#### Scilab Textbook Companion for Modern Control Engineering by K. Ogata<sup>1</sup>

Created by Brian Coutinho Control Engineering Electrical Engineering IIT Rajasthan College Teacher Dr. Swagat Kumar Cross-Checked by Aditya Sengupta, IIT Bombay

August 12, 2013

<sup>1</sup>Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

## **Book Description**

Title: Modern Control Engineering
Author: K. Ogata
Publisher: Princton Hall Of India Private Limited, New Delhi
Edition: 5
Year: 2010
ISBN: 978-81-203-4010-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

**AP** Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

## Contents

| Lis | st of Scilab Codes                                               | 4   |
|-----|------------------------------------------------------------------|-----|
| 2   | Mathematical Modelling of Control Systems                        | 14  |
| 5   | Transient and Steady State Response Analysis                     | 26  |
| 6   | Control Systems Analysis and Design by Root Locus Method         | 65  |
| 7   | Control Systems Analysis and Design by Frequency Response Method | 135 |
| 8   | PID Controllers and Modified PID Controllers                     | 206 |
| 9   | Control Systems Analysis in State Space                          | 245 |
| 10  | Control Systems Design in State Space                            | 256 |
|     |                                                                  |     |

## List of Scilab Codes

| Exa                              | 2.i.1  | Series Parallel Feedback connection of Systems       | 14 |
|----------------------------------|--------|------------------------------------------------------|----|
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 2.i.2  | Transfer Function to State Space Model               | 15 |
| Exa                              | 2.b.4  | Step and Ramp response of different Controllers      | 16 |
| Exa                              | 2.a.7  | Transfer Function to Controllable State Space form   | 18 |
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 2.a.11 | State space to Transfer Function model SISO system . | 20 |
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 2.a.12 | State space to Transfer Function model MIMO system   | 21 |
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 2.b.14 | Verifying linearization of a non linear system       | 22 |
| Exa                              | 2.4    | Convert State space to Transfer Function model       | 23 |
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 5.a.3  | Verifying design to match given response curve       | 26 |
| Exa                              | 5.a.4  | Determining K and k for required step response       | 28 |
| Exa                              | 5.a.5  | Verifying design to match given response             | 28 |
| Exa                              | 5.a.8  | Unit step response and partial fraction expansion    | 29 |
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 5.a.9  | Effect of zeros on step response of a system         | 32 |
| Exa                              | 5.a.10 | Step response characteristics                        | 33 |
| Exa                              | 5.a.11 | Step Response for different zeta and wn              | 34 |
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 5.a.12 | Response to unit ramp and exponential input          | 36 |
| Exa                              | 5.a.13 | Response to input r equals 2 plus t                  | 38 |
| $\mathbf{E}\mathbf{x}\mathbf{a}$ | 5.a.14 | Response to unit acceleration input                  | 40 |
| Exa                              | 5.a.15 | Step Responses for different zeta                    | 42 |
| Exa                              | 5.a.16 | Response to initial conditions                       | 43 |
| Exa                              | 5.2    | Determining K and Kh for required step response      | 44 |
| Exa                              | 5.3    | Step response of MIMO system                         | 46 |
| Exa                              | 5.4    | Second order systems with different damping ratio    | 47 |
| Exa                              | 5.5    | Impulse Response of a Second order System            | 50 |
| Exa                              | 5.6    | Unit Ramp response of a second order system          | 53 |
| Exa                              | 5.7    | Response to step and exponential input               | 55 |
| Exa                              | 5.8    | Response to initial condition                        | 56 |
| Exa                              | 5.9    | Response to initial conditions using state space     | 59 |

| Exa 5.10     | Response to initial condition using syslin $x0 \ldots \ldots$ | 61  |
|--------------|---------------------------------------------------------------|-----|
| Exa $5.12$   | Constructing Routh array                                      | 62  |
| Exa $5.13$   | Constructing Routh array                                      | 64  |
| Exa 6.i.1    | Finding the Gain K at any point on the root locus             | 65  |
| Exa 6.i.2    | Orthogonality Constant gain curves and Root Locus .           | 67  |
| Exa $6.i.3$  | Effect of adding poles or zeros on the root locus             | 69  |
| Exa $6.a.6$  | Root locus                                                    | 72  |
| Exa 6.a.13.  | Lead Compensator Design Attempt 1                             | 73  |
| Exa 6.a.13.  | Lead Compensator Design Attempt 2                             | 77  |
| Exa 6.a.17   | Design of lag lead compensator                                | 81  |
| Exa 6.a.18   | Design of a compensator for a highly oscillactory system      | 85  |
| $Exa \ 6.1$  | Root Locus                                                    | 89  |
| Exa $6.2$    | Root Locus                                                    | 89  |
| $Exa \ 6.3$  | Root Locus                                                    | 91  |
| $Exa \ 6.4$  | Root Locus                                                    | 94  |
| $Exa \ 6.5$  | Root locus of system in state space                           | 94  |
| Exa $6.6.1$  | Design of a lead compensator using root locus                 | 96  |
| Exa $6.6.2$  | Step and ramp response of lead compensated systems            | 99  |
| Exa $6.7.1$  | Design of a lag compensator using root locus                  | 102 |
| Exa $6.7.2$  | Step and ramp response of lag compensated system              | 107 |
| Exa $6.8.1$  | Design of a lag lead compensator using root locus             | 108 |
| Exa $6.8.2$  | Evaluating Lag Lead compensated system                        | 111 |
| Exa $6.9.1$  | Design of lag lead compensator using root locus 2             | 114 |
| Exa $6.9.2$  | Evaluating Lag Lead compensated system                        | 117 |
| $Exa \ 6.10$ | Design of parallel compensation by root locus                 | 123 |
| Exa $6.15$   | Design of lag compensator                                     | 127 |
| $Exa \ 6.16$ | Design of lag lead compensator                                | 130 |
| Exa $7.a.1$  | Bode plot                                                     | 135 |
| Exa 7.i.1    | Bode plot for 2nd order systems with varying zeta             | 138 |
| Exa $7.a.3$  | Bode plot for system in state space                           | 139 |
| Exa $7.a.4$  | Bode plot for different gain K                                | 139 |
| Exa $7.a.8$  | Stability check                                               | 141 |
| Exa 7.a.10   | Nyquist Plot with transport lag                               | 143 |
| Exa 7.a.11   | Nyquist Plot                                                  | 143 |
| Exa 7.a.12   | Nyquist plot for positive omega                               | 145 |
| Exa 7.a.13   | Nyquist plot with points at selected frequencies              | 146 |
| Exa 7.a.14   | Nyquist plot for positive and negative feedback               | 148 |
| Exa 7.a.18   | Verifying experimentally derived Transfer function            | 150 |

| Exa 8.5     | Design of system with two degrees of freedom 2           | 239 |
|-------------|----------------------------------------------------------|-----|
| Exa $9.b.3$ | Obtaining canonical form                                 | 245 |
| Exa $9.a.5$ | Conversion from transfer function model to state space   |     |
|             | model                                                    | 246 |
| Exa 9.a.16  | Controllability and pole zero cancellation               | 246 |
| Exa 9.a.17  | Controllability observability and pole zero cancellation | 247 |
| Exa 9.1     | Transfer function to controllable observable and jordon  |     |
|             | canonical forms                                          | 249 |
| Exa 9.2     | Transformations in state space                           | 249 |
| Exa 9.3     | Conversion from state space to transfer function model   | 250 |
| Exa 9.4     | Conversion from state space to transfer function model   | 251 |
| Exa $9.5$   | State transition matrix                                  | 252 |
| Exa 9.7     | Finding e to the power At using laplace transforms       | 253 |
| Exa 9.9     | Linear dependence of vectors                             | 254 |
| Exa 9.14    | State and ouput controllability and observability        | 254 |
| Exa 9.15    | Observability                                            | 255 |
| Exa 10.i.1  | Designing a regulator using a minimum order observer     | 256 |
| Exa 10.i.2  | Designing a control system with a minimum order ob-      |     |
|             | server                                                   | 263 |
| Exa 10.a.5  | Feedback gain for moving eigen values                    | 264 |
| Exa 10.a.6  | Gain matrix determination                                | 265 |
| Exa 10.a.9  | Transforming to canonical form                           | 266 |
| Exa 10.a.1  | 3Designing a regulator using a minimum order observer    | 266 |
| Exa 10.a.1  | 4Designing a regulator using a minimum and full order    |     |
|             | observer                                                 | 268 |
| Exa 10.a.1  | 7Design of quadratic optimal regulator system and find-  |     |
|             | ing the response                                         | 274 |
| Exa 10.1    | Gain matrix using characteristic eq and Ackermanns for-  |     |
|             | mula                                                     | 275 |
| Exa 10.2    | Gain matrix using ppol and Ackermanns formula            | 277 |
| Exa 10.3    | Response to initial condition                            | 278 |
| Exa 10.4    | Design of servo system with integrator in the plant      | 280 |
| Exa 10.5    | Design of servo system without integrator in the plant   | 281 |
| Exa 10.6    | Observer Gain matrix using ch eq and Ackermanns for-     |     |
|             | mula                                                     | 283 |
| Exa 10.7    | Designing a controller using a full order observer       | 285 |
| Exa 10.8    | Designing a controller using a minimum order observer    | 288 |
| Exa 10.9    | Design of quadratic optimal regulator system             | 289 |

| Exa 10.10   | Design of quadratic optimal regulator system            | 289 |
|-------------|---------------------------------------------------------|-----|
| Exa 10.11   | Design of quadratic optimal regulator system            | 290 |
| Exa 10.12   | Design of quadratic optimal regulator system and find-  |     |
|             | ing the response                                        | 290 |
| Exa $10.13$ | Design of quadratic optimal regulator system and find-  |     |
|             | ing the response                                        | 292 |
| AP 1        | Determine Gains and transfer function for minimal or-   |     |
|             | der observer                                            | 295 |
| AP 2        | Plot System Response                                    | 296 |
| AP 3        | Compute the feedback gain matrix using ackermanns       |     |
|             | formula                                                 | 296 |
| AP 4        | Transfer function of A,B,C,D                            | 297 |
| AP 5        | Inverse Laplace transform of a rational polynomial in s | 297 |
| AP 6        | Partial Fraction Residue                                | 298 |
| AP 7        | Plot the root locus in a box                            | 299 |
| AP 8        | Step response characteristics                           | 299 |
| AP 9        | Polar plot of a linear system                           | 300 |
| AP 10       | Display gain and phase margins                          | 301 |
| AP 11       | Frequency response characteristics                      | 301 |
| AP 12       | Gain at a point on a root locus                         | 302 |

# List of Figures

| 2.1  | Step and Ramp response of different Controllers      |
|------|------------------------------------------------------|
| 2.2  | Verifying linearization of a non linear system       |
| 2.3  | Verifying linearization of a non linear system       |
| 5.1  | Verifying design to match given response curve       |
| 5.2  | Verifying design to match given response             |
| 5.3  | Unit step response and partial fraction expansion 31 |
| 5.4  | Effect of zeros on step response of a system         |
| 5.5  | Step response characteristics                        |
| 5.6  | Step Response for different zeta and wn              |
| 5.7  | Response to unit ramp and exponential input 38       |
| 5.8  | Response to unit ramp and exponential input 39       |
| 5.9  | Response to input r equals 2 plus t                  |
| 5.10 | Response to unit acceleration input                  |
| 5.11 | Step Responses for different zeta                    |
| 5.12 | Response to initial conditions                       |
| 5.13 | Step response of MIMO system                         |
| 5.14 | Step response of MIMO system                         |
| 5.15 | Second order systems with different damping ratio 51 |
| 5.16 | Second order systems with different damping ratio    |
| 5.17 | Impulse Response of a Second order System            |
| 5.18 | Unit Ramp response of a second order system          |
| 5.19 | Response to step and exponential input               |
| 5.20 | Response to step and exponential input               |
| 5.21 | Response to initial condition                        |
| 5.22 | Response to initial conditions using state space     |
| 5.23 | Response to initial condition using syslin $x0 $     |
| 6.1  | Finding the Gain K at any point on the root locus    |

| 6.2  | Orthogonality Constant gain curves and Root Locus        | 68  |
|------|----------------------------------------------------------|-----|
| 6.3  | Effect of adding poles or zeros on the root locus        | 70  |
| 6.4  | Root locus                                               | 73  |
| 6.5  | Lead Compensator Design Attempt 1                        | 75  |
| 6.6  | Lead Compensator Design Attempt 1                        | 76  |
| 6.7  | Lead Compensator Design Attempt 2                        | 79  |
| 6.8  | Lead Compensator Design Attempt 2                        | 80  |
| 6.9  | Design of lag lead compensator                           | 83  |
| 6.10 | Design of lag lead compensator                           | 84  |
| 6.11 | Design of a compensator for a highly oscillactory system | 87  |
| 6.12 | Design of a compensator for a highly oscillactory system | 88  |
| 6.13 | Root Locus                                               | 90  |
| 6.14 | Root Locus                                               | 92  |
| 6.15 | Root Locus                                               | 93  |
| 6.16 | Root Locus                                               | 95  |
| 6.17 | Root locus of system in state space                      | 97  |
| 6.18 | Design of a lead compensator using root locus            | 100 |
| 6.19 | Design of a lead compensator using root locus            | 101 |
| 6.20 | Step and ramp response of lead compensated systems       | 103 |
| 6.21 | Step and ramp response of lead compensated systems       | 104 |
| 6.22 | Design of a lag compensator using root locus             | 106 |
| 6.23 | Step and ramp response of lag compensated system         | 108 |
| 6.24 | Design of a lag lead compensator using root locus        | 111 |
| 6.25 | Design of a lag lead compensator using root locus        | 112 |
| 6.26 | Evaluating Lag Lead compensated system                   | 114 |
| 6.27 | Evaluating Lag Lead compensated system                   | 115 |
| 6.28 | Design of lag lead compensator using root locus 2        | 118 |
| 6.29 | Design of lag lead compensator using root locus 2        | 119 |
| 6.30 | Evaluating Lag Lead compensated system                   | 121 |
| 6.31 | Evaluating Lag Lead compensated system                   | 122 |
| 6.32 | Design of parallel compensation by root locus            | 125 |
| 6.33 | Design of parallel compensation by root locus            | 126 |
| 6.34 | Design of lag compensator                                | 129 |
| 6.35 | Design of lag compensator                                | 130 |
| 6.36 | Design of lag lead compensator                           | 133 |
| 6.37 | Design of lag lead compensator                           | 134 |
| 7.1  | Bode plot                                                | 136 |

| 7.2  | Bode plot for 2nd order systems with varying zeta  | • |  |  | 137 |
|------|----------------------------------------------------|---|--|--|-----|
| 7.3  | Bode plot for system in state space                | • |  |  | 140 |
| 7.4  | Bode plot for different gain K                     |   |  |  | 142 |
| 7.5  | Nyquist Plot with transport lag                    | • |  |  | 144 |
| 7.6  | Nyquist Plot                                       | • |  |  | 145 |
| 7.7  | Nyquist plot for positive omega                    | • |  |  | 147 |
| 7.8  | Nyquist plot with points at selected frequencies   | • |  |  | 149 |
| 7.9  | Nyquist plot for positive and negative feedback    | • |  |  | 150 |
| 7.10 | Verifying experimentally derived Transfer function |   |  |  | 151 |
| 7.11 | Nichols plot                                       |   |  |  | 153 |
| 7.12 | Steady state sinusoidal output                     |   |  |  | 154 |
| 7.13 | Steady state sinusoidal output lag and lead        | • |  |  | 156 |
| 7.14 | Bode Plot in Hz                                    |   |  |  | 157 |
| 7.15 | Bode Plot with transport lag                       | • |  |  | 159 |
| 7.16 | Bode Plot in rad per s                             |   |  |  | 161 |
| 7.17 | Bode Plot in rad per s                             |   |  |  | 162 |
| 7.18 | Bode plot in rad per s                             |   |  |  | 163 |
| 7.19 | Bode Plot for a system in State Space              | • |  |  | 165 |
| 7.20 | Polar Plot of a linear system                      |   |  |  | 166 |
| 7.21 | Polar Plot with transport lag                      | • |  |  | 168 |
| 7.22 | Nyquist Plot                                       |   |  |  | 169 |
| 7.23 | Nyquist Plot                                       |   |  |  | 171 |
| 7.24 | Nyquist Plots of system in state space             | • |  |  | 172 |
| 7.25 | Nyquist Plot of MIMO system                        |   |  |  | 174 |
| 7.26 | Nyquist Stability Check                            |   |  |  | 175 |
| 7.27 | Nyquist plot stability check                       |   |  |  | 177 |
| 7.28 | Gain and phase margins for different K             |   |  |  | 178 |
| 7.29 | Gain and phase margins for different K             |   |  |  | 179 |
| 7.30 | Stability Margins                                  |   |  |  | 181 |
| 7.31 | Correlating bandwidth and speed of response        | • |  |  | 183 |
| 7.32 | Correlating bandwidth and speed of response        | • |  |  | 184 |
| 7.33 | Frequency charecteristics                          |   |  |  | 186 |
| 7.34 | Polar and Nichols plot with M circles              |   |  |  | 188 |
| 7.35 | Polar and Nichols plot with M circles              |   |  |  | 189 |
| 7.36 | Verifying experimentally derived Transfer function | • |  |  | 190 |
| 7.37 | Design of Lead compensator with Bode plots         |   |  |  | 192 |
| 7.38 | Design of Lead compensator with Bode plots         |   |  |  | 193 |
| 7.39 | Evaluating Lead compensated system                 |   |  |  | 195 |

| 7.40  | Design of Lag compensator with Bode plots                     | 197 |
|-------|---------------------------------------------------------------|-----|
| 7.41  | Design of Lag compensator with Bode plots                     | 198 |
| 7.42  | Evaluating Lag compensated system                             | 200 |
| 7.43  | Design of Lag lead compensation with Bode plots               | 202 |
| 7.44  | Design of Lag lead compensation with Bode plots               | 203 |
| 7.45  | Evaluating Lag Lead compensated system                        | 205 |
| 8.1   | PID Design with Frequency Response                            | 207 |
| 8.2   | PID Design with Frequency Response                            | 208 |
| 8.3   | PID design                                                    | 212 |
| 8.4   | PID design                                                    | 213 |
| 8.5   | PID design                                                    | 215 |
| 8.6   | PID design                                                    | 216 |
| 8.7   | PID Design with Frequency Response                            | 219 |
| 8.8   | PID Design with Frequency Response                            | 220 |
| 8.9   | Computing optimal solution                                    | 223 |
| 8.10  | Design of system with two degrees of freedom                  | 225 |
| 8.11  | Design of system with two degrees of freedom                  | 226 |
| 8.12  | Tuning a PID controller using Nichols Second Rule             | 229 |
| 8.13  | Tuning a PID controller using Nichols Second Rule             | 230 |
| 8.14  | Computation of Optimal solution 1                             | 233 |
| 8.15  | Computation of Optimal solution 2                             | 236 |
| 8.16  | Design of system with two degrees of freedom                  | 240 |
| 8.17  | Design of system with two degrees of freedom                  | 241 |
| 8.18  | Design of system with two degrees of freedom 2                | 243 |
| 8.19  | Design of system with two degrees of freedom 2                | 244 |
| 10.1  | Designing a regulator using a minimum order observer          | 257 |
| 10.2  | Designing a regulator using a minimum order observer          | 258 |
| 10.3  | Designing a control system with a minimum order observer .    | 261 |
| 10.4  | Designing a control system with a minimum order observer .    | 262 |
| 10.5  | Designing a regulator using a minimum order observer          | 269 |
| 10.6  | Designing a regulator using a minimum and full order observer | 272 |
| 10.7  | Designing a regulator using a minimum and full order observer | 273 |
| 10.8  | Design of quadratic optimal regulator system and finding the  |     |
|       | response                                                      | 276 |
| 10.9  | Response to initial condition                                 | 279 |
| 10.10 | Design of servo system with integrator in the plant           | 281 |
|       |                                                               |     |

| 10.11Design of servo system without integrator in the plant       | 283 |
|-------------------------------------------------------------------|-----|
| 10.12Designing a controller using a full order observer           | 287 |
| 10.13Design of quadratic optimal regulator system and finding the |     |
| response                                                          | 292 |
| 10.14Design of quadratic optimal regulator system and finding the |     |
| response                                                          | 294 |

