c;
19 plot2d(w, A, rect = [0, 0, 70, 50]);
20 xtitle("Asymptotic magnitude response curve"," (rad
      /sec)","20 log |A(j)| in dB");
21 // Asymptotic phase response curve
22 scf(1);
23 w = [1:600];
24 for i=1:length(w)
       if w(i)<1 then</pre>
25
26
            theta1(i)=0;
        elseif w(i)<5</pre>
27
28
            theta1(i)=31.45*(w(i)-1)/4;
29
            theta2(i)=0;
        elseif w(i) <100</pre>
30
31
            theta1(i) = 45 * \log 10 (w(i) / 10);
32
            theta2(i) = -45 * log10(w(i)/50);
        elseif w(i) <500</pre>
33
34
            theta1(i)=90;
            theta2(i) = -58.55 - 31.45 * (w(i) - 100) / 400;
35
36
        else
37
            theta1(i)=90;
            theta2(i) = -90;
38
39
        end
40 \text{ end}
41 theta=theta1+theta2;
42 plot(w,theta);
43 xtitle("Asymptotic phase curve response"," (rad/sec
      )"," ()")
```


Figure 10.3: Bode plots

Figure 10.4: Bode plots

Scilab code Exa 10.2 Bode plots

```
1 // Example 10.2: Bode's plots
2 clc, clear
3 w = [0:0.1:8];
4 // Asymptotic magnitude response curve
5 for i=1:length(w)
        a(i)=40;
6
7
        if w(i) < 1.3 then
8
             b(i) = 20 * w(i);
9
             c(i) = 0;
             d(i) = 0;
10
11
             e(i)=0;
12
        elseif w(i)<3</pre>
13
             b(i) = 20 * w(i);
             c(i) = 20*(w(i) - 1.3);
14
15
             d(i) = 0;
             e(i)=0;
16
        elseif w(i) <6</pre>
17
18
             b(i) = 20 * w(i);
19
             c(i) = 20 * (w(i) - 1.3);
20
             d(i) = -20*(w(i) - 3);
21
             e(i)=0;
22
        else
23
             b(i)=20*w(i);
24
             c(i) = 20 * (w(i) - 1.3);
25
             d(i) = -20 * (w(i) - 3);
26
             e(i) = -20*(w(i) - 6);
27
        end
28 \text{ end}
29 \quad A=a+b+c+d+e;
30 plot2d(w,A,rect=[0,0,7,200]);
31 xtitle("Amplitude (Gain) |A(j)| in dB", "log "," |
      A(j) | dB");
32 // Asymptotic phase response curve
33 scf(1);
34 for i=1:length(w)
        thetab=90;
35
```

```
36
        if w(i) < 0.3 then
37
            thetac(i)=0;
38
            thetad(i)=0;
39
            thetae(i)=0;
40
        elseif w(i)<2</pre>
            thetac(i) = 45*(w(i) - 0.3);
41
42
            thetad(i)=0;
            thetae(i)=0;
43
        elseif w(i) <2.3</pre>
44
            thetac(i) = 45 * (w(i) - 0.3);
45
            thetad(i) = -45*(w(i)-2);
46
            thetae(i)=0;
47
48
        elseif w(i)<4</pre>
            thetac(i) = 90;
49
            thetad(i) = -45*(w(i)-2);
50
51
            thetae(i)=0;
        elseif w(i)<5</pre>
52
            thetac(i) = 90;
53
            thetad(i)=-90;
54
55
            thetae(i)=0;
        elseif w(i)<7</pre>
56
            thetac(i) = 90;
57
            thetad(i) = -90;
58
            thetae(i) = -45*(w(i)-5);
59
60
        else
61
            thetac(i) = 90;
62
            thetad(i)=-90;
            thetae(i) = -90;
63
64
        end
65 end
66 theta=thetab+thetac+thetad+thetae;
67 plot(w,theta);
                      ( ) in degrees", "log10 ", " ( )"
68 xtitle("Phase
      )
```

Scilab code Exa 10.3 Pole of transfer function

```
1 // Example 10.3: CS, Zero frequency
2 clc, clear
3 gm=1e-3; // in mho
4 fL=10; // in hertz
5 // From Fig. 10.10
6 RS=6e3; // in ohms
7 I=RS/(1+RS*gm); // Impedance seen by CS in ohms
8 CS=1/(2*%pi*fL*I); // in farads
9 CS=CS*1e6; // in micro-farads
10 disp(CS, "CS ( F) =");
11 disp("Here at f = 0 Hz, CS has infinite reactance.")
;
12 disp("Therefore, zero frequency fzero = 0 Hz here, i
.e. the voltage transfer function is zero at DC."
);
```

Scilab code Exa 10.4 Low frequency response

Scilab code Exa 10.5 Single pole model

```
1 // Example 10.5: C
2 clc, clear
3 IC=1e-3; // in amperes
4 b_o=120;
5 b_jw=10;
6 f=25e6; // in hertz
7 C_mu=1e-12; // in farads
8 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
9 wb=sqrt((2*%pi*f)^2*b_jw^2/(b_o^2-b_jw^2)); // in
     rad/sec
10 wT=wb*b_o; // in hertz
11 gm=IC/VT; // in mho
12 C_pi=gm/wT-C_mu; // in farads
13 C_pi=C_pi*1e12; // in pico-farads
14 disp(C_pi," C (pF) =");
```

Scilab code Exa 10.7 Upper half power frequency

```
1 // Example 10.7: (a) Midband gain, Upper half-power
     frequency
2 / /
                    (b) Zi
3 clc, clear
4 ICQ=1e-3; // in amperes
5 RS=300; // in ohms
6 RC=1.2e3; // in ohms
7 bta=125;
8 fT=300e6; // in hertz
9 C_mu=0.5e-12; // in farads
10 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
11
12 disp("Part (a)");
13 gm=ICQ/VT; // in mho
14 r_pi=bta/gm; // in ohms
```

```
15 // To find C_pi
16 C_pi=gm/(2*%pi*fT)-C_mu; // in farads
17 AVo=-bta*RC/(RS+r_pi); // Midband gain
18 disp(AVo, "Midband gain =");
19 R_pi0=RS*r_pi/(RS+r_pi);
20 a1=R_pi0*C_pi+(R_pi0+RC*(1+gm*R_pi0))*C_mu; // in
     seconds
21 a2=R_pi0*RC*C_pi*C_mu; // in seconds
22 p1=1/a1; // in rad/sec
23 p2=a1/a2; // in rad/sec
24 disp(p2/p1,"p2/p1 =");
25 disp("Since p2/p1 >> 8, therefore dominant-pole
     approximation holds good.");
26 wH=p1*1e-6; // in M rad/sec
27 disp(wH, "Upper half-power frequency (M rad/sec) =");
28
29 disp("Part (b)");
30 CM=C_pi+C_mu*(1+gm*RC); // in farads
31 Zi=r_pi/(1+%i*wH*1e6*CM*r_pi); // in ohms
32 disp(Zi, "Zi ( ) =");
```

Scilab code Exa 10.12 Dominant pole approximation

```
1 // Example 10.12: (a) Approximate value of fH
2 // (b) Approximate location of the
      closest non-dominant pole
3 clc, clear
4 RS=600; // in ohms
5 RC1=1.5e3; // in ohms
6 RC2=600; // in ohms
7 r_pi1=1.2e3; // in ohms
8 gm1=0.1; // in mho
9 C1=24.5e-12; // in farads
10 C_pi1=C1; // in farads
11 C2=0.5e-12; // in farads
```