#### Chapter 2

## Mathematical Modelling of Control Systems

Scilab code Exa 2.i.1 Series Parallel Feedback connection of Systems

```
1 // Illustration 2.1
2 // Section 2-3 in the book
3 // Demonstrating Series, Parallel and feedback
      connection of Linear Systems
4
5 clear; clc; close;
6
7 // Define Polynomials in variable 's'
8 // Please NOTE : The list of coeficients has to be
      given in
9 //
                      INCREASING powers of 's',
10
11 n1 = poly( [10] , 's', 'c');
12 d1 = poly( [10 2 1] , 's', 'c'); // 10 + 2*s + s<sup>2</sup>
13
14 // Alternate method to define transfer functions in
      scilab
15 // using '%s'
16 s = %s;
```

```
17 n2 = 5;
18 \ d2 = 5 + s;
19
20
21 G1 = syslin('c',n1,d1); //define continuous LTI
     systems systems
22 G2 = syslin('c', n2, d2);
23
24 disp(G1, 'G1 ='); disp(G2, 'G2 ='); // display variables
       on the screen
25
26 series
          = G1 * G2;
27 parallel = G1 + G2;
28 feedback = G1 /. G2 ; // feedback is via G2.
29
30 disp(series, 'series =');
31 disp(parallel, 'parallel =');
32 disp(feedback, 'feedback =');
```

#### Scilab code Exa 2.i.2 Transfer Function to State Space Model

```
1 // Illustration 2.2
2 // Conversion from transfer function model to state
space model
3 // Section 2-6 of the Book
4
5 // This example demonstrates that there is no
unique
6 // state space reperesentation of a transfer
function.
7
8 clear; clc; close; mode(0);
9 s = %s;
10 num = s;
11 den = 160 + 56*s + 14*s^2 + s^3;
```

```
12 Htf = syslin('c', num, den)
13
14 // There are infinite state space models for the
     same transfer
15 // function. The tf2ss() function will return one of
      them,
16
17 Hss = tf2ss(Htf);
                  //Print the state space model
  ssprint(Hss);
18
19
20 // Alternatively: you can directly get the A,B,C,D
21 [A,B,C,D] = abcd(Htf)
22
23 //To cross check, let us find the transfer function
24 Htf2 = clean(ss2tf(Hss)) //which matches with Htf
25
26 // Now, the form given in text book is called
      controllable
27 // canonical form. It's a special form.
28 // We can directly obtain a linear system in this
     form
  // using cont_frm (num, den) function
29
30
31 Hssc = cont_frm(Htf.num,Htf.den)
32 Htfc = clean(ss2tf(Hssc))
33
34 // The same transfer function again
```

Scilab code Exa 2.b.4 Step and Ramp response of different Controllers

```
1 // Exercise B-2-4
2 // Plotting the response of different types of
      controllers
3 // to unit step and unit ramp input.
4
```

```
5 clear; clc; xdel(winsid());
6
7 \text{ Kp} = 4;
             //proportional gain
             //integral gain
8 Ki1 = 2;
9 Td = 0.8; //differential time
10 Ti = 2; //integral time
11 Ki2 = Kp / Ti;
12
13 \ s = \% s;
14 Gi = syslin('c',Ki1/s);
15
16 t = 0:0.05:3;
17 \text{ ramp} = t;
18 subplot(3,2,1);
19 p1 = Kp * ones(1, length(t));
20 p2 = Kp * t;
21 plot2d(t ,p1 , style=2);
22 plot2d(t ,p2 , style=3);
23 xtitle('Proportional control', 't', 'y');
24 legend('step input', 'ramp input');
25 xgrid(color('gray'));
26
27 subplot(3,2,2);
28 i1 = csim("step",t,Gi);
29 i2 = csim(ramp,t,Gi);
30 plot2d(t ,i1, style=2);
31 plot2d(t ,i2, style=3) ;
32 xtitle('Integral control', 't', 'y');
33 xgrid(color('gray'));
34 i1 = i1 * Ki2 / Ki1; //change of gain
35 i2 = i2 * Ki2 / Ki1;
36
37
38 subplot(3,2,3);
39 plot2d(t ,p1 + i1, style=2);
40 plot2d(t ,p2 + i2, style=3);
41 xtitle('Proportional integral control', 't', 'y');
42 xgrid(color('gray'));
```

```
43
44 subplot(3,2,4);
45 pd1 = p1;
46 pd2 = p2 + Kp*Td*ones(1,length(t)); //derivative
     term
47 plot2d(t ,pd1, style=2);
48 plot2d(t ,pd2, style=3);
49 xtitle('Proportional plus derivative control', 't', 'y
      ');
50 xgrid(color('gray'));
51
52 subplot(3,2,5);
53 plot2d(t ,pd1 + i1, style=2);
54 plot2d(t ,pd2 + i2, style=3,leg='ramp input') ;
55 xtitle('P.I.D. control', 't', 'y');
56 xgrid(color('gray'));
```

Scilab code Exa 2.a.7 Transfer Function to Controllable State Space form

```
1 // Example A-2-7
2 // Transfer function to controllable form (state space)
3
4 clear; clc;close;mode(0);
5
6 s = %s;
7 Num = 2*s^3 + s^2 + s + 2; n = coeff(Num);
8 Den = s^3 + 4*s^2 + 5*s + 2; d = coeff(Den);
9 for i = 1:4 ; b(i) = n(5 - i); a(i) = d(5 - i); end
10
11 // Method 1
12 _beta(1) = b(1);
13 _beta(2) = b(2) - a(2)*_beta(1);
```



Figure 2.1: Step and Ramp response of different Controllers

```
14 _beta(3) = b(3) - a(2)*_beta(2) - a(3)*_beta(1);
15 _beta(4) = b(4) - a(2)*_beta(3) - a(3)*_beta(2) - a
(4)*_beta(1);
16
17 A = [0 1 0; 0 0 1; -d(1:3)]
18 B = _beta(2:4)
19 C = [1 0 0 ]
20 D = b(1)
21
22 // method 2
23 H2 = cont_frm(Num,Den)
```

Scilab code Exa 2.a.11 State space to Transfer Function model SISO system

```
1 // Example A-2-11
2 // Conversion from state space model to transfer
      function model
3 // for a Single Input Single Output System
4
5 clear; clc; close;
6
7 // Please edit the path below
8 // cd "/your code directory/";
9 // exec("transferf.sci");
10
11 A = [-1 \ 1 \ 0; \ 0 \ -1 \ 1; \ 0 \ 0 \ -2];
12 B = [0; 0; 1];
13 C = [1 0 0];
14 D = [0];
15
16 Htf = transferf(A,B,C,D);
                                    // Htf is the
      tranfer function
17 disp(Htf, 'Htf =');
                                      // polynomial. ie.
      Htf = num / den
```

check Appendix AP 4 for dependency:

```
transferf.sci
```

Scilab code Exa 2.a.12 State space to Transfer Function model MIMO system

```
1 // Example A-2-12
2 // Conversion from state space model to transfer
     function model
3
                 for a multiple input multiple output
  system
4
5 clear; clc; close;
6
7 // Please edit the path below
8 // cd "/your code directory/";
9 // exec("transferf.sci");
10
11 A = [0 1; -25 -4];
12 B = [1 1; 0 1];
13 C = [1 0; 0 1];
14 D = [0 0; 0 0];
15
                                 // Htf is the tranfer
16
  Htf = transferf(A,B,C,D)
     function matrix,
  disp(Htf, 'Htf =');
                                 // with four transfer
17
     functions
                                 // Htf(1,1), Htf(1,2),
18
                                    Htf(2,1), Htf(2,2);
```

check Appendix AP 4 for dependency:

transferf.sci

Scilab code Exa 2.b.14 Verifying linearization of a non linear system

```
1 // Exercise B-2-14
2
3 // An illustration on Linearization
4 // Linearize the function y = f(x) = 0.2 * x^3 at x=2
5 // SOLUTION : y = 2.4 * x - 3.2
7 // Let us observe graphically the linear
      approximation
8 // and the error, and percentage error
9
10 clear; clc; xdel(winsid());
11
12 x = 0.05:0.05:5;
13 y = 0.2 * x ^{3};
14
15 yl = 2.4 * x - 3.2 ; // this is not a linear
      system!
16 err = abs(y - yl); // Error in approximation
17 errpc = err ./ y * 100; //Percentage error
18
19 subplot(2,1,1);
20 plot2d(x,y,style=2);
21 plot2d(x,yl,style=3,leg="linearized system");
22 xtitle('Original and linearized system', 'x', 'y');
23
24 subplot(2,1,2);
25 plot2d(x,err,style=5);
26 xtitle('Error','x','error');
27
28 scf();
29 plot2d(x,errpc,style=5,rect=[1 0 3 100]);
30 \text{ plot2d}(x, 10 * \text{ ones}(1, \text{length}(x))), \text{style=}2, \text{leg=}"10\%
```



Figure 2.2: Verifying linearization of a non linear system

```
error margin");
31 xtitle('Percentage Error', 'x', '% error');
```

check Appendix AP 4 for dependency:

transferf.sci

Scilab code Exa 2.4 Convert State space to Transfer Function model

1 // Example 2-4



Figure 2.3: Verifying linearization of a non linear system

```
2 // Conversion from state space to transfer function
model
3
4 clear;clc;close;
5
6 // Please edit the path below
7 // cd "/your code directory/";
8 // exec("transferf.sci");
9
10 A = [0 1 0; 0 0 1;-5 -25 -5];
11 B = [0; 25; -120];
12 C = [1 0 0];
13 D = [0];
14 G = transferf(A,B,C,D);
15 disp(G,'transfer function = ');
```

#### Chapter 5

### Transient and Steady State Response Analysis

Scilab code Exa 5.a.3 Verifying design to match given response curve

```
1 // Example A-5-3
2 // Verifying design to match given response curve
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // Please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = %s;
12 K = 1.42;
13 T = 1.09;
14 K = 1.42;
15 G1 = (K/(s*(T*s + 1))) / . 1;
16 G = syslin('c',G1);
17
18 t = 0:0.1:10;
19 u = ones(1, length(t));
```



Figure 5.1: Verifying design to match given response curve

```
20 y = plotresp(u,t,G, 'Step response');
21
22 [m t] = max(y);
23 Mp = m - 1;
24 tp = (t - 1) * 0.1;
25 disp(Mp, 'Mp = ');
26 disp(tp, 'tp = ');
```

check Appendix AP 2 for dependency: plotresp.sci

Scilab code Exa 5.a.4 Determining K and k for required step response

```
1 // Example A-5-4
2 // Determining K and k for required step response
      charecteristics
3
4 clear; clc;
5 xdel(winsid());
6 \mod(0);
7
8 \text{ Mp} = 0.25;
9 tp = 2;
10 J = 1; // \text{kg.m}^2
11
12 z = poly(0, 'z');
13 Eq = (z*\%pi)^2 - \log(1/Mp)^2 * (1 - z^2);
14 x = roots(Eq);
15 zeta = abs(x(1))
16
17 wd = %pi / tp
18 wn = wd / sqrt(1 - zeta^2)
19 \text{ K} = J * wn^2
20 \text{ k} = 2 \text{zeta*wn} / \text{K}
```

Scilab code Exa 5.a.5 Verifying design to match given response

```
1 // Example A-5-5
2 // Verifying design to match given response curve
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 m = 5.2; // lb / ft^2
9 b = 12.2; // lb / ft/sec
```

```
10 k = 20; // lb /ft
11 G = syslin('c',1,m*s^2 + b*s + k);
12
13 STEP = 0.05; t = 0:STEP:7;
14 u = 2 * ones(1,length(t));
15 y = csim(u,t,G);
16 plot(t,y);
17 xgrid(color('gray'));
18 xtitle('Step response','t sec','Response');
19
20 [m t] = max(y);
21 Mp = (m - 0.1) /0.1 * 100;
22 tp = (t - 1) * STEP;
23 disp(Mp,'Mp (percent) = ');
24 disp(tp,'tp = ');
```

Scilab code Exa 5.a.8 Unit step response and partial fraction expansion

```
1 // Example A-5-8
2 // Unit step response and partial fraction expansion
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // Please edit path
8 // cd "<your codes path >/";
9 // exec("pf_residu.sci");
10 // exec("plotresp.sci");
11
12 s = %s;
13 N = poly( [80 72 25 3], 's', 'c');
14 D = poly( [80 96 40 8 1], 's', 'c');
15 G = syslin('c',N,D)
```



Figure 5.2: Verifying design to match given response



Figure 5.3: Unit step response and partial fraction expansion

```
16
17 t = 0:0.05:5;
18 u = ones(1,length(t));
19 plotresp(u,t,G,'Unit Step Response of C(s) / D(s)');
20
21 // To find the residues of step response
22 D = D * s;
23 [r,z,p] = pf_residu(N,D);
24
25 disp(z,'zeros = ');disp([p,r],'poles : residues =');
;
```

check Appendix AP 6 for dependency: pf\_residu.sci

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 5.a.9 Effect of zeros on step response of a system

```
1 // Example A-5-9
2 // Effect of zeros on step response of a system
3 // Interactive program
4
5 clear; clc;
6 xdel(winsid()); //close all windows
\overline{7}
8 function drawg()
     delete(gca())
9
10
     N = 4*(s*1/z + 1);
     G = syslin('c', N, D);
11
     ys = csim('step',t,G);
12
13
     m = max(ys);
14
    Mp = m -1;
15
     plot(t,ys);
16
     xtitle('Unit Step Response for zero at z = ' +
        string(z) + ' Mp = ' + string(Mp), 't (sec)', '
        Output');
17
     xgrid(color('gray'));
     a = gca();
18
     a.data_bounds = [0 0; 10 4]
19
20 endfunction
21
22 \ s = \% s;
23 z = 0.2;
24 D = s^2 + 4 + s + 4;
25 t = 0:0.02:10;
26 \, drawg();
27 h = uicontrol('style', 'pushbutton', 'position', '
      250|10|60|20', 'callback', 'z = z - 0.1; drawg()', '
```



Figure 5.4: Effect of zeros on step response of a system

#### Scilab code Exa 5.a.10 Step response characteristics

```
1 // Example A-5-10
2 // Plot the unit step response and find the
    transient parameters
3 // viz. - rise time, peak time, settling time and
```

```
maximum overshoot
4
5 clear; clc;
6 xdel(winsid()); //close all windows
7 mode(0);
8
9 // Please edit path if needed
10 // cd "/<your code path >/";
11 // exec("stepch.sci");
12
13 N = poly( [12.811 18 6.3223], 's', 'c');
14 D = poly( [12.811 18 11.3223 6 1], 's', 'c');
15 G = syslin('c',N,D);
16 [Mp tp tr ts] = stepch(G,0,20,0.01,0.02)
```

check Appendix AP 8 for dependency: stepch.sci

Scilab code Exa 5.a.11 Step Response for different zeta and wn

```
1 // Example A-5-11
2 // Unit Step Response for different systems for
different zeta,wn
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 zeta = [0.3 0.5 0.7 0.8];
8 wn = [1 2 4 6];
9 n = wn .^ 2;
10 sigma= 2 .* zeta .* wn;
11
12 s = %s;
```



Figure 5.5: Step response characteristics
Scilab code Exa 5.a.12 Response to unit ramp and exponential input

```
1 // Example A-5-12
2 // Response to unit ramp and exponential input
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // Please edit path if needed
8 // cd "/<your code folder >/"
9 // exec("plotresp.sci");
10
11 s = \%s;
12 G = syslin('c', s + 10, s<sup>3</sup> + 6*s<sup>2</sup> + 9*s + 10);
13
14 t = 0:0.05:10;
15 e = exp(-0.5 * t);
16 plotresp(t,t,G, 'Response to unit ramp input');
17 scf();
```



Figure 5.6: Step Response for different zeta and wn



Figure 5.7: Response to unit ramp and exponential input

18 plotresp(e,t,G, 'Response to exponential input');

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 5.a.13 Response to input r equals 2 plus t

1 // Example A-5-13 2 // Response to input r = 2 + t



Figure 5.8: Response to unit ramp and exponential input

```
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // Please edit the path
8 // cd "/<your code folder >/Codes/chapter_5";
9 // exec("plotresp.sci")
10
11 s = %s;
12 G = syslin('c', 5, s^2 + s + 5);
13 t = 0:0.05:10;
14 r = 2 + t;
15 plotresp(r,t,G, 'Response to input r = 2 + t');
```

check Appendix AP 2 for dependency:

```
plotresp.sci
```

Scilab code Exa 5.a.14 Response to unit acceleration input

```
1 // Example A-5-14
2 // Response to unit acceleration r = (1/2) * t^2
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code folder >/Codes/chapter_5"
9 // exec("plotresp.sci")
10
11 s = %s;
12 G = syslin('c', 2, s^2 + s + 2);
13 t = 0:0.05:10;
14 r = (1/2) * t.^2;
```



Figure 5.9: Response to input r equals 2 plus t



Figure 5.10: Response to unit acceleration input

15 plotresp(r,t,G, 'Response to unit accceleration r =  $(1/2) * t^2$ ');

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 5.a.15 Step Responses for different zeta

```
1 // Example A-5-15
2 // 2d and 3d plot for various values of zeta
3
```



Figure 5.11: Step Responses for different zeta

```
4 // Please refer to example 5-4
5
6 // To get the trasnposed plot please add the lines
7
8 scf();
9 mesh(y,x,z);
10 xtitle(' 3d Plot of step Response transposed', 'zeta'
, 't sec', 'Response');
```

Scilab code Exa 5.a.16 Response to initial conditions

```
1 // Example A-5-16
2 // Response to initial conditions
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 A = [0 1 0; 0 0 1; -10 -17 -8];
8 C = [1 0 0];
9 \times 0 = [2; 1; 0.5];
10 G = syslin('c', A, [0; 0; 0], C, 0, x0);
11
12 t = 0:0.05:10;
13 u = zeros(1, length(t));
14 y = csim(u,t,G);
15
16 plot(t,y);
17 xgrid(color('gray'));
18 xtitle('Response to initial condition','t (sec)','
      output ');
```

Scilab code Exa 5.2 Determining K and Kh for required step response

```
1 // Example 5-2
2 // Determining K and Kh for required step response
      charecteristics
3
4 clear; clc;
5 xdel(winsid());
6 mode(0);
7
8 Mp = 0.2;
9 tp = 1;
10 J = 1; // kg.m<sup>2</sup>
```



Figure 5.12: Response to initial conditions

```
11 B = 1; // N - /rad/sec
12
13 z = poly(0, 'z');
14 Eq = (z*\%pi)^2 - \log(1/Mp)^2 * (1 - z^2);
15 x = roots(Eq);
16 zeta = abs(x(1))
17
18 wd = %pi / tp
19 wn = wd / sqrt(1 - zeta^2)
20 K = J * wn^2
21 Kh = (2*sqrt(K*J)*zeta - B) / K
22
23 sigma = wn*zeta;
24 _beta = atan(wd/sigma)
25 tr = (%pi - _beta) / wd
26 ts_2percent = 4 / sigma
27 ts_5percent = 3 / sigma
```

Scilab code Exa 5.3 Step response of MIMO system

```
1 // Example 5-3
2 // Step response of a linear System given in State
    Space
3 // Model (Multiple Input Multiple Output System)
4
5 clear; clc;
6 xdel(winsid()); //close all windows
7
8 A = [ -1 -1; 6.5 0];
9 B = [ 1 1; 1 0];
10 C = [ 1 0; 0 1];
11 D = [ 0 0; 0 0];
12 G = syslin('c', A, B, C, D);
13 Gtf = clean(ss2tf(G));
14 disp(Gtf, 'Gtf = '); //transfer function matrix
```

```
15
16 \ N = 200;
                                    //No of points
17 t = linspace(0, 10, N);
18 \text{ u1} = [\text{ones}(1, N) ; \text{zeros}(1, N)];
19 u2 = [zeros(1,N); ones(1,N)];
20
                                  // find system response
21 \ y1 = csim(u1,t,G);
22 y2 = csim(u2,t,G);
23
24 plot(t,y1);
25 xtitle('Unit Step Response: input = u1 (u2 = 0)', 't
      Sec', 'Response');
26 xgrid(color('gray'));
                                 // grid
27 legend('output: y1', 'output: y2');
28
                                   // new window
29 scf(1);
30 plot(t,y2);
31 xtitle('Unit Step Response: input = u^2 (u^1 = 0)', 't
      Sec', 'Response');
32 xgrid(color('gray'));
33 legend('output: y1', 'output: y2');
34
    // We cannot use csim('step', , ) because this
35
       option is only available
    // for SISO sytems
36
```

Scilab code Exa 5.4 Second order systems with different damping ratio

```
1 // Example 5-4
2 // 2d and 3d plots of standard second order systems
3 // with wn = 1 and different damping ratios
```



Figure 5.13: Step response of MIMO system



Figure 5.14: Step response of MIMO system

```
4
5 clear; clc;
6 xdel(winsid()); //close all windows
7
8 \, s = \% s;
9 t = 0:0.1:10;
10 \text{ zeta} = 0:0.2:1;
11
12 \text{ for } n = 1:6
       z(n,:) = csim('step',t,syslin('c', 1,s^2 + 2*
13
          zeta(n)*s + 1));
14
  end
15
16 plot(t,z); // 2d plot of step responses
17 xtitle('Plot of step response curves with wn = 1 and
       different zeta', 't sec', 'Response');
18 xgrid(color('gray'));
19 legend('zeta = 0', '0.2', '0.4', '0.6', '0.8', '1.0');
20
          // new window
21 scf();
22
23 [x,y] = meshgrid(0:0.1:10, 0:0.2:1); //needed by
      the mesh command
24 mesh(x,y,z);
25 xtitle(' 3d Plot of step Response', 't sec', 'zeta', '
      Response ');
```

Scilab code Exa 5.5 Impulse Response of a Second order System

```
1 // Example 5-5
2 // Impulse Response of a Second Order System
```



Figure 5.15: Second order systems with different damping ratio



Figure 5.16: Second order systems with different damping ratio

check Appendix AP 2 for dependency:

```
plotresp.sci
```

Scilab code Exa 5.6 Unit Ramp response of a second order system

```
1 // Example 5-6
2 // Unit Ramp response of a second order system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // Please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = %s
12 G = syslin('c', 2*s + 1, s^2 + s + 1);
13
14 t = 0:0.05:10;
```



Figure 5.17: Impulse Response of a Second order System



Figure 5.18: Unit Ramp response of a second order system

15 plotresp(t,t,G,'Unit ramp response of G = (2\*s + 1)/  $(s^2 + s + 1)$ ');

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 5.7 Response to step and exponential input

```
1 // Example 5-7
2 // Response to step and exponential input
3
```

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // Please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 t = 0:0.1:16;
12 \quad A = [-1 \quad 0.5; \ -1 \quad 0];
13 B = [0; 1];
14 C = [1 0];
15 D = [0];
16 G = syslin('c', A, B, C, D);
17
18 // unit step response
19 u = ones(1, length(t));
20 plotresp(u,t,G, 'Unit-Step Response');
21 scf();
22 // response to exponential input = e^{(-t)}
23 u = exp(-t);
24 plotresp(u,t,G, 'Response to exponential input');
```

Scilab code Exa 5.8 Response to initial condition

```
1 // Example 5-8
2 // Response to initial condition (Transfer Function)
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
```



Figure 5.19: Response to step and exponential input



Figure 5.20: Response to step and exponential input

```
8 N = 0.1*s^2 + 0.35*s;
9 D = s^2 + 3*s + 2;
10 G = syslin('c',N,D);
11
12 t = linspace(0,8,200);
13 u = ones(1,200);
14 y = csim(u,t,G);
15
16 plot(t,y);
17 xtitle('Response to initial conditions','t Sec','
Response');
18 xgrid(color('gray'));
19 // We cannot use the 'step' version of csim directly
20 // as direct feedback sets to zero for the 'step'
option
```

Scilab code Exa 5.9 Response to initial conditions using state space



Figure 5.21: Response to initial condition



Figure 5.22: Response to initial conditions using state space

```
14 plot(t, x(1,:), t, x(2,:));
15 xtitle('Response to initial condition','t Sec','
State variables');
16 xgrid(color('gray'));
17 legend('x1','x2');
18 // The State variables x, respond only to A,B
matrices
19 // changning C and D will make no difference.
```

Scilab code Exa 5.10 Response to initial condition using syslin x0

```
1 // Example 5-10
2 // Response to initial condition (differential
     equation)
3 // Solution of differential equation with initial
     conditions
4
5 clear; clc;
6 xdel(winsid()); //close all windowss
7
8 t = 0:0.05:10;
9 \, s = \% s;
10 G1 = cont_frm(1, s^3 + 8*s^2 + 17*s + 10); //get the
      state space model
11 ssprint(G1);
12
13 x0 = [2; 1; 0.5]; // initial states of the system
14 G = syslin('c', G1.A, G1.B, G1.C, G1.D, x0);
15
16 y = csim(zeros(1, length(t)), t, G);
17
           // response to zero input will give response
              to initial state
18 plot(t,y);
19 xgrid(color('gray'));
20 xtitle('Response to initial conditions', 't Sec', 'y')
     ;
```

## Scilab code Exa 5.12 Constructing Routh array

```
1 // Example 5-12
2 // Constructing Routh array in scilab
3 
4 clear; clc;
5 xdel(winsid()); //close all windows
```



Figure 5.23: Response to initial condition using syslin  $\mathbf{x}0$ 

```
6 mode(0);
7
8 s = %s;
9 H = s^4 + 2*s^3 + 3*s^2 + 4*s + 5;
10 routh_t(H) // display the routh table
```

Scilab code Exa 5.13 Constructing Routh array

```
1 // Example 5-13
2 // Constructing Routh array in scilab
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 \, s = \% s;
9 H = s^5 + 2*s^4 + 24*s^3 + 48*s^2 - 25*s - 50;
10 routh_t(H)
11
12 // In this example a zero row forms at s^3
13 // the function atutomatically computes the
      derivative of the
14 // auxilliary polynomial 2s^4 + 48s^2 - 50
15 // viz = 8 * s^3 + 96 s^2
```

## Chapter 6

## Control Systems Analysis and Design by Root Locus Method

check Appendix AP 12 for dependency:

gainat.sci

Scilab code Exa 6.i.1 Finding the Gain K at any point on the root locus

```
1 // Illustration 6.1
2 // Finding the Gain K at any point on the root locus
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please set the path
8 // cd "/<your code directory >/"
9 // exec("rootl.sci");
10 // exec("gainat.sci");
11
12 function drawr()
```



Figure 6.1: Finding the Gain K at any point on the root locus

check Appendix AP 7 for dependency:

rootl.sci

Scilab code Exa 6.i.2 Orthogonality Constant gain curves and Root Locus

```
1 // Illustration 6.2
2 // Orthogonality of constant gain curves and root
locus
3 // and the root locus
4
5 // Section6.3 Figure 6-29 in the book
6
7 clear; clc;
8 xdel(winsid()); //close all windows
9
10 // please set the path
11 // cd "/<your code directory >/"
12 // exec("rootl.sci");
```



Figure 6.2: Orthogonality Constant gain curves and Root Locus

```
13
14 s = %s;
15 P = 1 / (s * (s + 1) * (s + 2));
16 G = syslin('c', P);
17
18 rootl(G,[ -6 -6; 6 6 ], 'Orthogonality of root locus
     and constant gain curves');
19
20 P = 1 / P;
21 v = -6:0.1:6;
22 [X,Y] = ndgrid(v,v); // prepares a grid to compute
     the gain
23 S = X + \%i * Y;
24 K = abs(horner(P,S)); // Gain evaluated over the
     grid
25
26 contour(v,v,K,10); // plot lines of constant gain
```

check Appendix AP 7 for dependency:

rootl.sci

Scilab code Exa 6.i.3 Effect of adding poles or zeros on the root locus

```
1 // Illustration 6.3
2 // Effect of adding poles or zeros on the root locus
        of the system
3 // (section6-5). (fig 6-35)
4 // Interactive Program
5
6 // A MENU called "Add" will be added to the window
7
8 clear; clc;
9 xdel(winsid()); //close all windows
```



Figure 6.3: Effect of adding poles or zeros on the root locus

```
10
11 // please set the path
12 // cd "/<your code directory >/"
13 // exec("rootl.sci");
14
15 function J = add(n, H)
16
17
     z = locate(1,1);
     x = z(1); y = z(2);
18
     N = H.num;
19
20
     D = H.den;
     if abs(y) \le 0.2 then
21
22
       if n == 1 then D = D * (s-x);
                 N = N * (s-x);
23
          else
24
       end
25
       zp = x;
26
      else
27
       if n == 1 then D = D * (s^2 - 2*x*s + x^2 + y)
          ^{2};
28
          else
               N = N * (s^2 - 2 * x * s + x^2 + y^2);
29
        end
30
       zp = x + \%i * y;
31
      end
      J = syslin('c', N, D);
32
33
      draws(J);
      if(n == 1) then disp(zp, "p = "); else disp(zp, "z
34
         = "); end
      disp(J, "G = ");
35
36 endfunction
37
38 function draws(P)
39
     delete(gca());
     rootl(P,[-5 -5; 5 5], 'Root locus'); //you can
40
        change the range : [-20, -20; 20, 20];
41
42 endfunction
43
44 // Main Program
```
```
45 s = %s;
46 N = 1;
47 D = s * (s + 1) * (s + 3);
48 G = syslin('c',1,D);
49 H = G;
50
51 draws(G);
52 addmenu(0, 'Add',['Pole', 'zero', 'Reset']);
53 Add_0 = ['H = add(1,H)', 'H = add(2,H); ', 'draws(G);H=
G; '];
54
55 // place a zero close to the pole at -3
56 // first place it to the right then , to the left
57 // Then mover farther to the right.[-5 -5; 5 5]
```

rootl.sci

Scilab code Exa 6.a.6 Root locus

14



Figure 6.4: Root locus

- 15 // the same method may be employed to plot root loci in examples
- 16 // A-6-1, 2, 3, 8, 10,
- 17 // simply write the transfer function and choose suitable range
- 18 // [xmin ymin; xmax ymax]

rootl.sci

Scilab code Exa 6.a.13.1 Lead Compensator Design Attempt 1

```
1 // Example A-6-13-1
2 // Lead Compensator Design Attempt 1
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("rootl.sci");
10 // exec("plotresp.sci");
11
12 s = %s;
13 G = syslin('c',1,s^2);
14 H = syslin('c',1,0.1*s + 1);
15
16 R = [-1 -1];
17 I = [1.73205 - 1.73205];
18 \text{ dp} = R(1) + \%i * I(1);
19
20 subplot(1,2,1);
21 rootl(G*H,[-15 -15; 5 15], 'Root locus plot for
      uncompensated system ');
22 plot(R,I,'x');
23 angdef = 180 - phasemag(horner(G*H,dp));
24 disp(angdef, 'angle deficiency =');
25
26 z = 1; // zero at -1;
27 p = 1.73205 / tand(90 - angdef) + 1 ;
28 \text{ Gc} = (s + z) / (s + p);
29 disp(Gc, 'lead compensator =');
30
31 Kc = abs(1 / horner(G*Gc*H, dp));
32 disp(Kc, 'Kc =');
33 O = Kc*Gc*G*H; disp(O, 'open loop Transfer function
      =');
34 C = Kc*Gc*G / . H;
                       disp(C, 'closed loop Transfer
      function =');
35 disp(roots(C.den), 'closed loop poles =');
```



Figure 6.5: Lead Compensator Design Attempt 1



Figure 6.6: Lead Compensator Design Attempt 1

```
check Appendix AP 2 for dependency:
plotresp.sci
check Appendix AP 7 for dependency:
rootl.sci
```

Scilab code Exa 6.a.13.2 Lead Compensator Design Attempt 2

```
1 / / Example A - 6 - 13 - 2
2 // Lead Compensator Design Attempt 2
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("rootl.sci");
10 // exec("plotresp.sci");
11
12 s = %s;
13 G = syslin('c',1,s^2);
14 H = syslin('c',1,0.1*s + 1);
15
16 R = [-1 -1];
17 I = [1.73205 - 1.73205];
18 \text{ dp} = R(1) + \%i * I(1);
19
20 subplot(1,2,1);
21 rootl(G*H,[-15 -15; 5 15], 'Root locus plot for
      uncompensated system ');
22 plot(R,I, 'x');
23 angdef = 180 - phasemag(horner(G*H,dp));
24 disp(angdef, 'angle deficiency =');
25
```

```
26 z = 3; // z = 3;
27 \text{ p} = 1.73205 / \text{tand}(40.89334 - \text{angdef}/2) + 1 ; \text{disp}(p)
      , 'p =');
28 Gc = ((s + z) / (s + p))^2;
29 disp(Gc, 'lead compensator =');
30
31 Kc = abs(1/ horner(G*Gc*H,dp));
32 disp(Kc, 'Kc =');
33 O = Kc*Gc*G*H; disp(O, 'open loop Transfer function
      =');
34 \ C = Kc*Gc*G / . H;
                       disp(C, 'closed loop Transfer
      function =');
35 disp(roots(C.den), 'closed loop poles =');
36
37 subplot(1,2,2);
38 rootl(O,[-15 -15; 5 15], 'Root locus plot for
      compensated system ');
39 plot(R,I, 'x');
40
41 scf();
42 t = 0:0.05:10;
43 u = ones(1,length(t)); //step response
44 plotresp(u,t,C, 'Unit step response');
45 xstring(1,0.95, 'compensated system');
```

check Appendix AP 2 for dependency: plotresp.sci check Appendix AP 7 for dependency: rootl.sci



Figure 6.7: Lead Compensator Design Attempt 2



Figure 6.8: Lead Compensator Design Attempt 2  $\,$ 

Scilab code Exa 6.a.17 Design of lag lead compensator

```
1 // Example A-6-17
2 // Design of lag lead compensator
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("rootl.sci");
11 // exec("plotresp.sci");
12
13 s = %s;
14 G = syslin('c',1 ,s * (s + 1) * (s + 5));
15
16 Kv = 50;
                      // desired velocity constant
17 disp(horner(s*G,0), 'Kv (uncompensated system) = ');
18
19 // designing lead part
20 Kc = Kv /abs(horner(s*G,0))
21 z1 = 1 //to cancel the pole s = -1 of the plant
22
23 _beta = 16.025; disp(_beta, 'beta = ');
24 = 1.9054 // beta and x are found analytically
25
26 \text{ dp} = -x + \text{sqrt}(3) * \% i * x
27 R = [-x -x]; I = [imag(dp) - imag(dp)];
28 p1 = z1 * _beta
29
30 Gc1 =Kc * (s + z1)/(s + p1); disp(Gc1, 'Lead
      compensator Gc1 = ');
31
32 // Lag compensator design
33 \text{ p2} = 0.01 / \text{say}
34 z2 = p2 * _beta
35 \text{ Gc2} = (s + z2)/(s + p2);
```

```
36 disp(Gc2, 'Lag compensator Gc2 = ');
37 disp(abs(horner(Gc2,dp)), 'magnitude contribution of
      lag part =');
38 disp(phasemag(horner(Gc2,dp)), 'angle contribution of
       lag part =');
39 // these are acceptable
40
41 \text{ Gc} = \text{Gc1} * \text{Gc2}
42 H = G * Gc ;
                         // compensated system
43 H = syslin('c', numer(H), denom(H));
44
45 subplot(1,2,1);
46 rootl(G, [-20 -15; 10 15], 'Uncompensated system');
47 plot(R,I, 'x');
48 xgrid(color('gray'));
49 subplot(1,2,2);
50 rootl(H,[-20 -15; 10 15], 'Compensated system');
51 plot(R,I, 'x');
52 xgrid(color('gray'));
53 xstring(R(1),I(1),'Desired closed loop poles');
54
55 G1 = syslin('c',G /. 1);
56 C = syslin('c', H / . 1);
                              // final closed loop
      system
57 disp(C, 'closed loop system =');
58 disp(roots(C.den), 'closed loop poles = ');
59 disp(horner(s*H,0), 'velocity error constant Kv =')
60
61 scf();
62 subplot(2,1,1);
63 t = 0:0.05:10;
64 \ u = ones(1, length(t));
65 plotresp(u,t,G1,'');
66 plotresp(u,t,C, 'Unit step response');
67 xstring(1,0.1, 'uncompensated system');
68 xstring(0.7,1.12, 'compensated system');
69
70 subplot(2,1,2);
```



Figure 6.9: Design of lag lead compensator

```
71 plotresp(t,t,G1, '');
72 plotresp(t,t,C, 'Unit ramp response');
73 xstring(3,0.9, 'uncompensated system');
74 xstring(0.7,2, 'compensated system');
```

check Appendix AP 2 for dependency: plotresp.sci check Appendix AP 7 for dependency: rootl.sci



Figure 6.10: Design of lag lead compensator

Scilab code Exa 6.a.18 Design of a compensator for a highly oscillactory system

```
1 // Example A-6-18
2 // Design of a compensator for an highly
      oscillactory system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod (0);
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("rootl.sci");
11 // exec("plotresp.sci");
12
13 \ s = \% s;
14 G = syslin('c',2*s + 0.1,s * (s<sup>2</sup> + 0.1*s + 4));
15
16 R = [-2, -2];
17 I = 2*sqrt(3) * [1 -1];
18 \text{ dp} = R(1) + \%i * I(1)
19
20 // Cancel the zero at -0.1
21 \text{ Gc2} = (s + 4)/(2*s + 0.1)
22 G1 = G*Gc2
23
24 angdef = 180 - phasemag(horner(G1,dp));
25 disp(angdef, 'angle deficiency =')
26
27 // Designing two lead comensators in series
28 angdefby2 = angdef / 2
29 z = 2 // say
30 p = 2 + 2 * sqrt(3) * cotd(90 - angdefby2)
```

```
31
32 \text{ Gc1} = ((s + z)/(s + p))^2
33 G2 = Gc1 * G1;
34 Kc = 1 / abs(horner(G2, dp))
35 \text{ Gc} = \text{Kc} * \text{Gc1} * \text{Gc2}
36
37 H = Kc * G2; disp(H, 'Gc*G = ');
38 C = H / . 1;
                  disp(C, 'closed loop Transfer function
     ='):
39 disp(roots(C.den), 'closed loop poles =');
40
41 subplot(1,2,1);
42 rootl(G,[-15 -15; 15 15], 'Root locus plot for
      uncompensated system');
43 plot(R,I, 'x');
44 xgrid(color('gray'));
45 subplot(1,2,2);
46 rootl(H,[-15 -15; 15 15], 'Root locus plot for
      compensated system');
47 plot(R,I, 'x');
48 xgrid(color('gray'));
49
50 scf();
51 subplot(2,1,1);
52 t = 0:0.02:5;
53 u = ones(1,length(t)); //step response
54 plotresp(u,t,C, 'Unit step response of the
      compensated system');
55
56 subplot(2,1,2);
57 t = 0:0.02:8;
58 plotresp(t,t,C, 'Unit step response of the
      compensated system ');
```



Figure 6.11: Design of a compensator for a highly oscillactory system



Figure 6.12: Design of a compensator for a highly oscillactory system

```
check Appendix AP 2 for dependency:

plotresp.sci

check Appendix AP 7 for dependency:

rootl.sci

check Appendix AP 7 for dependency:

rootl.sci
```

## Scilab code Exa 6.1 Root Locus

```
1 // Example 6-1
2 // Root Locus
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8
  // cd "/<your code directory >/";
9 // exec("rootl.sci");
10
11 s = %s;
12 D = s * (s + 1) * (s + 2);
13 H = syslin('c',1,D);
14
15 rootl(H,[-4 -3; 2 3], 'Root locus of G(s) = 1/(s*(s + 1))
       1) * (s + 2))');
```

Scilab code Exa 6.2 Root Locus



Figure 6.13: Root Locus

```
1 // Example 6-2
2 // Root Locus
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 \, s = \% s;
8 H = syslin('c', s + 2, s^2 + 2*s + 3);
9
10 evans(H,10);
11 xgrid();
12 a = gca();
13 a.box = "on";
14 \text{ a.data_bounds} = [-6 -3; 2 3];
15 a.children(1).visible = 'off';
16 xtitle('Root locus of G(s) = (s + 2)/(s^2 + 2*s + 2)
      3) ');
```

rootl.sci

Scilab code Exa 6.3 Root Locus

```
1 // Example 6-3
2 // Root locus
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("rootl.sci");
10
```



Figure 6.14: Root Locus



Figure 6.15: Root Locus

check Appendix AP 7 for dependency: rootl.sci

Scilab code Exa 6.4 Root Locus

```
1 // Example 6-4
2 // Root locus
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("rootl.sci");
10
11 s = %s;
12 D = s*(s + 0.5)*(s^2 + 0.6*s + 10);
13 H = syslin('c',1,D);
14 disp(roots(D), 'open loop poles =');
15
16 rootl(H, [-6 -6; 6 6], 'Root locus of G(s) = 1/(s*(s))
     + 0.5) *(s<sup>2</sup> + 0.6 * s + 10)');
```

check Appendix AP 7 for dependency: rootl.sci

Scilab code Exa 6.5 Root locus of system in state space

1 // Example 6\_5
2 // Root locus of system in state space
3
4 clear; clc;



Figure 6.16: Root Locus