```
12 C_mu1=C2; // in farads
13 r_pi2=2.4e3; // in ohms
14 gm2=0.05; // in mho
15 C3=19.5e-12; // in farads
16 C_pi2=C3; // in farads
17 C4=0.5e-12; // in farads
18 C_mu2=C4; // in farads
19
20 function[c]=parallel(a,b)
21
       c=a*b/(a+b);
22 endfunction
23
24 disp("Part (a)");
25 R11_0=parallel(RS,r_pi1); // in ohms
26 R33_0=parallel(RC1,r_pi2); // in ohms
27 R22_0=R11_0*(1+gm1*R33_0)+R33_0; // in ohms
28 R44_0=R33_0*(1+gm2*RC2)+RC2; // in ohms
29 a1=R11_0*C1+R22_0*C2+R33_0*C3+R44_0*C4; // in
      seconds
30 fH=1/(2*%pi*a1); // in hertz
31 fH=fH*1e-6; // in Mega-hertz
32 \text{ disp(fH,"fH (MHz) =");}
33
34 disp("Part (b)");
35 R33_1=R33_0; // in ohms
36 R44_1=R44_0; // in ohms
37 // From Fig. 10.61(a)
38 R22_1=R33_0; // in ohms
39 // From Fig. 10.61(b)
40 R44_3=RC2; // in ohms
41 // From Fig. 10.61(c)
42 R33_2=parallel(parallel(r_pi2,RC2),parallel(1/gm1,
     R11_0));
43 R44_2=R33_2*(1+gm2*RC2)+RC2; // in ohms
44 a2=R11_0*C1*R22_1*C2+R11_0*C1*R33_1*C3+R11_0*C1*
     R44_1*C4+R22_0*C2*R33_2*C3+R22_0*C2*R44_2*C4+
     R33_0*C3*R44_3*C4; // in seconds
45 p2=a1/a2;
```

```
126
```

Scilab code Exa 10.13 Cascode amplifier

```
1 // Example 10.13: (a) fH for cascode amplifier
2 //
                     (b) fH for common -emitter stage
3 clc, clear
4 RC1=1.5e3; // in ohms
5 RC2=RC1;
6 RS=300; // in ohms
7 r_pi=2e3; // in ohms
8 gm=0.05; // in mho
9 bta=100;
10 C_pi=19.5e-12; // in farads
11 C_mu=0.5e-12; // in farads
12
13 disp("Part (a)");
14 R_pi1=RS*r_pi/(RS+r_pi); // in ohma
15 Ri2=r_pi/(1+bta); // in ohms
16 RL1=RC1*Ri2/(RC1+Ri2); // in ohms
17 a11=R_pi1*C_pi+(R_pi1*(1+gm*RL1)+RL1)*C_mu; // in
     seconds
18 a12=C_pi/gm+C_mu*RC2; // in seconds
19 a1=a11+a12; // in seconds
20 fH=1/(2*%pi*a1); // in hertz
21 fH=fH*1e-6; // in Mega-hertz
22 disp(fH,"fH for cascode amplifier (MHz) =");
23
24 disp("Part (b)");
25 a1=R_pi1*C_pi+(R_pi1*(1+gm*RC1)+RC1)*C_mu; // in
     seconds
26 fH=1/(2*%pi*a1); // in hertz
```

```
27 fH=fH*1e-6; // in Mega-hertz
28 disp(fH,"fH for common-emitter stage (MHz) =");
```

Scilab code Exa 10.15 Capacitances of transistor

```
1 // Example 10.15: (a) CB and CL
2 //
                     (b) Zero introduced by CE
3 clc, clear
4 RE=1.5e3; // in ohms
5 Rs=600; // in ohms
6 bta=100;
7 r_pi=1e3; // in ohms
8 fL=50; // in hertz
9
10 disp("Part (a)");
11 fLB=fL/2; // in hertz
12 fLE=fLB; // in hertz
13 CB=1/(2*%pi*fLB*(Rs+r_pi)); // in farads
14 CB=CB*1e6; // in micro-farads
15 function[c]=parallel(a,b)
16
       c=a*b/(a+b);
17 endfunction
18 CE=1/(2*%pi*fLE*parallel(RE,(Rs+r_pi)/(1+bta))); //
     in farads
19 CE=CE*1e6; // in micro-farads
20 disp(CB, "CB ( F ) =");
21 disp(CE, "CE ( F) =");
22
23 disp("Part (b)");
24 fE=1e6/(2*%pi*RE*CE); // in hertz
25 disp(fE, "fE (Hz) =");
```

Scilab code Exa 10.16 Common emitter stage

```
1 // Example 10.16: AVo, fH
2 clc, clear
3 RC=1.5e3; // in ohms
4 Rs=0.6e3; // in ohms
5 // From Fig. 10.69
6 C_pi=19.5e-12; // in farads
7 r_pi=1e3; // in ohms
8 C_mu=0.5e-12; // in farads
9 gm=0.1; // in mho
10 bta=r_pi*gm;
11 AVo=-bta*RC/(Rs+r_pi);
12 R_pi=Rs*r_pi/(Rs+r_pi); // in ohms
13 R_mu=R_pi+(1+gm*R_pi)*RC; // in ohms
14 a1=R_pi*C_pi+R_mu*C_mu; // in seconds
15 a2=R_pi*C_pi*R_mu*C_mu; // in seconds
16 p2_pi=a1^2/a2; // p2/p1
17 disp("Since p2/pi >> 8, therefore dominant-pole
      approximation holds good.");
18 fH=1/(2*%pi*a1); // in hertz
19 fH=fH*1e-6; // in Mega-hertz
20 disp(AVo, "AVo =");
21 disp(fH, "fH (MHz) =");
```

Scilab code Exa 10.17 Time constant method

```
1 // Example 10.17: (b) a1, a2
2 clc, clear
3 RS=0.3e3; // in ohms
4 r_pi=2e3; // in ohms
5 RC=0.6; // in ohms
6 gm=0.1e-3; // in mho
7 C_pi=19.5e-12; // in farads
8 C_mu=0.5e-12; // in farads
9 R_pi=RS*r_pi/(RS+r_pi); // in ohms
10 a1=C_pi*R_pi+C_mu*(R_pi+RC+gm*R_pi*RC); // in
```

```
seconds
11 a1=a1*1e9; // in nano-seconds
12 a2=C_pi*R_pi*C_mu*RC; // in seconds square
13 disp(a1,"a1 (ns) =");
14 disp(a2,"a2 (sec square) =");
```

Scilab code Exa 10.18 Gain bandwidth product

```
1 // Example 10.18: Upper 3 dB frequency
2 clc, clear
3 r_pi1=1.4e3; // in ohms
4 r_pi2=2.8e3; // in ohms
5 gm1=0.15; // in mho
6 gm2=0.05; // in mho
7 C_pi1=20e-12; // in farads
8 C_pi2=25e-12; // in farads
9 C_mu1=0.5e-12; // in farads
10 C_mu2=C_mu1 // in farads
11 bta1=gm1*r_pi1;
12 bta2=gm2*r_pi2;
13 // From Fig. 10.71
14 RS=600; // in ohms
15 RC1=1.5e3; // in ohms
16 RL2=600; // in ohms
17 // From ac model in Fig. 10.72
18 R_pi1=RS*r_pi1/(RS+r_pi1); // in ohms
19 RL1=RC1*r_pi2/(RC1+r_pi2); // in ohms
20 R_mu1=R_pi1+RL1+gm1*RL1*R_pi1; // in ohms
21 R_pi2=RL1; // in ohms
22 R_mu2=R_pi2+RL2+gm2*RL2*R_pi2; // in ohms
23 all=C_pil*R_pil+C_mul*R_mul; // in seconds
24 a12=C_pi2*R_pi2+C_mu2*R_mu2; // in seconds
25 a1=a11+a12; // in seconds
26 fH1=1/(2*%pi*a11); // in hertz
27 fH2=1/(2*%pi*a12); // in hertz
```