```
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 exec("rootl.sci");
10
11 \quad A = [0 \quad 1 \quad 0; \quad 0 \quad 0 \quad 1; \quad -160 \quad -56 \quad -14];
12 B = [0; 1; -14];
13 C = [1 0 0];
14 D = [0];
15 G = syslin('c',A,B,C,D);
16 H = clean(ss2tf(G));
17 disp(H, ' transfer function = ');
18
19 rootl(G,[-20 -20; 20 20], 'Root locus plot of State
      Space model');
```

Scilab code Exa 6.6.1 Design of a lead compensator using root locus

```
1 // Example 6-6-1
2 // Design of a lead compensator using root locus
3
4
5 clear; clc;
6 xdel(winsid()); //close all windows
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("rootl.sci");
11
12 s = %s;
13 G = syslin('c',10, s*(s+1)); //open loop system
14
```



Figure 6.17: Root locus of system in state space

```
15 R = [-1.5 - 1.5];
16 I = [2.5981 -2.5981]; // desired closed loop poles
17 dp = R(1) + \%i * I(1);
18
19 rootl(G,[-5 -5; 1 5], 'Uncompensated system');
20 xgrid(color('gray'));
21 plot(R,I,'x'); // A gain adjustment is not enough
       as the
22
                       // desired poles do not lie on the
                           roor locus
23
24 [phi1 db] = phasemag(horner(G,dp));
25 \text{ angdef} = 180 - \text{phi1};
26 disp(angdef, 'Angle deficiency = ');
27
28 // Lead compensator for Maximum Kv
29 // here we will find the pole-zero of the
      compensator
30 // using the prescirbed method
31
32 [phi2 dbi] = phasemag(dp);
33 angOPA = phi2;
34 \text{ angPOD} = 180 - \text{phi2};
35 angOPD = (angOPA - angdef) / 2;
36 angOPC = (angOPA + angdef) / 2;
37
38 \text{ angPDO} = (180 - \text{ angPOD} - \text{ angOPD});
39 \text{ angPCO} = (180 - \text{angPOD} - \text{angOPC});
40
41 //using the sine rule of triangles
42 DO = sind(angOPD) * abs(dp) / sind(angPDO);
43 CO = sind(angOPC) * abs(dp) / sind(angPCO);
44
45 Gc = (s + DO)/(s + CO);
46 disp(Gc , 'compensator = ');
47 H = G.num * Gc / G.den ; // compensated
      system
48 H = syslin('c', numer(H), denom(H));
```

```
49
50 scf();
51 rootl(H,[-5 -5; 1 5], 'Compensated system');
52 xgrid(color('gray'));
53 plot(R,I,'x');
54
55 // Final system passes through the desired poles
56 // required gain for the system
57 Kc = abs(1 / horner(H, dp));
58 disp(Kc, 'required gain Kc = ');
59 C = H * Kc / . 1;
                  // final closed loop system
60 disp(C, 'closed loop system =');
61 disp(roots(C.den), 'closed loop poles = ');
62 disp(horner(s*H*Kc,0), 'velocity error constant Kv ='
     )
```

rootl.sci

Scilab code Exa 6.6.2 Step and ramp response of lead compensated systems

```
1 // Example 6-6-2
2 // Step and ramp response of lead compensated
    systems
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 function Gc = leadcomp(Kc,z,p);
8 Gc = Kc* ((s + z)/(s + p));
```



Figure 6.18: Design of a lead compensator using root locus



Figure 6.19: Design of a lead compensator using root locus

```
9 endfunction
10
11 function plotall(u,t,text)
     y = csim(u,t,H);
12
13
     yc1 = csim(u,t,H1);
14
     yc2 = csim(u,t,H2);
15
     plot(t,y,t,yc1,t,yc2);
16
     xgrid(color('gray'));
17
     xtitle(text + ' Response of compensated and
18
        uncompensated systems', 't sec', 'Output');
     legend('Uncompensated System', 'Compensated System
19
        Method 1', 'Compensated System Method 2');
20 endfunction
21
22 \ s = \% s;
23 G = 10 / ( s*(s+1) ); //open loop system
24 Gc1 = leadcomp(1.2292, 1.9373, 4.6458);
25 \text{ Gc2} = \text{leadcomp}(0.9, 1, 3);
26
27 H = syslin('c', G / . 1);
28 H1 = syslin('c', (G * Gc1) / . 1);
29 H2 = syslin('c', (G * Gc2) /. 1);
30
    t = 0:0.05:5;
31
32
    u = ones(1, length(t));
33
    plotall(u,t, 'Step ');scf();
   t = 0:0.05:9;
34
    plotall(t,t, 'Ramp');
35
     plot(t,t, 'k');
36
```



Figure 6.20: Step and ramp response of lead compensated systems



Figure 6.21: Step and ramp response of lead compensated systems

Scilab code Exa 6.7.1 Design of a lag compensator using root locus

```
1 // Example 6-7-1
2 // Design of a lag compensator using root locus
3
4
5 clear; clc;
6 xdel(winsid()); //close all windows
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("rootl.sci");
11
12 \ s = \% s;
13 G = syslin('c', 1.06, s*(s+1)*(s+2)); //open loop
     system
14 R = [-0.31 - 0.31];
15 I = [0.55 - 0.55]; // desired closed loop poles
16 dp = R(1) + \%i * I(1);
17 disp(roots(G.den + 1.06), 'Closed loop poles (
     uncompensated =');
18 disp(horner(s*G,0), 'Kv (uncompensated system = ');
19
20 rootl(G,[-3 -2; 1 2],'');
21 plot(R,I, 'x');
22
23 // Lag compensator for Kv = 5 sec.
24
25 _beta = 10; // taking beta as 10
26 z = 0.05;
27 p = z / _beta;
28
29 Gc = (s + z)/(s + p);
30 disp(Gc , 'compensator = ');
31 H = G.num * Gc / G.den ; // compensated
     system
32 H = syslin('c', numer(H), denom(H));
33
```



Figure 6.22: Design of a lag compensator using root locus

```
34 rootl(H,[-3 -2; 1 2], 'Uncompensated and Compensated
        system ');
35 xgrid(color('gray'));
36 xstring(R(1),I(1), 'New pole on compensated sys');
37
38 Kc = abs(1 / horner(H,dp));
39 disp(Kc, 'required controller gain Kc = ');
40 C = H*Kc /. 1; // final closed loop system
41 disp(C, 'closed loop system =');
42 disp(roots(C.den), 'closed loop poles = ');
43 disp(horner(s*H*Kc,0), 'velocity error constant Kv ='
        )
```

rootl.sci

Scilab code Exa 6.7.2 Step and ramp response of lag compensated system

```
1 // Example 6-7-2
2 // Step and ramp response of lag compensated system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = \%s;
12 G = 1.06 / (s * (s + 1) * (s + 2));
13
14 Kc = 0.9956;
15 z = 0.05;
16 p = 0.005;
17 Gc = Kc * (s + z)/(s + p);
18 GGc = G*Gc;
19
20 H = syslin('c', G / . 1);
21 Hc = syslin('c', GGc / . 1);
22
23 t = 0:0.5:40;
24 u1 = ones(1,length(t)); //step response
25
26 subplot(2,1,1);plotresp(u1,t,H,'');
27 plotresp(u1,t,Hc, 'Unit step response');
28 xstring(5,0.9, 'uncompensated system');
29 xstring(0.1,1.2, 'compensated system');
30
31 t = 0:0.5:50;
```


Figure 6.23: Step and ramp response of lag compensated system

```
32 u2 = t; //ramp response
33 subplot(2,1,2);plotresp(u2,t,H,'');
34 plotresp(u2,t,Hc,'Unit ramp response');
35 xstring(18,13,'uncompensated system');
36 xstring(9,20,'compensated system');
```

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 6.8.1 Design of a lag lead compensator using root locus

```
1 // Example 6-8-1
2 // Design of a lag lead compensator using root locus
3 // zeta = gamma (not equal to)
4
5 clear; clc;
6 xdel(winsid()); //close all windows
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("rootl.sci");
10
11 s = \%s;
12 G = syslin('c',4, s * (s + 0.5)); //open loop
      system
13
14 Kv = 80;
                       // desired velocity constant
15 \text{ wn} = 5;
                       // desired natural frequency and
      damping
16 \_zeta = 0.5;
17 sigma = -1*wn * _zeta;
18 \text{ wd} = \text{wn} * \text{sqrt}(1 - \text{_zeta^2});
19
20 dp = sigma + %i*wd; // desired closed loop poles
21 disp(roots(G.den + 4), 'Closed loop poles (
      uncompensated =');
22 disp(horner(s*G,0), 'Kv (uncompensated system = ');
23
24 rootl(G,[-5 -2; 1 2], 'Uncompensated system');
25 xgrid(color('gray'));
26 plot([sigma sigma],[wd -wd], 'x');
27 xstring(sigma,wd, 'Desired CL poles');
28
29 // Designing Lead Part
30 [phi1 db] = phasemag(horner(G,dp));
31 \text{ angdef} = 180 - \text{phi1};
32 disp(angdef, 'Angle deficiency = ');
33
```

```
34 z1 = 0.5 //Make the lead compensator zero cancel
      the system zero
35 // To determin p1;
36 // Gc1 = [0.5 + (-2.5 + 4.33 j)] / [(p1 - 2.5) + 4.33 j]
37  [theta m2] = phasemag(-2.0 + 4.33*%i);
38 \text{ p1} = 2.5 + 4.33 \text{ cotd}(\text{theta} - \text{angdef}); // so that it
       contributes 'angdef'
39
40 Gc1 = (s + z1)/(s + p1);
                                disp(Gc1, 'Lead
      compensator Gc1 = ');
                                   disp(_gamma, 'gamma = '
41 _gamma = p1 / z1;
      );
42 Kc = abs(1/horner(G*Gc1,dp)); disp(Kc, 'Kc = ');
43
44 // Lag compensator design
45 _beta = Kv * _gamma / Kc / horner(s*G,0); disp(_beta
      , 'beta');
46
47 T2 = 5; //say
48 \ z2 = 1 / T2; \ p2 = z2 / _beta;
49 Gc2 = (s + z2)/(s + p2);
50 disp(Gc2, 'Lag compensator Gc2 = ');
51 disp(abs(horner(Gc2,dp)), 'magnitude contribution of
      lag part =');
52 disp(phasemag(horner(Gc2,dp)), 'angle contribution of
       lag part =');
53 // these are acceptable
54
55 Gc = Kc*Gc1*Gc2;
56 disp(Gc, 'final lag lead controller = ');
57 scf()
58 rootl(Gc*G,[-5 -2; 1 2], 'Compensated system');
59 xgrid(color('gray'));
60 plot([sigma sigma],[wd -wd], 'x');
61
62 C = Gc * G / . 1;
63 disp(C, 'closed loop system =');
64 disp(roots(C.den), 'closed loop poles = ');
```



Figure 6.24: Design of a lag lead compensator using root locus

```
65 disp(horner(s*Gc*G,0), 'velocity error constant Kv =')
```

check Appendix AP 7 for dependency:

rootl.sci

Scilab code Exa  $6.8.2\,$  Evaluating Lag Lead compensated system

1 // Example 6-8-2



Figure 6.25: Design of a lag lead compensator using root locus

```
2 // Evaluating Lag Lead compensated system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = \%s;
12 G = 4 / (s * (s + 0.5));
13
14 Gc = 6.25 * (s + 0.5) * (s + 0.2) / (s + 5) / (s + 5)
      0.125);
15 GGc = G*Gc;
16
17 H = syslin('c',G /. 1);
18 Hc = syslin('c',GGc /. 1);
19
20 t = 0:0.05:20;
21 u1 = ones(1,length(t)); //step response
22 plotresp(u1,t,H,'');
23 plotresp(u1,t,Hc, 'Unit step response');
24 xstring(0.5,1.7, 'uncompensated system');
25 xstring(1,0.95, 'compensated system');
26
27 scf()
28 t = 0:0.05:10;
29 plotresp(t,t,H,'');
30 y2 = plotresp(t,t,Hc, 'Unit ramp response');a = gca()
31 delete(a.children(2)); // deleting the drawn graph
      and redrawing
32 // with a different colour
33 plot(t,y2, 'r');
34 legend('ramp input', 'uncompensated system', '
      compensated system ');
```



Figure 6.26: Evaluating Lag Lead compensated system

check Appendix AP 2 for dependency: plotresp.sci

Scilab code Exa 6.9.1 Design of lag lead compensator using root locus 2

```
1 // Example 6-9-1
2 // Design of a lag lead compensator using root locus
2
```



Figure 6.27: Evaluating Lag Lead compensated system

```
3 // \text{gamma} = \text{beta case}
4
5 clear; clc;
6 xdel(winsid()); //close all windows
\overline{7}
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("rootl.sci");
11
12 s = %s;
13 G = syslin('c',4, s * (s + 0.5)); //open loop
     system
14
15 Kv = 80;
                       // desired velocity constant
                       // desired natural frequency and
16 \text{ wn} = 5;
     damping
17 \_ zeta = 0.5;
18 sigma = -1*wn * _zeta;
19 wd = wn * sqrt(1 - _zeta^2);
20 dp = sigma + %i*wd; // desired closed loop poles
21 disp(roots(G.den + 4), 'Closed loop poles (
      uncompensated =');
22 disp(horner(s*G,0), 'Kv (uncompensated system = ');
23
24 rootl(G,[-5 -2; 1 2], 'Uncompensated system');
25 xgrid(color('gray'));
26 plot([sigma sigma],[wd -wd], 'x');
27 xstring(sigma,wd, 'Desired CL poles');
28
29 // Designing Lead Part
30 Kc = Kv / horner(s*G,0);
                              disp(Kc, 'Kc = ');
                //z1 and p1 determinded graphically
31 	ext{ z1 } = 2.38;
32 \text{ p1} = 8.34;
                                   disp(T1, 'T1');
33 T1 = 1 / z1;
                                   disp(_beta, 'beta =');
34 _beta = T1 * p1;
35
36 Gc1 =Kc * (s + z1)/(s + p1); disp(Gc1, 'Lead
      compensator Gc1 = ');
```

```
37
38 // Lag compensator design
39 T2 = 10; //say
40 \ z2 = 1 / T2; \ p2 = z2 / _beta;
41 Gc2 = (s + z2)/(s + p2);
42 disp(Gc2, 'Lag compensator Gc2 = ');
43 disp(abs(horner(Gc2,dp)), 'magnitude contribution of
      lag part =');
44 disp(phasemag(horner(Gc2,dp)), 'angle contribution of
       lag part =');
  // these are acceptable
45
46
47 \text{ Gc} = \text{Gc1} * \text{Gc2};
48 disp(Gc, 'final lag lead controller = ');
49 scf()
50 rootl(Gc*G,[-5 -2; 1 2], 'Compensated system');
51 xgrid(color('gray'));
52 plot([sigma sigma],[wd -wd], 'x');
53
54 C = Gc * G / . 1;
55 disp(C, 'closed loop system =');
56 disp(roots(C.den), 'closed loop poles = ');
57 disp(horner(s*Gc*G,0), 'velocity error constant Kv ='
      )
58 disp(dp, 'desired poles =');
```

check Appendix AP 7 for dependency:

rootl.sci

Scilab code Exa 6.9.2 Evaluating Lag Lead compensated system



Figure 6.28: Design of lag lead compensator using root locus 2



Figure 6.29: Design of lag lead compensator using root locus 2

```
1 // Example 6-9-2
2 // Evaluating Lag Lead compensated system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = %s;
12 G = 4 / (s * (s + 0.5));
13
14 Gc = 10 * (s + 2.38) * (s + 0.1) / (s + 8.34) / (s + 10.1)
      0.0285);
15 GGc = G*Gc;
16
17 H = syslin('c', G / . 1);
18 Hc = syslin('c', GGc / . 1);
19
20 t = 0:0.05:20;
21 u1 = ones(1,length(t)); //step response
22 plotresp(u1,t,H,'');
23 plotresp(u1,t,Hc,'Unit step response');
24 xstring(0.5,1.7, 'uncompensated system');
25 xstring(1,0.95, 'compensated system');
26
27 scf()
28 t = 0:0.05:10;
29 plotresp(t,t,H,'');
30 plotresp(t,t,Hc, 'Unit ramp response');
31 xstring(1.4,0.9,'uncompensated system');
32 xstring(0,1.5, 'compensated system');
```



Figure 6.30: Evaluating Lag Lead compensated system



Figure 6.31: Evaluating Lag Lead compensated system

```
check Appendix AP 2 for dependency:
plotresp.sci
check Appendix AP 2 for dependency:
plotresp.sci
```

Scilab code Exa 6.10 Design of parallel compensation by root locus

```
1 // Example 6-10
2 // Design of parallel compensation by root locus
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 function [G,C] = getsystem(K)
     G = 20 / (s*(s+1)*(s+4) + K*s); //open loop
12
        system
13
     C = syslin('c',G /. 1); // closed loop system
14 endfunction
15
16 \ s = \% s;
17
18 // Root locus of the denominator polynomial (
      modified)
19 H = syslin('c', s, s^3 + 5*s^2 + 4*s + 20);
20 evans(H);
21 a= gca();a.children(1).visible = 'off';
22 sgrid([0.4],[]); // draw zeta = 0.4 line
23 \text{ a.box} = "on";
24 \text{ a.data_bounds} = [-6 -6; 1 6];
```

```
25 xgrid(color('gray'));
26
27 r = [ -2.1589 ; -1.049 ]; i = [4.9652; 2.4065];
28 p = r + \% i * i;
29 K = [1; 1] ./ abs(horner(H,p));
30 plot(r,i,'.');
31 xstring(r,i,['K = ' + string(K(1)), 'K = ' + string(K
      (2))]);
32
33 k = K . / 20;
34 disp([K k], 'K : k = ');
35 \quad [G1 \quad C1] = getsystem(K(1));
36 [G2 C2] = getsystem(K(2));
37
38 disp(roots(C1.den), 'closed loop poles of system with
       k = ' + string(k(1)));
39 disp(roots(C2.den), 'closed loop poles of system with
       k = ' + string(k(2));
40 disp(C1, 'C1 ='); disp(C2, 'C2 =');
41
42 scf();
43 t = 0:0.05:10;
44 u = ones(1, length(t));
45 plotresp(u,t,C1,'');
46 plotresp(u,t,C2, 'Step response of parallel
      compensated systems');
47 xstring(1.3, 1.1, 'k = ' + string(k(1)));
48 xstring(2,0.8, 'k = ' + string(k(2)));
```

```
check Appendix AP 2 for dependency:
plotresp.sci
check Appendix AP 7 for dependency:
rootl.sci
```



Figure 6.32: Design of parallel compensation by root locus



Figure 6.33: Design of parallel compensation by root locus

Scilab code Exa 6.15 Design of lag compensator

```
1 // Example A-6-15
2 // Design of lag compensator
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod(0);
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("rootl.sci");
11 // exec("plotresp.sci");
12
13 s = %s;
14 G = syslin('c',10,s * (s + 4));
15
16
                       // desired velocity constant
17 Kv = 80;
18 R = [-2, -2];
19 I = [sqrt(6) - sqrt(6)];
20 \text{ dp} = R(1) + \%i * I(1)
21
22 disp(horner(s*G,0), 'Kv (uncompensated system) = ');
23 _beta = 20; // taking Kc =1 we get beta as 10
24 z = 0.1;
            // choose z = 0.1
25 p = z / _beta;
26 \text{ Gc} = (s + z)/(s + p);
27 disp(Gc , 'compensator = ');
28 H = G * Gc ; // compensated system
29 H = syslin('c', numer(H), denom(H));
30 Gdp = horner(Gc,dp);
31 disp(abs(Gdp), 'Magnitude contribution of controller
     =');
```

```
32 disp(phasemag(Gdp), 'Angle contribution of controller
      =');
33
34 \text{ rootl}(G, [-3 -4; 1 4], '');
35 rootl(H,[-3 -4; 1 4], 'Uncompensated and Compensated
      system ');
36 xgrid(color('gray'));
37 plot(R,I,'x');
38 xstring(R(1),I(1), 'Original pole on uncompensated
      sys');
39
40 G1 = syslin('c', G / . 1);
41 C = syslin('c',H /. 1);
                                // final closed loop
      system
42 disp(C, 'closed loop system =');
43 disp(roots(C.den), 'closed loop poles = ');
44 disp(horner(s*H,0), 'velocity error constant Kv =')
45
46 scf();
47 subplot(2,1,1);
48 \ t = 0:0.05:10;
49 u = ones(1, length(t));
50 plotresp(u,t,G1, '');
51 plotresp(u,t,C, 'Unit step response');
52 string(1,0.9, 'uncompensated system');
53 xstring(0.7,1.12, 'compensated system');
54
55
56 t = 0:0.5:20;
57 subplot(2,1,2);
58 plotresp(t,t,G1,'');
59 plotresp(t,t,C, 'Unit ramp response');
60 xstring(2,0.9, 'uncompensated system');
61 xstring(0.1,4, 'compensated system');
```



Figure 6.34: Design of lag compensator



Figure 6.35: Design of lag compensator

check Appendix AP 2 for dependency:

plotresp.sci

check Appendix AP 7 for dependency:

rootl.sci

Scilab code Exa  $6.16\,$  Design of lag lead compensator