```
28 fH=1/(2*%pi*a1); // in hertz
29 fH1=fH1*1e-6; // in Mega-hertz
30 fH2=fH2*1e-6; // in Mega-hertz
31 fH=fH*1e-6; // in Mega-hertz
32 AV1=-bta1*RC1/(RS+r_pi1); // Gain of first stage
33 AV2=-bta2*RL2/(RC1+r_pi2); // Gain of second stage
34 AV=AV1*AV2; // Gain of cascade
35 disp(fH, "Upper 3 dB frequency (MHz) =");
36 disp("Bandwidth:");
37 disp(fH1, "Stage 1 only (MHz) =");
38 disp(fH2, "Stage 2 only (MHz) =");
39 disp(fH, "Cascade (MHz) =");
40 disp("Gain:");
41 disp(abs(AV1), "Stage 1 only =");
42 disp(abs(AV2), "Stage 2 only =");
43 disp(AV, "Cascade =");
44 disp("Gain-bandwidth product:");
45 disp(fH1*abs(AV1)*1e6, "Stage 1 only (MHz) =");
46 disp(fH2*abs(AV2)*1e6, "Stage 2 only (MHz) =");
47 disp(fH*AV*1e6, "Cascade (MHz) =");
```

Scilab code Exa 10.19 Approximation of fH

```
1 // Example 10.19: Approximate value of fH

2 clc, clear

3 btaf=150;

4 VA=120; // in volts

5 fT=400e6; // in hertz

6 C_mu=0.5e-12; // in farads

7 ICQ=100e-6; // in amperes

8 RS=50e3; // in ohms

9 RC=250e3; // in ohms

10 VT=25e-3; // Voltage equivalent to temperatue at

room temperature in volts

11 gm=ICQ/VT; // in mho
```

```
12 r_pi=btaf/gm; // in ohms
13 ro=VA/ICQ; // in ohms
14 C_pi=btaf/(2*%pi*fT*r_pi)-C_mu; // in farads
15 function[c]=parallel(a,b)
16
       c=a*b/(a+b);
17 endfunction
18 // From AC model in Fig. 10.73
19 Ri=r_pi+(1+btaf)*parallel(ro,r_pi); // in ohms
20 R_mu1=parallel(RS,Ri); // in ohms
21 // From Fig. 10.75(b)
22 R=(50+36.36)/(1+145); // in ohms
23 R_pi1=parallel(r_pi,R); // in ohms
24 R_pi2=parallel(r_pi,parallel((RS+r_pi)/(1+btaf),ro))
     ; // in ohms
25 RL=parallel(ro,RC); // in ohms
26 R_mu2=R_pi2*(1+gm*RL)+RL; // in ohms
27 a1=R_mu1*C_mu+R_pi1*C_pi+R_pi2*C_pi+R_mu2*C_mu; //
     in seconds
28 fH=1/(2*%pi*a1); // in hertz
29 fH=fH*1e-3; // in kilo-hertz
30 disp(fH, "Approximate value of fH (kHz) =");
```

Scilab code Exa 10.20 Low and high 3 dB frequency

```
1 // Example 10.20: (a) Low 3 dB frequency
2 // (b) High 3 dB frequency
3 clc, clear
4 // From Fig. 10.76
5 C_gd1=2e-12; // in farads
6 C_gs1=5e-12; // in farads
7 gm1=10e-3; // in mho
8 C1=1e-6; // in farads
9 C_gd2=2e-12; // in farads
10 C_gs2=5e-12; // in farads
11 gm2=10e-3; // in mho
```

```
12 C2=10e-6; // in farads
13 // From low-frequency equivalent cicuit in Fig.
      10.77
14 RS=0.2e3; // in ohms
15 RG1=50e3; // in ohms
16 RS1=0.25e3; // in ohms
17 RS2=0.15e3; // in ohms
18 RD2=5e3; // in ohms
19 R=10e3; // in ohms
20 C3=5.3e-6; // in farads
21
22 function[c]=parallel(a,b)
23
       c=a*b/(a+b);
24 endfunction
25
26 disp("Part (a)");
27 // From low-frequency equivalent cicuit in Fig.
      10.77
28 tau1=C1*(RS+RG1); // in seconds
29 R_22=RD2+R; // in ohms
30 tau2=C2*R_22; // in seconds
31 R_33=parallel(RS2,1/gm2); // in ohms
32 tau3=C3*R_33; // in ohms
33 fL=(1/tau1+1/tau2+1/tau3)/(2*%pi); // in hertz
34 disp(fL, "Low 3 dB frequency (Hz) =");
35
36 disp("Part (b)");
37 // From high frequency equivalent cicuit in Fig.
      10.78
38 R_gd1=parallel(RS,RG1); // in ohms
39 // From Fig. 10.79
40 R_gs1=(R_gd1+RS1)/(1+gm1*RS1); // in ohms
41 R_gs2=parallel(RS1,1/gm2); // in ohms
42 R_gd2=R_gs2+parallel(RD2,R)+R_gs2*parallel(RD2,R)*
     gm2; // in ohms
43 a1=C_gd1*R_gd1+C_gs1*R_gs1+C_gs2*R_gs2+C_gd2*R_gd2;
     // in seconds
44 fH=1/(2*%pi*a1); // in hertz
```

```
133
```

```
45 fH=fH*1e-6; // in Mega-hertz
46 disp(fH,"High 3 dB frequency (MHz) =");
```

Scilab code Exa 10.21 Dominant pole approximation

```
1 // Example 10.21: (a) AVo, Approximate value of fH
2 / /
                     (b) Frequency of the nearest non-
     dominant pole
3 clc, clear
4 gm=le-3; // in mho
5 Rd=40e3; // in ohms
6 Cgs=5e-12; // in farads
7 Cgd=1e-12; // in farads
8 Cds=1e-12; // in farads
9
10 function[c]=parallel(a,b)
11
       c=a*b/(a+b);
12 endfunction
13
14 disp("Part (a)");
15 RS=5e3; // in ohms
16 RD1=40e3; // in ohms
17 RD2=10e3; // in ohms
18 // From AC model of cascade amplifier in Fig. 10.80
19 Rds1=40e3; // in ohms
20 Rds2=40e3; // in ohms
21 R11_0=RS; // in ohms
22 RL1=parallel(Rds1,RD1); // in ohms
23 R22_0=RS+RL1+gm*RS*RL1; // in ohms
24 R33_0=RL1; // in ohms
25 RL2=parallel(Rds2,RD2); // in ohms
26 R44_0=RL1+RL2+gm*RL1*RL2; // in ohms
27 R55_0=RL2; // in ohms
28 Cl=Cgs; // in farads
29 C2=Cgd; // in farads
```