```
1 // Example A-6-16
2 // Design of lag lead compensator
```

```
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod(0);
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("rootl.sci");
11 // exec("plotresp.sci");
12
13 s = %s;
14 G = syslin('c', 10, s * (s + 2) * (s + 8));
15
16 Kv = 80;
                       // desired velocity constant
17 R = [-2 -2];
18 I = [2*sqrt(3) - 2*sqrt(3)];
19 dp = R(1) + \%i * I(1)
20
21 disp(horner(s*G,0), 'Kv (uncompensated system) = ');
22
23 // designing lead part
24 Kc = Kv /abs(horner(s*G,0))
25 angdef = 180 - phasemag(horner(G,dp))
                //z1 and p1 determinded graphically
26 	ext{ z1 = 3.7}
27 p1 = 53.35
28 T1 = 1 / z1
29 _beta = T1 * p1; disp(_beta, 'beta = ');
30
31 Gc1 =Kc * (s + z1)/(s + p1); disp(Gc1, 'Lead
      compensator Gc1 = ');
32
33 // Lag compensator design
34 \text{ p2} = 0.01 / / \text{say}
35 \ z2 = p2 * _beta
36 \text{ Gc2} = (s + z2)/(s + p2);
37 disp(Gc2, 'Lag compensator Gc2 = ');
38 disp(abs(horner(Gc2,dp)), 'magnitude contribution of
      lag part =');
```

```
39 disp(phasemag(horner(Gc2,dp)), 'angle contribution of
       lag part =');
40 // these are acceptable
41
42 \text{ Gc} = \text{Gc1} * \text{Gc2}
43 \text{ H} = \text{G} * \text{Gc};
                          // compensated system
44 H = syslin('c', numer(H), denom(H));
45
46 subplot (1,2,1);
47 rootl(G, [-10 -10; 10 10], 'Uncompensated system');
48 plot(R,I,'x');
49 xgrid(color('gray'));
50 subplot(1,2,2);
51 rootl(H,[-10 -10; 10 10], 'Compensated system');
52 plot(R,I,'x');
53 xgrid(color('gray'));
54 xstring(R(1),I(1), 'Desired closed loop poles');
55
56 G1 = syslin('c',G /. 1);
57 C = syslin('c', H /. 1); // final closed loop
      system
58 disp(C, 'closed loop system =');
59 disp(roots(C.den), 'closed loop poles = ');
60 disp(horner(s*H,0), 'velocity error constant Kv =')
61
62 scf();
63 subplot(2,1,1);
64 t = 0:0.05:10;
65 \text{ u} = \text{ones}(1, \text{length}(t));
66 plotresp(u,t,G1,'');
67 plotresp(u,t,C, 'Unit step response');
68 xstring(1,0.5, 'uncompensated system');
69 xstring(0.7,1.12, 'compensated system');
70
71 subplot(2,1,2);
72 plotresp(t,t,G1, '');
73 plotresp(t,t,C, 'Unit ramp response');
74 xstring(2,0.9, 'uncompensated system');
```



Figure 6.36: Design of lag lead compensator

75 xstring(0.5,2,'compensated system');



Figure 6.37: Design of lag lead compensator

## Chapter 7

## Control Systems Analysis and Design by Frequency Response Method

Scilab code Exa 7.a.1 Bode plot

```
1 // Example A-7-1
2 // Bode plot
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s /2 /%pi; // frequencies in rad/s
8 G = syslin('c', 10*(s + 1), (s + 2)*(s + 5));
9 bode(G,0.1,100);
10 xtitle('Bode plot of G(s) = 10*(s + 1)/[(s + 2)*(s + 5)]', 'rad/s');
11 a = gcf();set(a.children(1).x_label, 'text', 'rad/s');
```



Figure 7.1: Bode plot



Figure 7.2: Bode plot for 2nd order systems with varying zeta

Scilab code Exa 7.i.1 Bode plot for 2nd order systems with varying zeta

```
1 // Illustration 7-1
2 // Bode plot of second order systems with varying
      damping (zeta)
3
4 // With reference to section 7.2 (Figure 7.9)
5
6 clear; clc;
7 xdel(winsid()); //close all windows
8
9 \, s = \% s;
10 // Taking wn = 1 in all cases
11 zeta = [0.1 \ 0.2 \ 0.3 \ 0.5 \ 0.7 \ 1.0];
12
13
14 N = ones(6, 1);
15 D = zeros(6,1);
16 \text{ for } i = 1:6
17
     D(i) = s^2 + 2*zeta(i)*s + 1;
18 end
19 H = syslin('c', N, D);
20
21 omega = logspace(-1, 1, 100);
22 f = omega / 2 / %pi;
23 repf = repfreq(H,f); // Frequency response
24
25 bode (omega, repf, ['zeta = 0.1', '0.2', '0.3', '0.5',
      <sup>'</sup>, 0.7<sup>'</sup>, <sup>'</sup>, 1.0<sup>'</sup>]);
26 xtitle('Bode plot of second order systems', 'rad/s');
27 a = gcf(); set(a.children(1).x_label, 'text', 'rad/s');
```

Scilab code Exa 7.a.3 Bode plot for system in state space

```
1 // Example A-7-3
2 // Bode plot for system in state space
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("transferf.sci");
10
11 A = [0 1; -25 -4];
12 B = [1 1; 0 1];
13 C = [1 0; 0 1];
14 D = zeros(2,2);
15 G = transferf(A,B,C,D); disp(G," transfer function = "
     );
16
17 subplot(2,2,1);
18 bode(G(1,1));
19 subplot(2,2,2);
20 bode(G(1,2));
21 subplot(2,2,3);
22 bode(G(2,1));
23 subplot(2,2,4);
24 bode(G(2,2));
```

check Appendix AP 4 for dependency:

transferf.sci

Scilab code Exa 7.a.4 Bode plot for different gain K



Figure 7.3: Bode plot for system in state space

```
1 // Example A-7-4
2 // Bode plot for different gain K
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = \frac{1}{2} / \frac{1}{2} ;
8 P = s*(s+1)*(s+5);
9 \text{ num} = [1, 10, 20];
10 \text{ den} = [P+1, P+10, P+20];
11 Gtf = num ./ den;
12 G = syslin('c',Gtf);
13
14 bode([G(1,1); G(1,2); G(1,3)],0.1,100,['K = 1'; 'K =
      10'; K = 20']);
15 xtitle('', 'rad/s');
16 a = gcf(); set(a.children(1).x_label, 'text', 'rad/s');
```

## Scilab code Exa 7.a.8 Stability check

```
1 // Example A-7-8
2 // Stability check
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 K = 2;
9 P = s*(s+1)*(2*s+1) + K;
10 disp(routh_t(P))
11 // unstable since two roots are in RHP
```



Figure 7.4: Bode plot for different gain K

Scilab code Exa 7.a.10 Nyquist Plot with transport lag

Scilab code Exa 7.a.11 Nyquist Plot

```
1 // Example A-7-11
2 // Nyquist Plot
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s /2 /%pi;
8 num = 20 * ( s^2 + s + 0.5);
9 den = s * (s + 1) * (s + 10);
10 G = syslin('c',num,den);
```


Figure 7.5: Nyquist Plot with transport lag



Figure 7.6: Nyquist Plot

```
11
12 a = gca();
13 a.clip_state = 'on';
14 nyquist(G,-1000,1000);
15 xgrid(color('gray'));
16 a.data_bounds = [-2 -3 ; 3 3];
17 a.box = 'on';
```

Scilab code Exa 7.a.12 Nyquist plot for positive omega

1 // Example A-7-12

```
2 // Nyquist plot for positive omega
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s /2 /%pi;
8 num = 20 * (s^2 + s + 0.5);
9 den = s * (s + 1) * (s + 10);
10 G = syslin('c', num, den);
11
12 \ a = gca();
13 a.clip_state = 'on';
14 nyquist(G,0.01,1000);
15 xgrid(color('gray'));
16 \text{ a.data_bounds} = [-3 -5 ; 3 1];
17 a.box = 'on';
```

Scilab code Exa 7.a.13 Nyquist plot with points at selected frequencies

```
1 // Example A-7-13
2 // Nyquist plot with points plotted at selected
frequencies
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s /2 /%pi;
8 num = 20 * ( s^2 + s + 0.5);
9 den = s * (s + 1) * (s + 10);
10 G = syslin('c',num,den);
11
12 a = gca();
13 a.clip_state = 'on';
```



Figure 7.7: Nyquist plot for positive omega

```
14 nyquist(G,0.01,1000);
15 xtitle('Nyquist Diagram');
16 \text{ a.data_bounds} = [-2 -5 ; 3 0];
17 \text{ a.box} = 'on';
18
19 omega = [0.2 \ 0.3 \ 0.5 \ 1 \ 2 \ 6 \ 10 \ 20];
20 z = repfreq(G,omega);
21 plot(real(z), imag(z), '.k');
22
23 x = [1
                1.1 1.2 1.3 1.8 1.5 0.8 0.25];
24 \text{ y} = [-4.7 \ -3.3 \ -1.7 \ -0.51 \ -0.4 \ -1 \ -1.3]
                                                     -1];
25 text = ['w = 0.2', '0.3', '0.5', '1.0', '2.0', '6.0', '10'
       <sup>'</sup>20 <sup>'</sup>];
26 xstring(x,y,text,0,1);
27
28 [phi db] =phasemag(z);
29 mag = abs(z);
30 disp([omega' mag' phi'], '[w mag phi] = ');
```

Scilab code Exa 7.a.14 Nyquist plot for positive and negative feedback

```
1 // Example A-7-14
2 // Nyquist plot for positive and negative feedback
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 num = s^2 + 4*s + 6;
9 den = s^2 + 5*s + 4;
10 G = syslin('c',num,den);
11 H = syslin('c',-1 * num,den);
12
```



Figure 7.8: Nyquist plot with points at selected frequencies



Figure 7.9: Nyquist plot for positive and negative feedback

```
13 nyquist(G,-100,100);
14 nyquist(H,-100,100);
15 xtitle('Nyquist plot for G(s) and -G(s)');
16 a = gca(); a.data_bounds = [-2 -1; 2 1];
```

Scilab code Exa7.a.18 Verifying experimentally derived Transfer function

```
1 // Example A-7-18
2 // Verifying experimentally derived Transfer
function
```



Figure 7.10: Verifying experimentally derived Transfer function

```
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s /2 /%pi; // frequencies in rad/s
8 G = syslin('c', 4*(2*s + 1), s*s*(s^2 + 0.4*s + 4) )
;
9 bode(G,0.1,100);
10 xtitle('Bode plot of G(s) = 4*(2*s + 1)/[s*s*(s^2 + 0.4*s + 4)]', 'rad/s');
11 a = gcf();set(a.children(1).x_label, 'text', 'rad/s');
```

Scilab code Exa 7.a.23 Nichols plot

```
1 // Example A-7-23
2 // Nichols plot
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 G = syslin('c',9, s*(s+0.5)*(s^2 + 0.6*s + 10));
9 black(G);
10 chart([8 -4],[],list(1,0));
11 xgrid(color('gray'));
```

check Appendix AP 2 for dependency:

```
plotresp.sci
```

Scilab code Exa 7.1 Steady state sinusoidal output

```
1 // Example 7-1
2 // Steady state sinusoidal output
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please set the path
8 // cd "/<your code directory >/"
9 // exec("plotresp.sci")
10
11 s = %s;
12 w = 1;
13 K = 5;
14 T = 0.1;
```



Figure 7.11: Nichols plot



Figure 7.12: Steady state sinusoidal output

15
16 G = syslin('c',K,T\*s + 1);
17 t = 0:0.1:20;
18 u = sin(w\*t);
19 plotresp(u,t,G, 'Response to sinusoidal input');
20 // as T\*w is small amplitude of output is ~ K (5)

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 7.2 Steady state sinusoidal output lag and lead

```
1 // Example 7-2
2 // Steady state sinusoidal output lag and lead
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please set the path
8 // cd "/<your code directory >/"
9 // exec("plotresp.sci")
10
11 s = %s;
12 T1 = 1;
13 T2 = 5;
14 a = s + 1/T1;
15 b = s + 1/T2;
16 w = 1;
17
18 G1 = syslin('c',a,b);
19 G2 = syslin('c',b,a);
20 t = 0:0.1:50;
21 u = sin(w*t);
22 plotresp(u,t,G1, 'Response to sinusoidal input');
23 plotresp(u,t,G2, 'Response to sinusoidal input');
24 xstring(17,1.4, 'Lead network T1 > T2 : lead network'
      );
25 xstring(17,-0.8, 'Lag network T1 > T2 : lead network'
     );
```

Scilab code Exa 7.3 Bode Plot in Hz

```
1 // Example 7-3
2 // Bode Plot in Hz
3
```



Figure 7.13: Steady state sinusoidal output lag and lead



Figure 7.14: Bode Plot in Hz

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 num = 10*(s + 3);
9 den = s * (s + 2) * (s^2 + s + 2);
10 G = syslin('c',num,den);
11
12 bode(G);
13 xtitle('Bode plot of G(s) = [10*(s + 3)]/[s*(s + 2)
*(s^2 + s + 2)]');
```

Scilab code Exa 7.4 Bode Plot with transport lag

Scilab code Exa 7.5 Bode Plot in rad per s

```
1 // Example 7-5
2 // Bode Plot in rad/s
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 num = 25;
9 den = s^2 + 4*s + 25;
10 G = syslin('c',num,den);
11
12 bode(G);
13 xtitle('Bode plot of G(s) = 25 / s^2 + 4*s + 25');
14
```



Figure 7.15: Bode Plot with transport lag

```
15 // Note, bode plots in Sci-Lab use the frequency in
     Hz and not in
16 // rad/s . If we wish to get the plot with rad/s we
     can . . .
17
18 \text{ omega} = \log (-2, 2, 50);
19 f = omega / 2 / %pi;
20 repf = repfreq(G,f); // calculate the frequency
      response
21
                            // repf is a vector of
                               complex numbers
22 scf();
23 bode(omega,repf);
24 xtitle('Bode plot of G(s) = 25 / s^2 + 4*s + 25','
      rad/s');
25 a = gcf(); set(a.children(1).x_label, 'text', 'rad/s');
```

Scilab code Exa 7.6 Bode plot in rad per s

```
1 // Example 7-6
2 // Bode Plot in rad/s
3 // Plots made with angular freuqency - rad/s on the
    x-axis
4
5 clear; clc;
6 xdel(winsid()); //close all windows
7
8 s = %s / 2 / %pi; //correction to get frequency
    axis in rad/s
9 num = 9 * (s^2 + 0.2*s + 1);
10 den = s * (s^2 + 1.2*s + 9);
```



Figure 7.16: Bode Plot in rad per s



Figure 7.17: Bode Plot in rad per s



Figure 7.18: Bode plot in rad per s

```
11 G = syslin('c',num,den);
12
13 bode(G,0.01,100);
14 xtitle('Bode plot of G(s) = 9*(s^2 + 0.2*s + 1) / s
            *(s^2 + 1.2*s + 9)', 'rad/s');
15 a = gcf();set(a.children(1).x_label, 'text', 'rad/s');
```

Scilab code Exa 7.7 Bode Plot for a system in State Space

1 // Example 7-7

```
2 // Bode Plot for a system in State Space
      representation
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 \quad A = [0 \quad 1; \quad -25 \quad -4];
8 B = [0; 25];
9 C = [1 0];
10 D = [0];
11 G = syslin('c', A, B, C, D);
12
13 omega = logspace(-1, 2, 100);
14 f = omega / 2 / %pi;
15 repf = repfreq(G,f); // Frequency response
16
17 bode(omega,repf);
18 xtitle('Bode Diagram', 'rad/s');
19 a = gcf(); set(a.children(1).x_label, 'text', 'rad/s');
```

check Appendix AP 9 for dependency:

spolarplot.sci

Scilab code Exa 7.8 Polar Plot of a linear system

```
1 // Example 7-8
2 // Polar Plot of a linear system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
```



Figure 7.19: Bode Plot for a system in State Space



Figure 7.20: Polar Plot of a linear system

```
9 // exec("spolarplot.sci");
10
11 T = 10; s = %s;
12 omega = logspace(-1,3,1000);
13 G = syslin('c',1,s*(T*s + 1));
14 spolarplot();
```

Scilab code Exa 7.9 Polar Plot with transport lag

```
1 // Example 7-9
2 // Polar Plot with transport lag
```

```
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 T = 10;
8 L = 100;
9 omega = logspace(-1,2,1000);
10 s = %i * omega;
11 den = s .* (T*s + 1);
12 num = exp(-1*s*L);
13 repf = num ./ den;
14 rad = abs(repf);
15 theta = atan(imag(repf),real(repf));
16
17 polarplot(theta,rad,style = 2);
```

## Scilab code Exa 7.10 Nyquist Plot



Figure 7.21: Polar Plot with transport lag



Figure 7.22: Nyquist Plot

15

16 // Note: nyquist function plots frequencies -1000 and 1000 in Hz and not in rad/s

## Scilab code Exa 7.11 Nyquist Plot

```
1 // Example 7-11
2 // Nyquist Plot
3
4 clear; clc;
5 xdel(winsid()); //close all windows
```

```
6
7 s = %s;
8 num = 1;
9 den = s * (s + 1);
10 G = syslin('c',num,den);
11
12 scf();
13 a = gca();
14 a.clip_state = 'on'; //clip the extra nyquist plot
15 nyquist(G,-1000,1000);
16 xgrid(color('gray'));
17 xtitle('Nyquist plot of G(s) = 1 / (s * (s + 1))');
18 a.data_bounds = [-3 -5; 3 5];
19 a.box = 'on';
```

Scilab code Exa 7.12 Nyquist Plots of system in state space

```
1 // Example 7-11
2 // Nyquist Plot
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = \% s;
8 \text{ num} = 1;
9 den = s * (s + 1);
10 G = syslin('c', num, den);
11
12 scf();
13 \ a = gca();
14 a.clip_state = 'on'; //clip the extra nyquist plot
15 nyquist(G, -1000, 1000);
16 xgrid(color('gray'));
```



Figure 7.23: Nyquist Plot



Figure 7.24: Nyquist Plots of system in state space

```
17 xtitle('Nyquist plot of G(s) = 1 / (s * (s + 1))');
18 a.data_bounds = [-3 -5 ; 3 5];
19 a.box = 'on';
```

## Scilab code Exa 7.13 Nyquist Plot of MIMO system

```
1 // Example 7-13
2 // Nyquist Plot of MIMO system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
```

```
6
7 A = [-1 -1 ; 6.5 0];
8 B = [1 1; 1 0];
9 C = [1 0; 0 1];
10 D = [0 0; 0 0];
11 G = syslin('c', A, B, C, D);
12 P = clean(ss2tf(G));
13
14 subplot(2,2,1);
15 nyquist(P(1,1),-100,100);
16 xgrid(color('gray'));
17 xtitle('Nyquist plot: From U1', 'Real Axis', 'To Y1');
18
19 subplot(2,2,2);
20 nyquist(P(2,1),-100,100);
21 xgrid(color('gray'));
22 xtitle('Nyquist plot: From U1', 'Real Axis', 'To Y2');
23
24 subplot(2,2,3);
25 nyquist(P(1,2),-100,100);
26 xgrid(color('gray'));
27 xtitle('Nyquist plot: From U2', 'Real Axis', 'To Y1');
28
29 subplot(2,2,4);
30 nyquist(P(2,2),-100,100);
31 xgrid(color('gray'));
32 xtitle('Nyquist plot From U2', 'Real Axis', 'To Y2');
```

## Scilab code Exa 7.14 Nyquist Stability Check

```
1 // Example 7-14
2 // Nyquist Stability Check
3
```



Figure 7.25: Nyquist Plot of MIMO system



Figure 7.26: Nyquist Stability Check

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 T1 = 5; T2 = 10;
9
10 K = 1;
11 den = (T1*s + 1)*(T2*s + 1);
12 GH = syslin('c',K,den);
13 nyquist(GH,-1000,1000);
14 xgrid(color('gray'));
```

Scilab code Exa 7.19 Nyquist plot stability check