```
30 C3=Cds+Cgs; // in farads
31 C4=Cds; // in farads
32 C5=Cds; // in farads
33 a1=C1*R11_0+C2*R22_0+C3*R33_0+C4*R44_0+C5*R55_0; //
      in seconds
34 fH=1/(2*%pi*a1); // in hertz
35 fH=fH*1e-6; // in Mega-hertz
36 \quad \text{AVo} = \text{gm} * \text{RL1} * \text{gm} * \text{RL2};
37 disp(AVo, "AVo =");
38 disp(fH, "Approximate value of fH (MHz) =");
39
40 disp("Part (b)");
41 R22_1=RL1; // in ohms
42 R33_1=RL1; // in ohms
43 R44_1=R44_0; // in ohms
44 R55_1=RL2; // in ohms
45 R33_2=parallel(RL1,parallel(1/gm,RS)); // in ohms
46 R44_2=R33_2+RL2+gm*R33_2*RL2; // in ohms
47 R55_2=R55_0; // in ohms
48 R44_3=RL2; // in ohms
49 R55_3=RL2; // in ohms
50 R55_4=parallel(RL1,parallel(1/gm,RL2)); // in ohms
51 a2=R11_0*C1*(R22_1*C2+R33_1*C3+R44_1*C4+R55_1*C5)+
      R22_0*C2*(R33_2*C3+R44_2*C4+R55_2*C5)+R33_0*C3*(
      R44_3*C4+R55_3*C5)+R44_0*C4*R55_4*C5; // in
      seconds
52 p2=a1/a2;
53 f=p2/(2*%pi); // in hertz
54 f=f*1e-6; // in Mega-hertz
55 disp(f,"Frequency of the nearest non-dominant pole (
     MHz) = ");
```

Scilab code Exa 10.23 Time constant method

1 // Example 10.23: Value of fH for the cascade

```
2 clc, clear
3 bta=100;
4 r_pi1=0.5e3; // in ohms
5 r_pi2=0.5e3; // in ohms
6 r_pi3=1e3; // in ohms
7 fT=200e6; // in hertz
8 C_mu=1e-12; // in farads
9 // From Fig. 10.85
10 RS=2e3; // in ohms
11 RE1=5e3; // in ohms
12 RC2=2e3; // in ohms
13 RC3=1e3; // in ohms
14 RE3=100; // in ohms
15
16 function[c]=parallel(a,b)
       c=a*b/(a+b);
17
18 endfunction
19
20 // From Fig. 10.86
21 Ro1=parallel(RE1,(RS+r_pi1)/(1+bta)); // in ohms
22 gm2=bta/r_pi2; // in mho
23 gm3=bta/r_pi3; // in mho
24 C_pi2=bta/(2*%pi*fT*r_pi2)-C_mu; // in farads
25 C_pi3=bta/(2*%pi*fT*r_pi3)-C_mu; // in farads
26
27 // From Fig. 10.87
28 C1=C_pi2; // in farads
29 C2=C_mu; // in farads
30 C3=C_pi3; // in farads
31 C4=C_mu; // in farads
32 R11_0=parallel(Ro1,r_pi1); // in ohms
33 RL1=parallel(RC2,r_pi3+(1+bta)*RE3); // in ohms
34 R22_0=R11_0+RL1*(1+gm2*R11_0); // in ohms
35
36 // From Fig. 10.88
37 R_dash=2.1e3/(1+10); // in ohms
38 R33_0=parallel(RC2,R_dash); // in ohms
39
```

Chapter 11

Feedback Amplifiers

Scilab code Exa 11.1 Feedback network

```
1 // Example 11.1: Open-loop gain, Return ratio,
     Reverse transmission
                              of feedback circuit
2 clc, clear
3 // Let A be open-loop gain and B be return ratio
4 // For A, B 10% higher, -1.1A + 55.11B = -50.1
5 // For A, B 10% lower, -0.9A + 44.91B = -49.9
6 // Solving the two equations
7 a=[-1.1 55.11; -0.9 44.91];
8 b = [-50.1; -49.9];
9 c=inv(a)*b;
10 A=c(1,1);
11 B=c(2,1);
12 disp(A, "Open-loop gain =");
13 disp(B, "Return ratio =");
14 disp(B/A," Reverse transmission of the feedback
      circuit =");
```

Scilab code Exa 11.2 Amount of feedback

```
1 // Example 11.2: Necessary amount of feedback, Gain
     without feedback
2 clc, clear
3 // Let A be gain without feedback and b be necessary
      amount of feedback
4 // AOL can assume values A, 1.1A, 0.9A, i.e. 10\%
      variation
5 // For AOL = 1.1A yields, 50.01 + 1.1A(50.01b - 1) =
6 // When AOL = 0.9A, 49.99 + 0.9A(49.99b - 1) = 0
7 // Solving the two equations
8 a=[1.1*50.01 -1.1; 0.9*44.99 -0.9];
9 b = [-50.01; -49.99];
10 c=inv(a)*b;
11 d=c(1,1); // A*b
12 A=c(2,1);
13 b=d/A;
14 disp(b," Necessary amount of feedback =");
15 disp(A, "Gain without feedback =");
```

Scilab code Exa 11.3 Second harmonic distortion

```
1 // Example 11.3: (a) Output voltage
2 // (b) Input voltage
3 clc, clear
4 B1=36; // Fundamental output in volts
5 B2=7*B1/100; // Second-harmonic distortion in volts
6 Vs=0.028; // Input in volts
7 A=B1/Vs; // Gain
8
9 disp("Part (a)");
10 b=1.2/100; // Amount of feedback in volts
11 B1f=B1/(1+b*A); // Fundamental output with feedback
in volts
12 B2f=B2/(1+b*A); // Second-harmonic distortion with
```

Scilab code Exa 11.4 Closed loop parameters

```
1 // Example 11.4: Closed loop parameters
2 clc, clear
3 Av = 1000;
4 bta=0.01;
5 Zin=1; // in kilo-ohms
6 Zo=420; // in ohms
7 fL=1.5; // in kilo-hertz
8 fH=501.5; // in kilo-hertz
9 disp("Closed loop parameters :");
10 T=Av*bta; // Return ratio
11 // From Fig. 11.18
12 Af=Av/(1+T); // Closed loop gain
13 Zif=Zin*(1+T); // Closed loop input impedance in
     kilo-ohms
14 Zof=Zo/(1+T); // Closed loop output impedance in
     ohms
15 fLf=fL/(1+T); // Closed loop lower 3 dB frequency in
      kilo-hertz
16 fHf=fH*(1+T); // Closed loop upper 3 dB frequency in
```

```
kilo-hertz
17 disp(Af, "Gain =");
18 disp(Zif, "Input impedance (k) =");
19 disp(Zof, "Output impedance () =");
20 disp(fLf, "Lower 3 dB frequency (kHz) =");
21 disp(fHf, "Upper 3 dB frequency (kHz) =");
```

Scilab code Exa 11.5 Noise reduction