```
1 // Example 7-19
2 // Nyquist plot stability check
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 num = s + 0.5;
9 den = s^3 + s^2 + 1;
10 disp(routh_t(den), 'routh table ='); // display the
routh table
11 GbyK = syslin('c',num,den); // open loop system
12
13 nyquist(GbyK,-1000,1000);
```

check Appendix AP 10 for dependency:

shmargins.sci

Scilab code Exa 7.20 Gain and phase margins for different K

```
1 // Example 7-20
2 // Gain and phase margins for different K
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("shmargins.sci");
10
```



Figure 7.27: Nyquist plot stability check



Figure 7.28: Gain and phase margins for different K

```
11 s = %s /2 / %pi; // corrected for frequencies in
	rad/s
12 K = 10;
13 G = syslin('c', K, s*(s+1)*(s+5));
14 shmargins(G);
15 scf();
16 K = 100;
17 G = syslin('c', K, s*(s+1)*(s+5));
18 shmargins(G);
```

check Appendix AP 10 for dependency: shmargins.sci



Figure 7.29: Gain and phase margins for different K
Scilab code Exa 7.21 Stability Margins

```
1 // Example 7-21
2 // Stability Margins
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("shmargins.sci");
10
11 s = %s /2 / %pi; // corrected for frequencies in
     rad/s
12 num = 20*(s+1);
13 den =s * (s + 5) * (s^2 + 2*s + 10);
14 G = syslin('c',num,den);
15 shmargins(G);
```

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 7.22 Correlating bandwidth and speed of response

```
1 // Example 7-22
2 // Correlating bandwidth and speed of response
3 
4 clear; clc;
5 xdel(winsid()); //close all windows
```



Figure 7.30: Stability Margins

```
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = %s /2 /%pi; // frequencies in rad/s
12 G1 = syslin('c',1,s + 1);
13 G2 = syslin('c',1,3*s + 1);
14 subplot(2,1,1);
15 gainplot(G1,0.1,10);
16 xtitle('system 1 : 1 / (s + 1)', 'rad/s');
17 subplot(2,1,2);
18 gainplot(G2,0.1,10);
19 xtitle('system 2 : 1 / (3*s + 1)', 'rad/s');
20
21 scf();
22 t = 0:0.05:1;
23 \text{ u} = \text{ones}(1, \text{length}(t));
24 subplot(2,1,1);
25 plotresp(u,t,G1,'');
26 plotresp(u,t,G2, 'Step response of two systems with
      different bandwidth');
27 xstring(0.1,0.75, 'System 1');
28 xstring(0.35,0.4, 'System 2');
29
30 subplot(2,1,2);
31 plotresp(t,t,G1,'');
32 plotresp(t,t,G2, 'Ramp response of two systems with
      different bandwidth ');
33 xstring(0.45,0.35, 'System 1');
34 xstring(0.8,0.45, 'System 2');
```

check Appendix AP 11 for dependency: freqch.sci



Figure 7.31: Correlating bandwidth and speed of response



Figure 7.32: Correlating bandwidth and speed of response

Scilab code Exa 7.23 Frequency charecteristics

```
1 // Example 7-23
2 // Frequency charecteristics
3 clear; clc;
4 xdel(winsid()); //close all windows
5
6 // please edit the path
7 // cd "/<your code directory >/";
8 // exec("freqch.sci");
9
10 s = %s / 2 / %pi; // frequencies in rad/s
11 G = 1 / (s * (0.5*s + 1) * (s + 1));
12 H = syslin('c', G / . 1);
13 omega = logspace(-1,1,200);
14
15 [Mr wr bw repf] = freqch(H,omega);
16 bode(omega,repf);
17 xtitle('Bode Diagram', 'rad/s');
18 a = gcf();set(a.children(1).x_label, 'text', 'rad/s');
```

check Appendix AP 9 for dependency:

spolarplot.sci

Scilab code Exa 7.24 Polar and Nichols plot with M circles

```
1 // Example 7-24
2 // Polar and Nichols plot with M circles
3
```



Figure 7.33: Frequency charecteristics

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("spolarplot.sci");
10
11 s = %s;
12 G = syslin('c',1,s*(s+1));
13 omega = logspace(-2, 2, 100);
14 repf = spolarplot(G,omega);
15
16 scf();
17 black(omega,repf);
18 chart([1.4],[],list(1,0));
19 xgrid(color('gray'));
20 xstring(-150,8, 'Mr = 1.4')
```

Scilab code Exa 7.25 Verifying experimentally derived Transfer function

```
1 // Example 7-25
2 // Verifying experimentally derived Transfer
function
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 num = 320*(s + 2);
9 den = s * (s + 1) * (s^2 + 8*s + 64);
10 G = syslin('c',num,den);
```



Figure 7.34: Polar and Nichols plot with M circles



Figure 7.35: Polar and Nichols plot with M circles



Figure 7.36: Verifying experimentally derived Transfer function

```
11
12 bode(G,0.1,40);
13 xtitle('Bode plot of G(s) = [320*(s + 2)]/[s * (s +
1) * (s^2 + 8*s + 64)]');
```

Scilab code Exa 7.26.1 Design of Lead compensator with Bode plots

```
1 // Example 7-26-1
2 // Design of Lead compensator with Bode plots
3
4 clear; clc;
```

```
5 xdel(winsid()); //close all windows
6 \mod (0);
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("shmargins.sci");
11
12 s = \frac{12}{\sqrt{pi}};
13 G = 4 / (s * (s + 2));
14 Kv = 20;
15 K = Kv / horner(s * G,0)
16
17 GK = syslin('c', K * G);
18
19 [gm, gcrw, pm, pcrw] = shmargins(GK);
20 // required specification is pm = 50 degrees
21 phi = 50 - pm + 6 // 6 deg compensation
22 \text{ sn} = \text{sind}(\text{phi});
23 alpha = (1 - sn)/(1 + sn)
24
25 wc = 9; // new gain crossover freq.
26 z = wc * sqrt(alpha) // z = 1 / T
27 p = wc / sqrt(alpha) // p = 1 / (alpha*T)
28 Kc = K / alpha
29 disp(Kc * (\%s + z)/(\%s + p), 'Gc = ');
30 Gc = Kc * (s + z)/(s + p);
31 GGc = syslin('c', Gc * G);
32 scf();
33 shmargins(GGc);
```

check Appendix AP 10 for dependency: shmargins.sci



Figure 7.37: Design of Lead compensator with Bode plots



Figure 7.38: Design of Lead compensator with Bode plots

Scilab code Exa 7.26.2 Evaluating Lead compensated system

```
1 / / Example 7-26-2
2 // Evaluating Lead compensated system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = \%s;
12 G = 4 / (s * (s + 2));
13
14 Kc = 42.104125;
15 z = 4.3861167;
16 p = 18.467361;
17 Gc = Kc * (s + z)/(s + p);
18 GGc = G*Gc;
19
20 H = syslin('c', G / . 1);
21 Hc = syslin('c',GGc /. 1);
22
23 t = 0:0.05:5;
24 u1 = ones(1,length(t)); //step response
                            //ramp response
25 \ u2 = t;
26
27 subplot(2,1,1);plotresp(u1,t,H,'');
28 plotresp(u1,t,Hc,'Unit step response');
29 xstring(0.65,0.55, 'uncompensated system');
30 xstring(0.1,1.2, 'compensated system');
31 subplot(2,1,2);plotresp(u2,t,H,'');
32 plotresp(u2,t,Hc, 'Unit ramp response');
```



Figure 7.39: Evaluating Lead compensated system

```
33 xstring(3.0,2.0, 'uncompensated system');
34 xstring(0,0.5, 'compensated system');
```

plotresp.sci

Scilab code Exa 7.27.1 Design of Lag compensator with Bode plots

```
1 // Example 7-27-1
2 // Design of Lag compensator with Bode plots
3
```

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("shmargins.sci");
11
12 s = %s/2/%pi;
13 G = 1 / (s * (s + 1) * (0.5*s + 1));
14 Kv = 5;
15 K = Kv / horner(s * G,0)
16
17 GK = syslin('c', K * G);
18
19 [gm, gcrw, pm, pcrw] = shmargins(GK);
20 // required specification is pm = 40 degrees
21
22 wc = 0.5; // new gain crossover freq.
23 beta = 10
24 z = 0.1
                // z = 1 / T is chosen one octave less
25 p = z / beta
26 Kc = K / beta
27 disp(Kc * (\%s + z)/(\%s + p), 'Gc = ');
28 Gc = Kc * (s + z)/(s + p);
29 GGc = syslin('c', Gc * G);
30 scf();
31 shmargins(GGc);
```

check Appendix AP 10 for dependency: shmargins.sci



Figure 7.40: Design of Lag compensator with Bode plots



Figure 7.41: Design of Lag compensator with Bode plots

Scilab code Exa 7.27.2 Evaluating Lag compensated system

```
1 // Example 7-27-2
2 // Evaluating Lag compensated system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = %s;
12 G = 1 / (s * (s + 1) * (0.5*s + 1));
13
14 Kc = 0.5;
15 z = 0.1;
16 p = 0.01;
17 Gc = Kc * (s + z)/(s + p);
18 GGc = G*Gc;
19
20 H = syslin('c', G / . 1);
21 Hc = syslin('c',GGc /. 1);
22
23 t = 0:0.5:40;
24 u1 = ones(1,length(t)); //step response
25
26 subplot(2,1,1);plotresp(u1,t,H,'');
27 plotresp(u1,t,Hc,'Unit step response');
28 xstring(2.5,0.55, 'uncompensated system');
29 xstring(0.1,1.3, 'compensated system');
30
31 t = 0:0.5:30;
32 u2 = t;
                            //ramp response
33 subplot(2,1,2);plotresp(u2,t,H,'');
34 plotresp(u2,t,Hc, 'Unit ramp response');
35 xstring(15,13, 'uncompensated system');
36 xstring(14,20, 'compensated system');
```



Figure 7.42: Evaluating Lag compensated system

plotresp.sci

Scilab code Exa 7.28.1 Design of Lag lead compensation with Bode plots

```
1 // Example 7-28-1
2 // Design of Lag - lead compensation with Bode plots
3 
4 clear; clc;
5 xdel(winsid()); //close all windows
```

```
6 mode(0);
7
8 // please edit the path
9 // cd "/<your code directory >/";
10 // exec("shmargins.sci");
11
12 s = %s /2 /%pi ;
13 G = 1 / (s * (s + 1) * (s + 2));
14 Kv = 10;
15 K = Kv / horner(s * G,0)
16 GK = syslin('c', K * G);
17
18 [gm, gcrw, pm, pcrw] = shmargins(GK);
19 wc = 1.5; // new gain crossover freq.
20
21 // required specification is pm = 50 degrees
22 phi = 55 // 6 deg compensation
23 \text{ sn} = \text{sind(phi)};
24 beta = (1 + sn)/(1 - sn)
25
26 z2 = wc /10; // z2 = 1 / T2 :1 decade below our new
      gain cross freq.
27 p2 = z2 / beta;
28
29 disp((%s + z2)/(%s + p2), 'Gclead = ');
30 \text{ Gclead} = (s + z2)/(s + p2);
31
32 z1 = 0.7 ; //corner frequencies are around w = 7 <->
       -20db
33 \text{ p1} = 7;
34 disp((%s + z1)/(%s + p1), 'Gclag = ');
35 Gclag = (s + z1)/(s + p1);
36
37 Gc = K * Gclag * Gclead;
38 GGc = syslin('c', Gc * G);
39 scf();
40 shmargins(GGc);
```



Figure 7.43: Design of Lag lead compensation with Bode plots

check Appendix AP 10 for dependency: shmargins.sci

Scilab code Exa 7.28.2 Evaluating Lag Lead compensated system

```
1 // Example 7-26-2
2 // Evaluating Lag Lead compensated system
3
```



Figure 7.44: Design of Lag lead compensation with Bode plots

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "/<your code directory >/";
9 // exec("plotresp.sci");
10
11 s = %s;
12 G = 1 / (s * (s + 1) * (s + 2));
13
14 Gc = 20 * (s + 0.7) * (s + 0.15) / (s + 7) / (s + 7)
     0.015);
15 GGc = G*Gc;
16
17 H = syslin('c',G /. 1);
18 Hc = syslin('c', GGc / . 1);
19
20 t = 0:0.1:30;
21 u1 = ones(1,length(t)); //step response
22 u2 = t;
                            //ramp response
23
24 subplot(2,1,1);plotresp(u1,t,H,'');
25 plotresp(u1,t,Hc,'Unit step response');
26 xstring(3,0.8, 'uncompensated system');
27 xstring(0.7,0.6, 'compensated system');
28 subplot(2,1,2);plotresp(u2,t,H,'');
29 plotresp(u2,t,Hc, 'Unit ramp response');
30 xstring(10,7, 'uncompensated system');
31 xstring(2,0.5, 'compensated system');
```

plotresp.sci



Figure 7.45: Evaluating Lag Lead compensated system

## Chapter 8

## PID Controllers and Modified PID Controllers

Scilab code Exa 8.i.1 PID Design with Frequency Response

```
1 // Illustration 8.1
2 // PID Design with Frequency Response
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7 // please edit the path
8 // cd "<your code directory >";
9 // exec("plotresp.sci");
10
11 s = %s;
12 G = syslin('c',1,s^2 + 1);
13 Kv = 4;
14 K = Kv / abs(horner(G,0))
15
```



Figure 8.1: PID Design with Frequency Response



Figure 8.2: PID Design with Frequency Response

```
16 // Step 1 : Gain adjust
17 G2 = G * K / s
18 G2w = syslin('c', horner(G2, %s/2/%pi));//
      correction for frequences in rad/s
19
20 omega = calfrq(G2w, 0.1, 10); // discretises such
      that the peak is
                                                   // well
       represented
21 [db phi] = dbphi(repfreq(G2w,omega));
22 phi(53:99) = -270;
23 subplot(2,1,1); bode(omega,db,phi);
24 xtitle('Bode plot of G(s) = 4 / [s * (s^2 + 1)]','
      rad/s');
25 a = gcf();set(a.children(1).x_label, 'text', 'rad/s');
26 disp(p_margin(G2w), 'Phase margin of G2 = ');
27
28 // Step 2:
29 a = 5 // a is chosen to be 5;
30 \text{ G3} = \text{G2} * (a*s + 1)
31 G3w = syslin('c', horner(G3, %s/2/%pi));
32 subplot(2,1,2); bode(G3w,0.1,10);
33 xtitle('Bode plot of G(s) = [4 * (5*s + 1)] / [s * (
     s^2 + 1]', 'rad/s');
34 a = gcf();set(a.children(1).x_label, 'text', 'rad/s');
35 disp(p_margin(G3w), 'Phase margin of G3 = ');
36
37 // Step 3
38 scf();
39 b = 0.25
40 \text{ G4} = \text{G3} * (b*s + 1)
41 G4w = syslin('c', horner(G4, %s/2/%pi));
42 subplot(2,1,1); bode(G4w,0.1,10);
43 xtitle('Bode plot of G(s) = [4 * (5*s + 1)] / [s * (
      s^2 + 1 * (0.25 * s + 1)]', 'rad/s');
44 a = gcf(); set(a.children(1).x_label, 'text', 'rad/s');
45 disp(p_margin(G4w), 'Phase margin of G4 = ');
46
```

plotresp.sci

Scilab code Exa 8.a.5 PID design

```
1 // Example A-8-5
2 // PID design
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7 // please edit the path
8 // cd "";
9 // exec("plotresp.sci");
10 // exec("stepch.sci");
11
12 s = %s;
                // dominant pole charecteristics
13 \text{ zeta} = 0.5
14 \text{ wn} = 4
15 sigma = zeta*wn;
16 \text{ ts} = 4 / (zeta * wn);
17 disp(ts, 'settling time approximate (ts) =');
18
19 D = (s + 10) * (s^2 + 2*zeta*wn*s + wn^2);
20 \text{ cf} = \text{coeff}(D);
21
22 \text{ K} = cf(1)
23 \text{ a_plus_b} = (cf(2) - 9) / K
```

```
24 \text{ ab} = (cf(3) - 3.6) / K
25
26 Gc = K * (ab * s<sup>2</sup> + a_plus_b *s+ 1) / s
27 CbyD = syslin('c', s, D)
28
29 CbyR = syslin('c', numer(Gc), D)
30
31 t = 0:0.05:5;
32 \text{ u} = \text{ones}(1, \text{length}(t));
33 plotresp(u,t,CbyD,'Response to step disturbance
      input');
34 = gca(); a.data_bounds = [0, -4D-3; 5, 14D-3];
35 scf();
36 [Mp ,tp ,tr ,ts] = stepch(CbyR,0,5,0.05,0.02);
37 disp(Mp, 'Max overshoot =');
38 disp(ts, 'settling time actual (ts) =');
```

check Appendix AP 2 for dependency: plotresp.sci check Appendix AP 8 for dependency: stepch.sci

## Scilab code Exa 8.a.6 PID design

```
1 // Example A-8-6
2 // PID Design
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
```



Figure 8.3: PID design



Figure 8.4: PID design

```
7
8 // please edit the path
9 // cd "<your code directory >";
10 // exec("plotresp.sci");
11 // exec("rootl.sci")
12
13 s = \%s;
14 G = syslin('c', 1, s^2 + 1);
15 dp = -1 + sqrt(3) *\%i;
16
17 angdef = 180 - phasemag(horner(G*(s+1)/s,dp))
18 // Determining b
19 \text{ b} = 1 + \text{sqrt}(3) * \text{cotd}(\text{angdef})
20 \text{ Gc1} = (s + 1) * (s + b) / s;
21 K = 1/abs(horner(G*Gc1, dp))
22 \text{ Gc} = \text{K} * \text{Gc1}
23
24 evans(G*Gc1,50);
25 xgrid();
26 \ a = gca();
27 \text{ a.data_bounds} = [-5 -3; 1 3];
28 a.children(1).visible = 'off';
29 xtitle('Root locus plot of open loop system');
30
31
32 C = syslin('c',G*Gc /. 1);
33 disp(C, 'closed loop system =');
34 scf();
35 t = 0:0.05:12;
36 \ u = ones(1, length(t));
37 plotresp(u,t,C, 'Unit step response of compensated
      system ');
```



Figure 8.5: PID design


Figure 8.6: PID design

```
plotresp.sci
check Appendix AP 7 for dependency:
rootl.sci
```

Scilab code Exa 8.a.7.1 PID Design with Frequency Response

```
1 // Example A-8-7-1
   2 // PID Design with Frequency Response
   3
   4 clear; clc;
   5 xdel(winsid()); //close all windows
  6 mode(0);
   7
  8 // please edit the path
  9 // cd "<your code directory >";
10 // exec("plotresp.sci");
11
12 s = %s;
13 Gp = syslin('c', s + 0.1, s<sup>2</sup> + 1);
14 Kv = 4;
15 K = Kv / abs(horner(Gp, 0))
16
17 // Step 1 : Gain adjust
18 \text{ G1} = \text{Gp} * \text{K} / \text{s}
19 G1w = syslin('c', horner(G1, %s/2/%pi));//
                        correction for frequences in rad/s
20
21
22 subplot(2,1,1); bode(G1w);
23 xtitle('Bode plot of G(s) = 40*(s + 0.1) / [s*(s^2 + 0.1)) / [s*(s^2 + 0.1)] / 
                        1)]', 'rad/s');
24 a = gcf(); set(a.children(1).x_label, 'text', 'rad/s');
25 disp(p_margin(G1w), 'Phase margin of G = ');
26
```

```
27 // Step 2:
28 a = 0.1526;
29 GGc = G1 * (a*s + 1)
30 GGcw = syslin('c', horner(GGc, %s/2/%pi));
31 subplot(2,1,2); bode(GGcw,0.1,10);
32 xtitle ('Bode plot of G*Gc = [4 * (0.1526*s + 1)*(s +
      0.1) ] / [ s * (s^2 + 1) ] ', 'rad / s');
33 a = gcf();set(a.children(1).x_label, 'text', 'rad/s');
34 disp(p_margin(GGcw), 'Phase margin of G*Gc =');
35 disp(g_margin(GGcw), 'Gain margin of G*Gc = ');
36
37 scf();
38 C = syslin('c', GGc / . 1)
39 disp(roots(C.den), 'closed loop poles =');
40 t = 0:0.05:10;
41 u = ones(1, length(t));
42 subplot(2,1,1); plotresp(u,t,C, 'Step response of PID
       controlled system');
43 subplot(2,1,2); plotresp(t,t,C, 'Ramp response of PID
       controlled system ');
```

plotresp.sci

Scilab code Exa 8.a.12 Computing optimal solution

```
1 // Example A-8-12
2 // Computing optimal solution
3
4 clear; clc;
5 xdel(winsid()); //close all windows
```



Figure 8.7: PID Design with Frequency Response



Figure 8.8: PID Design with Frequency Response

```
6
7 \, s = \% s;
8 t = 0:0.1:5; u = ones(1, length(t));
9 t1 = 0:0.01:5; N = length(t1); u1 = ones(1,N);
10
11 k = 0;
12 mprintf('Processing \ldots \ n');
13 for K = 50:-1:2
     for a = 2:-0.05:0.05
14
       num = K * ((s + a)^2);
15
       den = s * s * (s^2 + 6*s + 5);
16
17
       G = syslin('c',num,num + den);
       y = csim(u,t,G);
18
19
       m = max(y);
20
       if m < 1.1 & m > 1.00 then;
21
         y = csim(u1,t1,G);
          if m < 1.1 & m > 1.02 then;
22
23
            1 = N;
            while y(1) > 0.98 \& y(1) < 1.02; 1 = 1-1;
24
               end
25
            ts = (1-1) * 0.01;
            if ts < 3.0;
26
27
              k = k + 1;
              solution(k,:) = [K a m ts];
28
29
            end
30
          end
31
       end
32
33
     end
    mprintf('completed %d%%\n',(50 - K)/48*100);
34
35 \text{ end}
36 disp(solution, 'solution = ');
37
38 // sort the solution set
39 [x 0] = gsort(solution(:,3), 'r', 'i');
40 \text{ for } i = 1:k
     sortsolution(i,:) = solution(O(i),:);
41
42 \text{ end}
```

```
43 disp(sortsolution, 'sortsolution = ');
44
45 x = sortsolution(7,:); K = x(1); a = x(2)
       num = K * ((s + a)^2);
46
47
       den = s * s * (s^2 + 6*s + 5);
       G = syslin('c',num,num + den);
48
       y1 = csim('step', t1, G);
49
50
51 x = sortsolution(2,:); K = x(1); a = x(2)
       num = K * ((s + a)^2);
52
       den = s * s * (s^2 + 6*s + 5);
53
54
       G = syslin('c',num,num + den);
55
       y2 = csim('step',t1,G);
56 plot(t1,y1,t1,y2);
57 xgrid();
58 xtitle('Unit Step response curves', 't (sec)', 'output
      ');
59 legend ('K = 29 , a = 0.25', 'K = 27 , a = 0.2');
```

Scilab code Exa 8.a.13 Design of system with two degrees of freedom

```
1 // Example A-8-13
2 // Design of system with two degrees of freedom
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7 // please edit the path
8 // cd "<path to dependencies";
9 // exec("plotresp.sci");
10
11 s = %s;
12 Gp = 100 /(s*(s + 1))
```



Figure 8.9: Computing optimal solution

```
13 dp = -5 + \%i*5;
14
15 // Step 1: Design of Gc1 using root locus approach
16 angdef = 180 - phasemag(horner(Gp/s,dp))
17 \text{ angdef2} = \text{angdef} / 2;
18 disp(angdef2, 'each pole must contribute an angle of '
      );
19
20 a = 5 + 5 \times cotd(angdef2)
21 Gcx = (s + a)^2 / s;
22 K = 1/abs(horner(Gcx*Gp, dp))
23 \text{ Gc1} = \text{K} * (\text{s} + \text{a})^2 / \text{s}
24
25 // determining Kp. Ti and Td
26 cf = coeff(numer(Gc1));
27 \text{ Kp} = cf(2)
28 Ti = Kp / cf(1)
29 Td = cf(3) / Kp
30
31 t = 0:0.01:4;
32 \text{ u} = \text{ones}(1, \text{length}(t));
33 subplot(2,1,1);
34 YbyD = syslin('c', Gp / (1 + Gp * Gc1))
35 plotresp(u,t,YbyD,'Response to step disturbance
      input ');
36 \text{ ax} = gca();
37 ax.data_bounds = [0 0; 3 2];
38
39 //Step 2: Design of Gc
40 \text{ Gc} = (YbyD.den - s^3) / 100 / s
41
42 YbyR = syslin('c', 1 - s^3 / YbyD.den)
43 subplot(2,1,2);
44 t = 0:0.01:3;
45 \text{ u} = \text{ones}(1, \text{length}(t));
46 plotresp(u,t,YbyR, 'Response to step reference input'
      );
47 scf();
```



Figure 8.10: Design of system with two degrees of freedom

plotresp.sci



Figure 8.11: Design of system with two degrees of freedom

```
check Appendix AP 2 for dependency:
plotresp.sci
check Appendix AP 7 for dependency:
rootl.sci
```

Scilab code Exa 8.1 Tuning a PID controller using Nichols Second Rule

```
1 // Example 8-1
2 // Tuning a PID controller using Nichols Second Rule
3 clear; clc;
4 xdel(winsid()); //close all windows
5 \mod(0);
6
7 // please edit the path
8 // cd <your code directory>
9 // exec("plotresp.sci");
10 // exec("rootl.sci");
11
12 s = %s;
13 G = 1 / (s * (s + 1) * (s + 5))
14
15 // finding Kcr and wcr (omega cr)
16 \ w = poly(0, 'w');
17 D = horner(denom(G), \%i * w);
18 x = roots(imag(D));
19 wcr = abs(x(2)) // the non zero root
20 Kcr = -1*clean(horner(D,wcr))
21 Pcr = 2*%pi / wcr
22
23 \text{ Kp} = 0.6 * \text{ Kcr}
24 Ti = 0.5*Pcr
25 \text{ Td} = 0.125 * \text{Pcr}
26 Gc = Kp * ( s + 1/Ti + s<sup>2</sup>*Td ) / s
```

```
27 GGc = syslin('c', G*Gc);
28 H = syslin('c', GGc / . 1);
29 disp(H, 'closed loop system =');
30
31 rootl(GGc,0, 'Root locus of open loop system');
32 sgrid([0.3],[]);
33 = gca(); a.data_bounds = [-7 -4; 2 4];
34 \text{ xstring}(-1,1, 'zeta = 0.3');
35
36 scf();
37 t = 0:0.1:14;
38 \ u = ones(1, length(t));
39 plotresp(u,t,H,'');
40 // unacceptably large maximum overshoot
41
42 // new system
43 \text{ Kp2} = 39.42
44 \text{ Ti2} = 3.077
45 \text{ Td2} = 0.7692
46 \text{ Gc2} = \text{Kp2} * (s + 1/\text{Ti2} + s^2 + \text{Td2}) / s
47 GGc2 = syslin('c', G*Gc2);
48 H2 = syslin('c',GGc2 /. 1);
49 disp(H2, 'closed loop system2 = ');
50 plotresp(u,t,H2,'Step Response to a PID controlled
      system ');
51 xstring(1.5,1.65,'System 1');
52 xstring(0.5,1.3, 'System 2');
```

plotresp.sci



Figure 8.12: Tuning a PID controller using Nichols Second Rule



Figure 8.13: Tuning a PID controller using Nichols Second Rule

Scilab code Exa 8.2 Computation of Optimal solution 1

```
1 // Example 8-2
2 // Computation of Optimal solution 1
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "";
9 // exec("plotresp.sci");
10
11 s = %s;
12 G = 1.2 / ( 0.36*s^3 + 1.86*s^2 + 2.5*s + 1);
13
14 K = 2.0 : 0.2 : 3.0;
15 a = 0.5 : 0.2 : 1.5;
16
17 t = 0:0.1:5; u = ones(1,length(t));
18 // lesser points for a rough check
19 t1 = 0:0.01:5; u1 = ones(1,length(t1));
20 // more points for a rigorous check
21
22 k = 0;
23 \text{ for } i = 1:6
24
     for j = 1:6
25
       Gc = K(i) * (s + a(j))^2 / s;
26
       H = G * Gc;
27
       H = syslin('c', H /. 1);
28
       y = csim(u,t,H);
29
       m = max(y);
30
       if m < 1.1 then
31
         y = csim(u1, t1, H);
32
         m = max(y);
33
         if m < 1.1 then
34
           k = k + 1;
           solution(k,:) = [K(i) a(j) m];
35
36
         end
```

```
37
       end
38
     end
39 end
40 disp(solution, 'solution [K \ a \ m] = ');
41 // to sort the matrix
42 [x 0] = gsort(solution(:,3), 'r', 'i');
43 // re order the matrix
44 for i = 1:k
     sortsolution(i,:) = solution(O(i), :);
45
46 \text{ end}
47 disp(sortsolution, 'sortsolution [K a m] = ');
48
49 // Response with largest overshoot above 10\%
50 x = sortsolution(k,:);
51 K = x(1); a = x(2);
52 Gc = K * (s + a)^2 / s;
53 H = G * Gc;
54 H = syslin('c', H /. 1);
55 plotresp(u1,t1,H,'Step Response with 10% overshoot')
      ;
56 disp(Gc, 'Gc = ');
57 disp(H, 'H = ');
```

plotresp.sci

Scilab code Exa 8.3 Computation of Optimal solution 2

```
1 // Example 8-3
2 // Computation of Optimal solution 2
3
4 clear; clc;
5 xdel(winsid()); //close all windows
```



Figure 8.14: Computation of Optimal solution 1

```
6
7 // please edit the path
8 // cd "";
9 // exec("plotresp.sci");
10
11 s = \%s;
12 G = 4 / ( s^3 + 6 + s^2 + 8 + s + 4);
13
14 t = 0:0.1:8; u = ones(1, length(t));
15 // lesser points for a rough check
16 t1 = 0:0.01:8; u1 = ones(1, length(t1));
17 // more points for a rigorous check
18
19 k = 0;
20 mprintf('Processing...\langle n' \rangle;
21
22 \text{ for } K = 3:0.2:6
23
     for a = 0.1:0.1:3
       Gc = K * (s + a)^2 / s;
24
25
       H = G * Gc;
26
       H = syslin('c', H /. 1);
27
       y = csim(u,t,H);
28
       m = max(y);
       if m < 1.15 & m > 1.08 then
29
30
           // give a margin of 0.02 for the rough check
              -1.08
31
          y = csim(u1,t1,H);
32
          m = max(y);
           if m < 1.15 & m > 1.10 then
33
34
             // check for settling time
             l =length(t1);
35
36
             while y(1) > 0.98 \& y(1) < 1.02; l = l-1;
                end
37
                ts = (1-1) * 0.01;
38
             if ts < 3.00 then
39
                k = k + 1;
                solution(k,:) = [K a m ts];
40
41
              end
```

```
42
           end
43
         end
44
45
       end
     if modulo(K*10,2) == 0 then mprintf(' completed
46
        %d%%\n', (K − 3)/3*100)
47
    end
48
  end
49
50 disp(solution, 'solution [K a m ts] = ');
51
52 [x 0] = gsort(solution(:,3), 'r', 'i');
53 \text{ for } i = 1:k
     sortsolution(i,:) = solution(O(i), :);
54
55 end
56 disp(sortsolution, 'sortsolution [K a m ts] = ');
57
58 // Response with smallest overshoot
59 x = sortsolution(1,:);
60 K = x(1); a = x(2);
61 Gc = K * (s + a)^2 / s;
62 H = G * Gc;
63 H = syslin('c', H / . 1);
64 plotresp(u,t,H, 'Step Response with smallest
      overshoot ');
65 disp(Gc, 'Gc = ');
66 disp(H, 'H = ');
```

plotresp.sci

Scilab code Exa 8.4 Design of system with two degrees of freedom



Figure 8.15: Computation of Optimal solution 2

```
1 // Example 8-4
2 // Design of system with two degrees of freedom
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7 // please edit the path
8 // cd "";
9 // exec("plotresp.sci");
10
11 s = %s;
12 // Design Step 1: choosing a, b and c.
13
14 t = 0:0.1:4;
15 u = ones(1, length(t));
16
17 t1 = 0:0.01:4;
18 N = length(t1);
19 u1 = ones(1,N);
20 / / N = N - 3
21
22 k = 0;
23 mprintf('Processing...\langle n' \rangle;
24
25 \text{ for } i = 1:21
26
     a = 6.2 - 0.2*i;
27
     for j = 1:21
28
       b = 6.2 - 0.2*j;
29
       for h = 1:21
         c = 12.2 - 0.2 *h;
30
         num = (2*a + c)*s^2 + (a*a + b*b + 2*a*c)*s +
31
             (a*a + b*b)*c;
32
         den = s^3 + num;
         G = syslin('c',num,den);
33
         y = csim(u,t,G);
34
         m = max(y);
35
         if m < 1.19 & m > 1.00 then
36
            y = csim(u1,t1,G);
37
```

```
m = max(y);
38
39
            if m < 1.19 & m > 1.02 then
40
               1 = N;
              while y(1) > 0.98 \& y(1) < 1.02; 1 = 1-1;
41
                   end
42
                 ts = (1-1) * 0.01;
               if ts < 1.0 then
43
44
                  k = k + 1;
                  solution(k,:) = [a b c m ts];
45
46
                end
47
             end
48
           end
49
50
         end
51
     end
    mprintf(' completed \%d\% n', (6 - a)/4*100);
52
53 end
54
55 disp(solution, 'solution = ');
56
57 K = solution(1,:);
58 = K(1); b = K(2); c = K(3);
59 num = (2*a + c)*s<sup>2</sup> + (a*a + b*b + 2*a*c)*s + (a*a +
       b*b)*c;
60 \text{ den} = s^3 + \text{num};
61 YbyR = syslin('c',num,den); disp(YbyR, 'Y(s)/R(s) =');
62 subplot(2,1,1);
63 plotresp(u1,t1,YbyR, Step response for a = 4.2 , b =
      2 , c =12');
64
65 \text{ cf} = \text{coeff}(\text{den});
66 \text{ K} = (cf(3) - 1) / 10
67 \text{ alpha_plus_beta} = cf(2) / K /10
68 alphabeta = cf(1) / K / 10
69 Gc = K * (s<sup>2</sup> + alpha_plus_beta*s + alphabeta) / s
70 YbyD = syslin('c', 10*s, den);
71 disp(YbyD, 'Y(s)/D(s) = ');
72 subplot(2,1,2);
```

```
73 plotresp(u1,t1,YbyD,'Response to step disturbance
      input for a = 4.2 , b = 2 , c = 12');
74 = gca(); a.data_bounds = [0 - 0.01; 4 0.07];
75
76 // Design Step 2
77 scf();
78 \text{ Gc1} = (YbyR.num / 10) / s
79 \text{ Gc2} = \text{Gc} - \text{Gc1}
80
81 // response to reference inputs
82 \text{ y1} = \text{csim}(t,t,YbyR); u = 1/2 * t.^2;
83 \text{ y2} = \operatorname{csim}(u, t, YbyR);
84
85 subplot(2,1,1);
86 plotresp(t,t,YbyR, 'Response to unit ramp input');
87 subplot(2,1,2);
88 plotresp(u,t,YbyR, 'Response to unit acceleration
      input');
```

plotresp.sci

Scilab code Exa 8.5 Design of system with two degrees of freedom 2

```
1 // Example 8-5
2 // Design of system with two degrees of freedom 2
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7 // please edit the path
```



Figure 8.16: Design of system with two degrees of freedom



Figure 8.17: Design of system with two degrees of freedom

```
8 // cd "";
9 // exec("plotresp.sci");
10
11 s = \%s;
12 Gp = 5 / (s+1) / (s+5)
13 t = 0:0.01:3;
14 u = ones(1, length(t));
15
16 // Step 1: Design of Gc1
17 \ a = sqrt(13)
18 \text{ K} = 4 / (5*a - 15)
19 Gc1 = K * (s + a)<sup>2</sup> / s
20
21 // determining Kp. Ti and Td
22 \text{ cf} = \text{coeff}(\text{numer}(\text{Gc1}));
23 \text{ Kp} = cf(2)
24 Ti = Kp / cf(1)
25 \text{ Td} = cf(3) / Kp
26
27 subplot(2,1,1);
28 YbyD = syslin('c', Gp / (1 + Gp * Gc1))
29 plotresp(u,t,YbyD,'Response to step disturbance
      input');
30 \ a = gca();
31 a.data_bounds = [0 0; 3 0.1];
32
33 //Step 2: Design of Gc2
34 cf = coeff(YbyD.den);
35 \text{ Kp2} = (cf(2) - 47.63) / 5
36 \text{ Td2} = (cf(3) - 6.6051) / 5 / Kp2
37
38 \text{ Gc2} = \text{Kp2} * (1 + \text{Td2}*\text{s})
39
40 YbyR = syslin('c', 1 - s^3 / YbyD.den)
41 subplot(2,1,2);
42 t = 0:0.05:2;
43 u = ones(1, length(t));
```



Figure 8.18: Design of system with two degrees of freedom 2

```
44 plotresp(u,t,YbyR, 'Response to step reference input'
    );
45 scf();
46 subplot(2,1,1);
47 plotresp(t,t,YbyR, 'Response to ramp reference input'
    );
48 subplot(2,1,2);
49 u = 1/2 * t.^2;
50 plotresp(u,t,YbyR, 'Response to acceleration
    reference input');
```



Figure 8.19: Design of system with two degrees of freedom 2

## Chapter 9

## Control Systems Analysis in State Space

Scilab code Exa 9.b.3 Obtaining canonical form

```
1 // Exercise B-9-3
2 // Obtaining canonical form
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "<path to dependencies >";
9 // exec("transferf.sci");
10
11 A = [1 2; -4 -3];
12 B = [1;2];
13 C = [1 \ 1];
14 D = 0;
15
16 [Ac Bc U ind] = \operatorname{canon}(A,B);
17 U = -1*U; // a correction
18 Cc = C * U;
19 disp(clean(Ac), 'Ac = ');
```

```
20 disp(clean(Bc), 'Bc = ');
21 disp(clean(Cc), 'Cc = ');
22 disp(U, 'transformation matrix U = ');
23 // Ac=inv(U)*A*U, Bc=inv(U)*B
24
25 // check
26 Htf1 = transferf(A,B,C,D);
27 Htf2 = transferf(Ac,Bc,Cc,D);
28 disp(Htf1, 'Htf1 = ');
29 disp(Htf2, 'Htf2 = ');
```

transferf.sci

Scilab code Exa 9.a.5 Conversion from transfer function model to state space model

```
1 // Example A-9-5
2 // Conversion from transfer function model to state
        space model
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 s = %s;
8 num = 25.04*s + 5.008;
9 den = poly( [5.008 25.1026 5.03247 1], 's', 'c');
10
11 Hss = cont_frm(num,den);
12 disp(Hss, 'Hss = ');
```

Scilab code Exa 9.a.16 Controllability and pole zero cancellation

```
1 // Example A-9-16
2 // Controllability and pole zero cancellation
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "<path to dependencies >";
9 // exec("transferf.sci");
10
11
12 \quad A = [-3 \quad 1; \quad -2 \quad 1.5];
13 B = [1; 4];
14 C = [1 0];
15 D = 0;
16 Cc = cont_mat(A,B); disp(Cc, 'state controllability
      matrix =');
17 disp(det(Cc), 'det(Cc) = ');
18
19 Htf = transferf(A,B,C,D); disp(Htf, 'Reduced transfer
       function =');
                               disp(e, 'Eigen values = ');
20 e = spec(A);
21 D = poly(e, 's'); disp(D, 'actual denominator (
      characteristic poly) =');
```

transferf.sci

Scilab code Exa 9.a.17 Controllability observability and pole zero cancellation

```
3
```

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6
\overline{7}
8 A = [0 1; -0.4 -1.3];
9 B = [0; 1];
10 C = [0.8 1];
11 D = [0];
12 G1 = syslin('c', A, B, C, D); ssprint(G1);
13
14 G2 = syslin('c', A', C', B', D); ssprint(G2);
15
16 Cc1 = cont_mat(A,B); disp(Cc1, 'state controllability
       matrix 1 = ');
17 disp(det(Cc1), 'det(Cc1) = ');
18 Ob1 = obsv_mat(A,C); disp(Ob1, 'observability matrix
      1 = ');
19 disp(det(Ob1), 'det(Ob1)');
20
21 Cc2 = cont_mat(A',C'); disp(Cc2, 'state
      controllability matrix 2 = ');
22 disp(det(Cc2), det(Cc2) = i);
23 Ob2 = obsv_mat(A',B'); disp(Ob2 , 'observability
      matrix 2 = ');
24 disp(det(Ob2), 'det(Ob1)');
25
26 Htf = ss2tf(G1); disp(Htf, 'Reduced transfer function
      =');
27 e = spec(A);
                              disp(e, 'Eigen values = ');
28 D = poly(e, 's'); disp(D, 'actual denominator (
      characteristic poly) =');
```

pf\_residu.sci

Scilab code Exa 9.1 Transfer function to controllable observable and jordon canonical forms