```
1 // Example 11.5: Output signal voltage, Output noise
      voltage, Improvement in S/N ratio
2 clc, clear
3 A1=1;
4 Vs=1; // in volts
5 Vn=1; // in volts
6 \quad A2 = 100;
7 bta=1;
8 Vos=Vs*A1*A2/(1+bta*A1*A2); // Output signal voltage
      in volts
9 Von=Vn*A1/(1+bta*A1*A2); // Output noise voltage in
      volts
10 SNRi=20*log10(Vs/Vn); // Input S/N ratio in dB
11 SNRo=20*log10(Vos/Von); // Output S/N ratio in dB
12 SNR=SNRo-SNRi; // Improvement in S/N raio in dB
13 disp(Vos, "Output signal voltage (V) =");
14 disp(Von, "Output noise voltage (V) =");
15 disp(SNR, "Improvement in S/N ratio (dB) =");
```

Scilab code Exa 11.6 Non inverting configuration

```
1 // Example 11.6: (b) R2/R1
2 // (c) Amount of feedback in decibels
3 // (d) Vo, Vf, Vi
```

```
(e) Decrease in Af
4 //
5 clc, clear
6
7 disp("Part (b)");
8 \quad A = 1 \, e 4;
9 Af=10;
10 bta=(A/Af-1)/A; // Feedback factor
11 R2_R1=1/bta-1; // R2/R1
12 disp(R2_R1, "R2/R1 =");
13
14 disp("Part (c)");
15 dB=20*log10(1+A*bta); // Amount of feedback in
      decibels
16 disp(dB, "Amount of feedback (dB) =");
17
18 disp("Part (d)");
19 Vs=1; // in volts
20 Vo=Af*Vs; // in volts
21 Vf=bta*Vo; // in volts
22 Vi=Vs-Vf; // in volts
23 disp(Vo, "Vo (V) =");
24 disp(Vf, "Vf (V) =");
25 disp(Vi, "Vi (V) =");
26
27 disp("Part (e)");
28 A=80*A/100; // Decreased A
29 Af_dash=A/(1+A*bta); // Decreased Af
30 C=(Af-Af_dash)*100/Af; // Percentage decrease in Af
31 disp(C," Percentage decrease in Af (\%) =");
```

Scilab code Exa 11.7 Upper 3 dB frequency

```
1 // Example 11.7: Low frequency gain, Upper 3 dB frequency
```

```
2 clc, clear
```

```
3 // Without feedback
4 AM=1e4; // Low frequency values of A
5 wH=100; // Upper 3 dB frequency in hertz
6 // With feedback
7 R1=1; // in kilo-ohms
8 R2=9; // in kilo-ohms
9 bta=R1/(R1+R2); // Feedback factor
10 AfM=AM/(1+bta*AM); // Low frequency gain
11 wHf=wH*(1+bta*AM); // Upper 3 dB frequency in hertz
12 wHf=wHf*1e-3; // Upper 3 dB frequency in kilo-hertz
13 disp("For closed loop amplifier :");
14 disp(AfM,"Low frequency gain =");
15 disp(wHf,"Upper 3 dB frequency (kHz) =");
```

Scilab code Exa 11.9 Desensitivity

```
1 // Example 11.9: (a) RE
2 //
                    (b) RL
3 //
                    (c) R1F
4 //
                    (d) Quiescent collector current
5 clc, clear
6 GmF=1; // Transconductance gain in mili-amperes per
      volts
7 AVF=-4; // Voltage gain
8 D=50; // Desensitivity factor
9 RS=1; // in kilo-ohms
10 btao=150;
11 AoL=GmF*D; // Open loop mutual conductance in mili-
     amperes per volts
12
13 disp("Part (a)");
14 RE=(D-1)/AoL; // in kilo-ohms
15 disp(RE, "RE (k) = ");
16
17 disp("Part (b)");
```
```
18 RL=-AVF/GmF; // in kilo-ohms
19 disp(RL,"RL ( k ) =");
20
21 disp("Part (c)");
22 r_pi=btao/AoL-RS-RE; // in kilo-ohms
23 R1F=RS+r_pi+(1+btao)*RE; // in kilo-ohms
24 disp(R1F,"R1F ( k ) =");
25
26 disp("Part (d)");
27 VT=26e-3; // Voltage equivalent to temperatue at
room temperature in volts
28 IC=btao*VT/r_pi; // in mili-amperes
29 disp(IC,"IC (mA) =");
```

Scilab code Exa 11.11 Transfer ratio

```
1 // Example 11.11: (a) Amplifier type
                     (b) Input resistance, Output
2 / /
     resistance, Transfer ratio
3 clc, clear
4 r_pi=1e3; // in ohms
5 gm=0.1; // in mho
6
7 disp("Part (a)");
8 disp("It is a CB-CE cascade, configuration. It has
     low input and high output impedance and hence
     corresponds to a current amplifier.");
9
10 disp("Part (b)");
11 // From low frequency equivalent circuit in Fig.
     11.40
12 btao=gm*r_pi;
13 Rin=r_pi/(1+btao); // Input resistance in ohms
14 Rout=%inf; // Output resistance (= ro of Q2)
15 Ai=gm*gm*Rin*3e3*1e3/(3e3+1e3); // Transfer ratio
```

```
16 disp(Rin,"Input resistance ( ) =");
17 disp(Rout,"Output resistance =");
18 disp(Ai,"Transfer ratio =");
```

Scilab code Exa 11.12 Gain with feedback

```
1 // Example 11.12: (b) AF
2 clc, clear
3 AV=4000;
4 bta=1/300;
5 RS=2; // in kilo-ohms
6 RE=RS; // in kilo-ohms
7 RC=6; // in kilo-ohms
8 btao=200;
9 r_pi=4; // in kilo-ohms
10
11 disp("Part (b)");
12 x=-AV*-btao*RC/(r_pi+RS);
13 AF=x/(1+x*bta);
14 disp(AF,"AF =");
```

Scilab code Exa 11.13 Transfer ratio

```
1 // Example 11.13: (a) Amplifier type
2 // (b) Input resistance, Output
resistance, Transfer ratio
3 clc, clear
4 r_pi=1e3; // in ohms
5 gm=0.1; // in mho
6
7 disp("Part (a)");
8 disp("Q1 is a common collector and Q2 is common
emitter stage. Hence the given circuit is cascade
```

```
of cc and CE stages. As the Rin of a CC is high
     and the Ro of the CE is low, therefore, the given
       circuit approximates a voltage amplifier. If RL
      is chosen a low resistance, the amplifier can be
      considered a voltage-to-current converter.")
9
10 function[c]=parallel(a,b)
       c=a*b/(a+b);
11
12 endfunction
13
14 disp("Part (b)");
15 // From the Fig. 11.42
16 RE1=3e3; // in ohms
17 RC2=0.6e3; // in ohms
18 btao=gm*r_pi;
19 Ri2=r_pi; // in ohms
20 Ri1=r_pi+(1+btao)*parallel(RE1,Ri2); // Input
      resistance in ohms
21 Rout=RC2; // Output resistance (= ro of Q2)
22 AV1=(1+btao)*RE1/(r_pi+(1+btao)*RE1);
23 Ro1=parallel(RE1,r_pi/(1+btao)); // in ohms
24 AV2=-btao*RC2/(Ro1+r_pi);
25 \text{ AV} = \text{AV1} * \text{AV2};
26 Ri1=Ri1*1e-3; // in kilo-ohms
27 Rout=Rout*1e-3; // in kilo-ohms
28 disp(Ri1,"Input resistance (
                                      ) =");
29 disp(Rout,"Output resistance =");
30 disp(AV, "Transfer ratio =");
```

Scilab code Exa 11.15 Small signal gain

```
1 // Example 11.15: Small signal gain, Input
resistance, Output resistance
2 clc, clear
3 btao=100;
```

```
4 r_pi=1e3; // in ohms
5 ICQ=2.5e-3; // in amperes
6 VT=25e-3; // in volts
7 gm=ICQ/VT; // Transconductance in mho
8 r_pi=btao/gm; // Incremental resistance of emitter-
     base diode in ohms
9 // From ac model without feedback in Fig. 11.47
10 RS=10e3; // in ohms
11 RF=47e3; // in ohms
12 RC=4.7e3; // in ohms
13 function[c]=parallel(a,b)
14
      c=a*b/(a+b);
15 endfunction
16 AoL=-gm*parallel(RF,RC)*parallel(RS,parallel(RF,r_pi
     )); // in ohms
17 bta=1/RF;
18 T=-bta*AoL; // Return ratio
19 AF=AoL/(1+T); // in ohms
20 AVF=AF/RS; // Small signal gain
21 RID=parallel(RF,r_pi); // in ohms
22 RID_dash=parallel(RID,RS); // in ohms
23 RIF_dash_I=RID_dash/(1+T); // in ohms
24 RIF_I=RS*RIF_dash_I/(RS-RIF_dash_I); // in ohms
25 RIF_dash_V=RS+RIF_I; // in ohms
26 RoD_dash=parallel(RF,RC); // in ohms
27 RoF_dash=RoD_dash/(1+T); // in ohms
28 RoF=RoF_dash*RC/(RC-RoF_dash); // in ohms
29 disp(RoF);
30 RIF_dash_V=RIF_dash_V*1e-3; // in kilo-ohms
31 RoF=RoF*1e-3; // in kilo-ohms
32 disp(AVF, "Small signal gain =");
33 disp(RIF_dash_V, "Input resistance ( k ) =");
34 disp(RoF, "Output resistance (k ) =");
```

Scilab code Exa 11.16 Closed loop parameters

```
1 // Example 11.16: (a) AF, T
2 / /
                      (b) R1F, RoF
3 clc, clear
4 btao=150;
5 ICQ=1.5e-3; // in amperes
6 VT=25e-3; // Voltage equivalent to temperatue at
      room temperature in volts
7 // From circuit without feedback but with loading in
       Fig. 11.50
8 RS=2e3; // in ohms
9 RE1=0.1e3; // in ohms
10 RF=6.2e3; // in ohms
11 RC1=4.3e3; // in ohms
12 RC2=1.2e3; // in ohms
13 RL=4.7e3; // in ohms
14
15 function[c]=parallel(a,b)
       c=a*b/(a+b);
16
17 endfunction
18
19 disp("Part (a)");
20 gm=ICQ/VT; // Transconductance in mho
21 r_pi=btao/gm; // Incremental resistance of emitter-
      base diode in ohms
22 AV1=-btao*RC1/(RS+r_pi+(1+btao)*parallel(RE1,RF));
23 AV2=-btao*parallel(RC2,parallel(RF+RE1,RL))/(RC1+
      r_pi);
24 \quad AoL = AV1 * AV2;
25 \text{ bta}=-\text{RE1}/(\text{RE1}+\text{RF});
26 T=-bta*AoL;
27 AF = AoL/(1+T);
28 disp(AF, "AF =");
29 disp(T,"T =");
30
31 disp("Part (b)");
32 RID=r_pi+(1+btao)*parallel(RE1,RF); // in ohms
33 RID_dash=RS+RID; // in ohms
34 RIF_dash=RID_dash*(1+T); // in ohms
```

```
35 RIF=RIF_dash-RS; // in ohms
36 RoD=parallel(RC2,RF+RE1); // in ohms
37 RoD_dash=parallel(RoD,RL); // in ohms
38 RoF_dash=RoD_dash/(1+T); // in ohms
39 RoF=RL*RoF_dash/(RL-RoF_dash); // in ohms
40 RIF=RIF*1e-3; // in kilo-ohms
41 disp(RIF,"RIF ( k ) =");
42 disp(RoF,"RoF ( ) =");
```

Scilab code Exa 11.17 Feedback in MOSFETs

```
1 // Example 11.17: (a) T, AoL, AF
2 / /
                       (b) RoF
3 clc, clear
4 gm=1e-3; // in mho
5 rd=20e3; // in ohms
6
7 function[c]=parallel(a,b)
8
       c=a*b/(a+b);
9 endfunction
10
11 disp("Part (a)");
12 // From the ac equivalent circuit in Fig. 11.52
13 RF=10e3; // in ohms
14 RD1=10e3; // in ohms
15 RL=10e3; // in ohms
16 ro=20e3; // in ohms
17 RS=parallel(0.47e3,RF); // in ohms
18 RL2=parallel(ro,parallel(10.47e3,RL)); // in ohms
19 mu=rd*gm; // Amplification factor
20 AV1 = -mu * RD1 / (RD1 + rd + (1 + mu) * RS);
21 AV2 = -gm * RL2;
22 \quad AoL = AV1 * AV2;
23 bta=-0.47/(10+0.47); // Feedback factor
24 T=-bta*AoL;
```

```
25 AF=AoL/(1+T);
26 disp(T,"T =");
27 disp(AoL,"AoL =");
28 disp(AF,"AF =");
29
30 disp("Part (b)");
31 RoD=parallel(ro,10.47e3); // in ohms
32 TSC=0; // for RL=0, T=0
33 ToC=bta*AV1*gm*RoD;
34 // By Blackman's relation
35 RoF=RoD*(1+TSC)/(1+ToC); // in ohms
36 RoF=RoF*1e-3; // in kilo-ohms
37 disp(RoF,"RoF (k) =");
```

Scilab code Exa 11.18 Open and closed loop gain

```
1 // Example 11.18: T, AoL, AF
2 clc, clear
3 function[c]=parallel(a,b)
       c=a*b/(a+b);
4
5 endfunction
6 ICQ1=0.25e-3; // in amperes
7 ICQ2=-0.5e-3; // in amperes
8 bta1=200;
9 VA1=125; // in volts
10 bta2=150;
11 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
12 gm1=ICQ1/VT; // in mho
13 gm2=abs(ICQ2)/VT; // in mho
14 r_pi1=bta1/gm1; // in ohms
15 r_pi2=bta2/gm2; // in ohms
16 ro1=VA1/ICQ1; // in ohms
17 // From ac equivalent circuit in Fig. 11.56
18 RC1=20e3; // in ohms
```

```
19 RS=1e3; // in ohms
20 bta=-0.82/(20+0.82); // Feedback factor
21 RL1=parallel(RC1,ro1); // in ohms
22 Ib2_IC1=RL1/(RL1+r_pi2+(1+bta2)*parallel(20e3,0.82e3
)); // Ib2/IC1
23 Ib1_IS=parallel(RS,20.82e3)/(r_pi1+parallel(RS,20.82
e3)); // Ib1/IS
24 AoL=bta2*Ib2_IC1*bta1*Ib1_IS; // Current gain
without feedback
25 T=-bta*AoL;
26 AF=AoL/(1+T);
27 disp(T,"T =");
28 disp(AoL,"AoL =");
29 disp(AF,"AF =");
```

```
Scilab code Exa 11.19 Closed loop parameters
```

```
1 // Example 11.19: (a) AIF
2 //
                      (b) R1F
3 //
                      (c) A1F'
4 //
                      (d) AVF
5 clc, clear
6 \text{ btao}=50;
7 r_pi=2e3; // in ohms
8 // From equivalent circuit without feedback but
      taking loading effect in Fig. 11.58
9 RS=1e3; // in ohms
10 Rf=15e3; // in ohms
11 RE2=10e3; // in ohms
12 RC1=10e3; // in ohms
13 RC2=10e3; // in ohms
14
15 function[c]=parallel(a,b)
       c=a*b/(a+b);
16
17 endfunction
```

```
18
19 disp("Part (a)");
20 RS_dash=parallel(RS,Rf+RE2); // in ohms
21 gm=btao/r_pi; // in mho
22 RE2_dash=parallel(RE2,Rf); // in ohms
23 Rx=r_pi+(1+btao)*RE2_dash; // in ohms
24 I2_IS=-gm*parallel(RS_dash,r_pi)*RC1/(RC1+Rx); // I2
     /IS
25 AI=-btao*I2_IS; // Open loop
26 If_IS=(1+btao)*I2_IS*RE2/(RE2+Rf); // If/IS
27 bta=If_IS/AI; // Feedback factor
28 T=-bta*AI;
29 AIF = AI / (1+T);
30 disp(AIF, "AIF =");
31
32 disp("Part (b)");
33 RID=parallel(RS,parallel(Rf+RE2,r_pi));
34 R1F=RID/(1+T); // in ohms
35 disp(R1F, "R1F ( ) =");
36
37 disp("Part (c)");
38 Ii_IS=RS/(RS+parallel(Rf+RE2,r_pi)); // Ii'/IS
39 AI_dash=AI*Ii_IS;
40 T=-bta*AI_dash;
41 A1F_dash=AI_dash/(1+T);
42 disp(A1F_dash, "A1F =");
43
44 disp("Part (d)");
45 AVF=AIF*RC2/RS;
46 disp(AVF, "AVF =");
```

Scilab code Exa 11.20 Closed loop parameters

```
1 // Example 11.20: (a) AVF
2 // (b) AIF
```

```
(c) RIF
3 //
4 //
                      (d) ROF
5 clc, clear
6 btao=50;
7 r_pi=1.1e3; // in ohms
8 function[c]=parallel(a,b)
9
       c=a*b/(a+b);
10 endfunction
11 // From equivalent circuit of amplifier without
      feedback in Fig. 11.60
12 RS=4.7e3; // in ohms
13 RF=15e3; // in ohms
14 RE2=0.1e3; // in ohms
15 RB1=parallel(91e3,10e3); // in ohms
16 RC1=4.7e3; // in ohms
17 RC2=4.7e3; // in ohms
18 RB2=RB1; // in ohms
19
20 disp("Part (b)");
21 RL1=parallel(RS,parallel(RF+RE2,RB1)); // in ohms
22 I1_IS=RL1/(RL1+r_pi); // I1/IS
23 IC1_IS=btao*I1_IS; // IC1/IS
24 Ri2=r_pi+(1+btao)*parallel(RE2,RF); // in ohms
25 I2_IS=-IC1_IS*parallel(RC1,RB2)/(parallel(RC1,RB2)+
      Ri2); // in ohms
26 IC2_IS=btao*I2_IS; // IC2/IS
27 AID=-IC2_IS/2; // Open loop
28 IF_IS=IC2_IS*RE2/(RE2+RF); // IF/IS
29 bta=IF_IS/AID; // Feedback factor
30 T=-bta*AID;
31 AIF=AID/(1+T);
32 disp(AIF, "AIF =");
33
34 disp("Part (a)");
35 \text{ AVF} = \text{AIF} * \text{RC2}/\text{RS};
36 disp(AVF, "AVF =");
37
38 disp("Part (c)");
```

```
39 RID=parallel(parallel(RS,RE2+RF),parallel(RB1,r_pi))
    ; // in ohms
40 RIF=RID/(1+T); // in ohms
41 disp(RIF,"RIF ( ) =");
42
43 disp("Part (d)");
44 ROF=RC2*1e-3; // in kilo-ohms
45 disp(ROF,"ROF ( k ) =");
```

Scilab code Exa 11.21 Voltage gain

```
1 // Example 11.21: (c) AF, T
2 //
                     (d) Voltage gain
3 clc, clear
4 ICQ1=0.25e-3; // in amperes
5 ICQ2=1e-3; // in amperes
6 ICQ3=0.5e-3; // in amperes
7 RC1=5e3; // in ohms
8 RC2=7.5e3; // in ohms
9 RC3=10e3; // in ohms
10 R1=0.2e3; // in ohms
11 R2=0.33e3; // in ohms
12 RS=0.6e3; // in ohms
13 RF=20e3; // in ohms
14 btao=200;
15 VA=125; // in volts
16 VT=25e-3; // Voltage equivalent to temperatue at
     room temperature in volts
17
18 function[c]=parallel(a,b)
19
       c=a*b/(a+b);
20 endfunction
21
22 disp("Part (c)");
23 gm1=ICQ1/VT; // in mho
```

```
24 r_pi1=btao/gm1; // in ohms
25 ro1=VA/ICQ1; // in ohms
26 gm2=ICQ2/VT; // in mho
27 r_pi2=btao/gm2; // in ohms
28 ro2=VA/ICQ2; // in ohms
29 gm3=ICQ3/VT; // in mho
30 r_pi3=btao/gm3; // in ohms
31 ro3=VA/ICQ3; // in ohms
32 Rin1=r_pi1+(btao+1)*parallel(RF+R2,R1); // in ohms
33 RL1=parallel(RC1,ro1); // in ohms
34 RL2=parallel(RC2,ro2); // in ohms
35 Rin2=r_pi2; // in ohms
36 Rin3=r_pi3+(btao+1)*parallel(R2,RF+R1); // in ohms
37 Io_Ib3=btao; // Io/Ib3
38 Ib3_Ic2=-RL2/(RL2+Rin3); // Ib3/Ic2
39 Ic2_Ib2=btao; // Ic2/Ib2
40 Ib2_Ic1=-RL1/(RL1+Rin2); // Ib2/Ic1
41 Ic1_Ib1=btao; // Ic1/Ib1
42 Ib1_VS=1/(RS+Rin1); // Ib1/VS in mho
43 AoL=Io_Ib3*Ib3_Ic2*Ic2_Ib2*Ib2_Ic1*Ic1_Ib1*Ib1_VS;
     // Open loop
44 bta=-R1*R2/(R1+R2+RF); // Feedback factor
45 T=-bta*AoL;
46 AF = AoL/(1+T);
47 disp(T, "T =");
48 disp(AF, "AF =");
49
50 disp("Part (d)");
51 Vo_VS=-AF*parallel(RC3,ro3);
52 disp(Vo_VS, "Voltage gain =");
```

Scilab code Exa 11.22 Feedback in FETs

```
1 // Example 11.22: AF, RoF
2 clc, clear
```

```
3 gm=2e-3; // in mho
4 rd=20e3; // in ohms
5 RD=12e3; // in ohms
6 RG=500e3; // in ohms
7 Rs=50; // in ohms
8 RF=5e3; // in ohms
9 function[c]=parallel(a,b)
       c=a*b/(a+b);
10
11 endfunction
12 Ro=parallel(RD,rd); // in ohms
13 AV1=-gm*parallel(RD,parallel(rd,RG));
14 AV2=AV1;
15 AV3=-gm*parallel(RD,rd);
16 AV = AV1 * AV2 * AV3;
17 RG_dash=parallel(RG,RF); // in ohms
18 Vi_Vs=RG_dash/(RG_dash+Rs); // Vi/Vs
19 AoL=AV*Vi_Vs*RF/(RF+Ro); // Vo/Vs (Open loop)
20 bta=1/RF; // Feedback factor
21 RM=AoL*Rs; // in ohms
22 T=-bta*RM; // Return ratio
23 AF = AoL / (1+T);
24 RoD=parallel(Ro,RF); // in ohms
25 RoF=RoD/(1+T); // in ohms
26 disp(AF, "AF =");
27 disp(RoF, "RoF ( ) =");
```

Chapter 12

Oscillators

Scilab code Exa 12.1 Phase shift oscillator

```
1 // Example 12.1: (a) RD
2 //
                    (b) Product RC
                    (c) Reasonable value of R and C
3 //
4 clc, clear
5 fo=8e3; // in hertz
6 mu = 59;
7 rd=10; // in kilo-ohms
8
9 disp("Part (a)");
10 RD=29*rd/(mu-29); // in kilo-ohms
11 disp(RD,"RD ( k ) =");
12
13 disp("Part (b)");
14 RC=1/(2*%pi*fo*sqrt(6)); // in seconds
15 RC=RC*1e6; // in micro-seconds
16 disp(RC, "Product RC ( s ) =");
17
18 disp("Part (c)");
19 R=50; // in kilo-ohms
20 C=RC/R; // in nano-farad
21 C=C*1e3; // in pico-farad
```

```
22 disp(R, "Reasonable value of R ( k ) =");
23 disp(C, "Reasonable value of C (pF) =");
```

Scilab code Exa 12.2 Wien Bridge oscillator

```
1 // Example 12.2: Designing a Wein Bridge Oscillator
2 clc, clear
3 fo=2e3; // in hertz
4 R=10; // in kilo-ohms
5 C=1/(2*%pi*fo*R*1e3); // in farads
6 C=C*1e9; // in nano-farads
7 disp(R,"R1 ( k
                    ) =");
8 disp(R,"R2 ( k
                    ) =");
9 disp(2*R,"R3 ( k
                     ) =");
10 disp(R,"R4 ( k
                   ) =");
11 disp(C, "C1 (nF) =");
12 disp(C,"C2 (nF) =");
```

Scilab code Exa 12.3 Hartley oscillator

```
1 // Example 12.3: Range of capacitance
2 clc, clear
3 L1=2e-3; // in henry
4 L2=1.5e-3; // in henry
5 fmin=1000e3; // in hertz
6 fmax=2000e3; // in hertz
7 Cmin=1/((2*%pi*fmax)^2*(L1+L2)); // in farads
8 Cmax=1/((2*%pi*fmin)^2*(L1+L2)); // in farads
9 Cmin=Cmin*1e12; // in pico-farads
10 Cmax=Cmax*1e12; // in pico-farads
11 disp(Cmin,"Minimum value of C (pF) =");
12 disp(Cmax,"Maximum value of C (pF) =");
```

Chapter 13

Power Amplifiers and Voltage Regulators

Scilab code Exa 13.1 Series fed amplifier

```
1 // Example 13.1: dc input power, ac output power,
     Efficiency
2 clc, clear
3 Ib=5e-3; // Base current in amperes
4 // From Fig. 13.8
5 RB=1.5e3; // in ohms
6 RC=16; // in ohms
7 bta=40;
8 VCC=18; // in volts
9 VBE=0.7; // in volts
10 IBQ=(VCC-VBE)/RB; // in amperes
11 ICQ=bta*IBQ; // in amperes
12 Pi_dc=VCC*ICQ; // dc input power in watts
13 Ic=bta*Ib; // in amperes
14 Po_ac=Ic^2*RC; // ac output power
15 eta=Po_ac*100/Pi_dc; // Efficiency in percentage
16 disp(Pi_dc,"dc input power (W) =");
17 disp(Po_ac," ac output power (W) =");
18 disp(eta, "Efficiency (%) =");
```

Scilab code Exa 13.2 Transformer turn ratio

```
1 // Example 13.2: Transformer turns ratio
2 clc, clear
3 function[c]=parallel(a,b)
4      c=a*b/(a+b);
5 endfunction
6 RL=parallel(parallel(16,16),parallel(16,16)); // in
      ohms
7 RL_dash=8e3; // in ohms
8 TR=sqrt(RL_dash/RL); // Transformer turns ratio
9 disp(TR,"Transformer turns ratio =");
```

Scilab code Exa 13.3 Class A amplifier

```
1 // Example 12.3: Efficiency
2 clc, clear
3 P_ac=2; // in watts
4 ICQ=150e-3; // in amperes
5 VCC=36; // in volts
6 P_dc=VCC*ICQ; // in watts
7 eta=P_ac*100/P_dc; // Efficiency in percentage
8 disp(eta," Efficiency (%) =");
```

Scilab code Exa 13.4 Class B push pull amplifier

1 // Example 13.4: Maximum input power, Maximum ac output power, Maximum conversion efficiency, Maximum power dissipated by each transistor

```
2 clc, clear
3 VCC=15; // in volts
4 RL=8; // in ohms
5 P_dc=2*VCC^2/(%pi*RL); // Maximum input power in
     watts
6 P_ac=VCC^2/(2*RL); // Maximum ac output power in
     watts
7 eta=P_ac*100/P_dc; // Maximum efficiency in
     percentage
8 PD=2*VCC^2/(%pi^2*RL); // Maximum power dissipated
     in watts
9 PD_each=PD/2; // Maximum power dissipated by each
     transistor in watts
10 disp(P_dc, "Maximum input power (W) =");
11 disp(P_ac, "Maximum ac output power (W) =");
12 disp(eta, "Maximum conversion efficiency (\%) =");
13 disp(PD_each," Maximum power dissipated by each
```

```
transistor (W) = ");
```

Scilab code Exa 13.5 Class B output stage

```
1 // Example 13.5: Supply voltage, Peak current drawn
from each supply, Total supply power, Power
conversion efficiency, Maximum power that each
transistor can dissipate safely
```

```
2 clc, clear
```

```
3 P_ac=20; // Average power delivered in watts
```

```
4 RL=8; // Load in ohms
```

```
5 Vm=sqrt(2*P_ac*RL); // Peak output voltage in volts
```

- 6 VCC=Vm+5; // Supply voltage in volts
- 7 Im=Vm/RL; // Peak current drawn from each supply in amperes
- 8 P_dc=2*Im*VCC/%pi; // Total supply power in watts

Scilab code Exa 13.6 Thermal considerations

```
1 // Example 13.6: Thermal resistance, Power rating at
      70 C, Junction temperature at 100 mW
2 clc, clear
3 TAo=25; // in
                  С
4 PDo=200; // in mili-watts
5 Tj_max=150; // Maximum junction temperature in
                                                  C
6 T=70; // in C
7 P=100; // in mili-watts
8 TA=50; // Ambient temperature in C
9 theta=(Tj_max-TAo)/PDo; // Thermal resistance in
                                                     С
      per mili-watts
10 PR=(Tj_max-T)/theta; // Power rating at 70 C in
     mili-watts
11 Tj=TA+theta*P; // Junction temperature at 100 mW in
      С
12 disp(theta, "Thermal resistance (C/mW) =");
13 disp(PR, "Power rating at 70 C (mW) =");
14 disp(Tj, "Junction temperature at 100 mW ( C ) =");
```