```
1 // Example 9-1
2 // Transfer function to controllable, observable and
      jordon canonical forms
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "<path for the dependencies>";
9 // exec("pf_residu.sci");
10
11 s = \%s;
12 N = s + 3;
13 D = s^2 + 3*s + 2;
14
15 Hc = cont_frm(N,D);
16 disp('controllable form ='); ssprint(Hc);
17
18 Ho =syslin('c', (Hc.A)', (Hc.C)', (Hc.B)', Hc.D);
19 disp('observable form ='); ssprint(Ho);
20
21 A = diag(roots(D));
22 B = [1;1];
23 C = pf_residu(N,D)';
24 D = Hc.D;
                            // in this case : b0 = 0
25 Hj = syslin('c', A, B, C, D);
26 disp('jordon canonical form ='); ssprint(Hj);
27
28
  // This example will work for any proper transfer
     function
29 // with all distinct poles or eigen values
```

Scilab code Exa 9.2 Transformations in state space

```
1 // Example 9-2
2 // Transformations in state space
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 A = [0 1 0; 0 0 1; -6 -11 -6];
9 B = [0; 0; 0];
10 C = [1 0 0];
11 D = [0];
12 H = syslin('c', A, B, C, D);
13 disp('non standard form ='); ssprint(H);
14
15 e = spec(A), // eigen values
16 P = [ones(1,3); e; e.^2] // P is the transformation
     matrix
17 A1 = diag(e);
18 B1 = inv(P) * B;
19 C1 = C * P;
20 D1 = D;
21 H1 = syslin('c', A1, B1, C1, D1);
22 disp('standard form ='); ssprint(H1);
```

check Appendix AP 4 for dependency:

transferf.sci

Scilab code Exa 9.3 Conversion from state space to transfer function model

```
1 // Example 9-3
2 // Conversion from state space to transfer function
    model
```

```
3
```

```
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "<path to your dependencies >";
9 // exec("transferf.sci");
10
11 A = [0 1 0; 0 0 1; -5.008 -25.1026 -5.03247];
12 B = [0; 25.04; -121.005];
13 C = [1 0 0];
14 D = [0];
15
16 H = transferf(A,B,C,D);
17 disp(H, 'H =');
```

transferf.sci

Scilab code Exa 9.4 Conversion from state space to transfer function model

```
1 // Example 9-4
2 // Conversion from state space to transfer function
    model
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "<path to your dependencies >";
9 // exec("transferf.sci");
10
11 A = [0 1; -25 -4];
12 B = [1 1; 0 1];
13 C = [1 0; 0 1];
14 D = [0 0; 0 0];
```
check Appendix AP 5 for dependency:

ilaplace.sci

check Appendix AP 6 for dependency:

```
pf_residu.sci
```

Scilab code Exa 9.5 State transition matrix

```
1 // Example 9-5
2 // State transition matrix
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "<path for the dependencies>";
9 // exec("pf_residu.sci");
10 // exec("ilaplace.sci");
11
12 s = %s;
13 A = [0 1; -2 -3];
14 L = inv(s*eye(2,2) - A);
15 disp(L, 'inv(sI - A) =');
16
17 // Find the Inverse Laplace transform
18 \text{ for } i = 1:2
```

check Appendix AP 5 for dependency:

ilaplace.sci

check Appendix AP 6 for dependency:

```
pf_residu.sci
```

Scilab code Exa 9.7 Finding e to the power At using laplace transforms

```
1 // Example 9-7
2 // Finding e to the power At using laplace
      transforms
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 // please edit the path
8 // cd "<path for the dependencies>";
9 // exec("pf_residu.sci");
10 // exec("ilaplace.sci");
11
12 s = %s;
13 \quad A = [0 \quad 1; \quad 0 \quad -2];
14 L = inv(s*eye(2,2) - A);
15 disp(L, 'inv(sI - A) =');
16
17 // Find the Inverse Laplace transform
```

```
18 for i = 1:2
19 for j = 1:2
20 phi(i,j) = ilaplace(L(i,j));
21 end;
22 end;
23 disp(phi,'e^At =');
```

Scilab code Exa 9.9 Linear dependence of vectors

```
1 // Example 9-9
2 // Linear dependence of vectors
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod (0)
\overline{7}
8 x1 = [1; 2; 3]
9 x2 = [1; 0; 1]
10 x3 = [2; 2; 4]
11 A = [x1 x2 x3];
12 disp(A, '[x1:x2:x3] = ');
13 disp(clean(det(A)), 'det([x1:x2:x3]) ='); // singular
14
15 x3 = [2;2;2]
16 \ A = [x1 \ x2 \ x3];
17 disp(A, '[x1:x2:x3] = ');
18 disp(det(A), 'det([x1:x2:x3]) =');// non singular
```

Scilab code Exa 9.14 State and ouput controllability and observability

```
1 // Example 9-14
2 // State and ouput controllability and observability
3
```

```
4 clear; clc;

5 xdel(winsid()); //close all windows

6

7 A = [1 1; -2 -1];

8 B = [0;1];

9 C = [1 0];

10 D = [0];

11 G =syslin('c',A,B,C,D); ssprint(G);

12

13 Cc = cont_mat(A,B); disp(Cc, 'state controllability

matrix =');

14 c = [C*B C*A*B]; disp(Oc, 'output controllability

matrix =');

15 Ob = obsv_mat(A,C); disp(Ob, 'observability matrix =');

17 Close all windows

18 Contended on the state of the st
```

## Scilab code Exa 9.15 Observability

```
1 // Example 9-15
2 // Observability
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 A = [0 1 0; 0 0 1; -6 -11 -6];
8 B = [0; 0; 1];
9 C = [4 5 1];
10
11 Ob = obsv_mat(A,C);
12 disp(Ob, 'observability matrix =');
13 disp(clean(det(Ob)), 'det(Ob) =');
14 // system is not completely observable
```

## Chapter 10

## Control Systems Design in State Space

Scilab code Exa 10.i.1 Designing a regulator using a minimum order observer

```
1 // Illustration 10.1
2 // Designing a regulator using a minimum order
observer
3
4 // Section 10-6 of the book
5
6 clear; clc;
7 xdel(winsid()); //close all windows
8 mode(0);
9
10 // please edit the path
11 // cd "<path to dependencies >";
12 // exec("minorder.sci");
13
```



Figure 10.1: Designing a regulator using a minimum order observer



Figure 10.2: Designing a regulator using a minimum order observer

```
14 function smallplot(i)
     subplot(3,2,i);xgrid(color('gray'));
15
     plot(t,x(i,:));
16
17 endfunction
18
19
20 A = [0 1 0; 0 0 1; 0 -24 -10];
21 \quad B = [0; 10; -80];
22 C = [1 0 0];
23 D = [0];
24 Gp = syslin('c', A, B, C, D);
25
26 // Trial 1
27 disp('trial 1')
28 P = [-1 + \%i * 2, -1 - \%i * 2, -5]
29 Q = [-10 - 10] // observer poles
30
31 // Determining gains K and Ke
32 // Determining observer controller transfer function
33 [K Ke Go ch] = minorder(A, B, P, Q);
34 K
35 Ke
36 disp(Go, 'observer controller transfer function =');
37 disp(ch, 'overall system characteristic equation =');
38 disp(roots(Go.den), 'observer controller has unstable
       root!');
39
40 disp('trial 2'); // Trial 2;
41 P
42 Q = [-4.5 - 4.5]; // change Q
43 [K Ke Go ch AA] = minorder(A,B,P,Q);
44 K
45 Ke
46 disp(Go, 'observer controller transfer function =');
47 disp(ch, 'overall system characteristic equation =');
48 disp(roots(Go.den), 'observer controller has all
      stable roots!');
```

```
49
```

```
50 // system response to initial conditions
51 \times 0 = [1; 0; 0; 1; 0];
52 G = syslin('c', AA, [1 ;0 ;0 ;0 ;0], [1 0 0 0 0], [0], x0
      );
53
54 t = 0:0.01:8;
55 u = zeros(1, length(t));
56 [y x] = csim(u,t,G);
57
58 smallplot(1);
59 xtitle('Response to initial condition', 't (sec)', 'x1
      ');
60 smallplot(2);
61 xtitle('Response to initial condition', 't (sec)', 'x2
      '):
62 smallplot(3);
63 xtitle('', 't (sec)', 'x3');
64 smallplot(4);
65 xtitle('', 't (sec)', 'e1');
66 smallplot(5);
67 xtitle('', 't (sec)', 'e2');
68
69 scf();
70 // Bode diagram
71 \quad O = Go*Gp; \quad C = O / . 1;
72 bode([0;C],0.001,100,['Open loop system'; 'Closed
      loop system ']);
73 disp(p_margin(0), 'Phase margin');
```

check Appendix AP 1 for dependency:

minorder.sci



Figure 10.3: Designing a control system with a minimum order observer



Figure 10.4: Designing a control system with a minimum order observer

Scilab code Exa 10.i.2 Designing a control system with a minimum order observer

```
1 // Illustration 10.2
2 // Designing a control system with a minimum order
      observer
3
4 // Section 10-7 of the book
5
6 clear; clc;
7 xdel(winsid()); //close all windows
8 \mod(0);
9
10 // please edit the path
11 // cd "<path to dependencies >";
12 // exec("minorder.sci");
13 // exec("plotresp.sci");
14
15 \ s = \% s;
16 t = 0:0.05:10;
17 u = ones(1, length(t));
18 Gp = syslin('c',1,s*(s<sup>2</sup> + 1));
19 Gs = cont_frm(1, s*(s^2 + 1));
20 \quad A = Gs.A;
21 \quad B = Gs.B;
22 C = Gs.C;
23 D = Gs.D;
24
25 // designing the observer controller
26 P = [-1 + \%i, -1 - \%i, -8]
27 Q = [-4 -4] // observer poles
28 [K Ke Go] = minorder(A,B,P,Q);
29 K
30 Ke
31 disp(Go, 'observer controller transfer function =');
32
33 // First configuration
34 C1 = Go*Gp / . 1;
```

```
35 disp(C1, 'closed loop system of first configuration =
      ');
36 plotresp(u,t,C1, 'Step response');
37
38 // Second Configuration
39 C = Gp / . Go;
40 \ N = 1 \ / \ horner(C, 0)
41 C2 = syslin('c', N*C);
42 \ y = csim(u,t,C2);
43 disp(C2, 'closed loop system of second configuration
     =');
44 plot(t,y,'r');
45 legend('step input', 'system 1', 'system 2');
46
47 // Bode diagram
48 scf();
49 bode([C1;C2],0.01,100,['system 1'; 'system 2']);
50 // frequency in Hz
```

check Appendix AP 1 for dependency:

minorder.sci check Appendix AP 2 for dependency: plotresp.sci

Scilab code Exa 10.a.5 Feedback gain for moving eigen values

```
1 // Example A-10-5
2 // Feedback gain for moving eigen values
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 s = %s;
```

```
9 A = [0 \ 1; -2 \ -3];
10 B = [0; 2];
11 C = [1 \ 0];
12 E = [-3 -5]; // new eigen values
13
14 ch = det(s*eye(2,2) - A)
15 cf = coeff(ch);
16 a = cf(1: \$-1)
17
18 chd = poly(E, 's');
19 \text{ cf2} = \text{coeff}(\text{chd});
20 alpha = cf2(1: \$-1)
21
22 M = cont_mat(A,B)
23 \text{ W} = [cf(2:\$); 1 0]
24 T = M * W
25
26 Ti = inv(T); disp(Ti, 'inv(T)');
27 K = (alpha - a) * Ti
```

Scilab code Exa 10.a.6 Gain matrix determination

```
1 // Example A-10-6
2 // Gain matrix determination
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7
8 A = [0 1 0; 0 0 1;-6 -11 -6];
9 B = [0; 0; 10];
10
11 P = [-2 + %i*2*sqrt(3) , -2 - %i*2*sqrt(3) , -10];
12 K = ppol(A,B,P); disp(K, 'K = ');
```

Scilab code Exa 10.a.9 Transforming to canonical form

```
1 // Example A-10-9
2 // Transforming to canonical form
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 \, s = \% s;
9 \quad A = [1 \quad 1; -4 \quad -3];
10 B = [0; 2];
11 C = [1 \ 1];
12
13 ch = det(s*eye(2,2) - A)
14 cf = coeff(ch);
15 a = cf(1: \$-1)
16
17
18 N = obsv_mat(A,C);
19 W = [cf(2:\$); 1 0]
20 Qi = W * N'
21 \quad Q = inv(Qi)
22
23 \text{ A1} = \text{Qi} * \text{A} * \text{Q}
24 B1 = Qi * B
```

Scilab code Exa10.a.13 Designing a regulator using a minimum order observer

1 // Example A-10-13

```
2 // Designing a regulator using a minimum order
       observer
 3
4 clear; clc;
 5 xdel(winsid()); //close all windows
6 \mod(0);
\overline{7}
8 function smallplot(i)
      subplot(3,2,i);xgrid(color('gray'));
9
      plot(t,x(i,:));
10
11 endfunction
12
13
14 \quad A = [0 \quad 0 \quad 1 \quad 0; \quad 0 \quad 0 \quad 0 \quad 1; \quad -36 \quad 36 \quad -0.6 \quad 0.6; \quad 18 \quad -18 \quad 0.3
      -0.3];
15 B = [0; 0; 1; 0];
16 C = [1 0 0 0; 0 1 0 0];
17 D = [0;0];
18 Gp = syslin('c', A, B, C, D);
19
20 Aab = A(1:2,3:\$);
21 Abb = A(3:\$,3:\$);
22
23 P = [-2 + \%i * 2 * sqrt(3), -2 - \%i * 2 * sqrt(3), -10, -10]
24 \ Q = [-15 \ -16] // observer poles
25
26 \text{ K} = \text{ppol}(A, B, P)
27 Ke = ppol(Abb', Aab', Q)'
28 Kb = K(3:\$);
29
30 AA = [A - B * K, B * Kb; zeros(2,4), Abb - Ke * Aab]
31
32 // system response to initial conditions
33 \times 0 = [0.1; 0; 0; 0; 0.1; 0.05];
34 G = syslin('c', AA, zeros(6,1), zeros(1,6), [0], x0);
35
36 t = 0:0.01:4;
37 \ u = zeros(1, length(t));
```

```
38 [y x] = csim(u,t,G);
39
40 smallplot(1);
41 xtitle('Response to initial condition', 't (sec)', 'x1
      ');
42 smallplot(2);
43 xtitle('Response to initial condition', 't (sec)', 'x2
      ');
44 smallplot(3);
45 xtitle('', 't (sec)', 'x3');
46 smallplot(4);
47 xtitle('', 't (sec)', 'x4');
48 smallplot(5);
49 xtitle('', 't (sec)', 'e1');
50 smallplot(6);
51 xtitle('', 't (sec)', 'e2');
```

Scilab code Exa 10.a.14 Designing a regulator using a minimum and full order observer

```
1 // Example A-10-14
2 // Designing a regulator using a minimum and full
order observer
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 // please edit the path
9 // cd "<path to dependencies >";
10 // exec("minorder.sci");
11
12 function smallplot(i)
```



Figure 10.5: Designing a regulator using a minimum order observer

```
subplot(2,2,i);xgrid(color('gray'));
13
     plot(t,x(i,:));
14
15 endfunction
16
17 \quad A = [0 \quad 1; \quad 0 \quad -2];
18 B = [0; 4];
19 C = [1 \ 0];
20 D = [0];
21 Gp = syslin('c', A, B, C, D);
22
23 P = [-2 + \%i * 2 * sqrt(3), -2 - \%i * 2 * sqrt(3)]
24 \quad Q1 = [-8 \quad -8 ]
25 \quad Q2 = [-8];
26
27 disp('full order obssrver -');
28 \text{ K1} = \text{ppol}(A, B, P)
29 Ke1 = ppol(A', C', Q1)'
30
31 Go1 =transferf(A-B*K1-Ke1*C,Ke1,K1,[0]);
32 disp(Go1, 'full order observer controller transfer
      function =');
33
34 // system response to initial conditions
35 \text{ AA1} = [A - B*K1, B*K1; zeros(2,2), A - Ke1*C];
36 \times 0 = [1; 0; 1; 0];
37 G = syslin('c', AA1, zeros(4,1), zeros(1,4), [0], x0);
38
39 t = 0:0.05:8;
40 u = zeros(1, length(t));
41 [y x] = csim(u,t,G);
42 smallplot(1);
43 xtitle('Response to initial condition (Full order)',
      't (sec)', 'x1');
44 smallplot(2);
45 xtitle('Response to initial condition (Full order)',
      't (sec)', 'x2');
46 smallplot(3);
47 xtitle('', 't (sec)', 'e1');
```

```
48 smallplot(4);
49 xtitle('', 't (sec)', 'e2');
50
51 disp('minimal order observer -');
52 P
53 Q2
54 [K2 Ke2 Go2 ch AA2] = minorder(A,B,P,Q2);
55 K2
56 Ke2
57 disp(Go2, 'minimal order observer controller transfer
       function =');
58
59 \times 0 = [1; 0; 1;];
60 G = syslin('c', AA2, zeros(3,1), zeros(1,3), [0], x0);
61
62 t = 0:0.05:8;
63 \text{ u} = \text{zeros}(1, \text{length}(t));
64 [y x] = csim(u, t, G);
65 scf();
66 smallplot(1);
67 xtitle('Response to initial condition (minimal order
      )','t (sec)','x1');
68 smallplot(2);
69 xtitle('Response to initial condition (minimal order
      )', 't (sec)', 'x2');
70 smallplot(3);
71 xtitle('', 't (sec)', 'e');
72
73 scf();
74 // Bode diagram
75 \text{ C1} = \text{Go1*Gp} / . 1;
76 C2 = Go2*Gp / . 1;
77 bode([C1 ;C2],0.1,100,['System 1'; 'System 2']);
```



Figure 10.6: Designing a regulator using a minimum and full order observer



Figure 10.7: Designing a regulator using a minimum and full order observer

check Appendix AP 1 for dependency:

minorder.sci

Scilab code Exa 10.a.17 Design of quadratic optimal regulator system and finding the response

```
1 // Example A-10-17
2 // Design of quadratic optimal regulator system and
      finding the response
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod (0);
7
8 function smallplot(i)
     subplot(3,2,i);xgrid(color('gray'));
9
     plot(t,x(i,:));
10
11 endfunction
12
13 A = [0 \ 1 \ 0 \ 0; \ 20.601 \ 0 \ 0; \ 0 \ 0 \ 0 \ 1; \ -0.4905 \ 0 \ 0];
14 B = [0; -1; 0; 0.5];
15 C = [0 0 1 0];
16
17 Ahat = [A \text{ zeros}(4,1); -C 0]
18 Bhat = [B; 0]
19
20 \quad Q = eye(5,5); Q(1,1) = 100
21 R = [0.01]
22
23 // solve the riccati equation
24 P = riccati(Ahat, Bhat*inv(R)*Bhat', Q, 'c');
25 K = inv(R) *Bhat '*P
26 \text{ k1} = -K(\$);
27
28 AA = Ahat - Bhat*K
```

```
29 G = syslin('c',AA,[zeros(4,1); 1] , [C 0], [0]);
30 t = 0:0.05:10;
31 u = ones(1,length(t));
32 [y,x] = csim(u,t,G);smallplot(1);
33
34 xtitle('x1','t (sec)',');
35 smallplot(2);
36 xtitle('x2','t (sec)','x2');
37 smallplot(3);
38 xtitle('','t (sec)','x3');
39 smallplot(4);
40 xtitle('','t (sec)','x4');
41 smallplot(5);
42 xtitle('','t (sec)','x5');
```

check Appendix AP 3 for dependency:

```
ackermann.sci
```

Scilab code Exa 10.1 Gain matrix using characteristic eq and Ackermanns formula

```
1 // Example 10-1
2 // Gain matrix using characteristic eq and
        Ackermanns formula
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 // please edit the path
9 // cd "<path to dependencies >";
10 // exec("ackermann.sci");
11
```



Figure 10.8: Design of quadratic optimal regulator system and finding the response

```
12 \quad A = [0 \quad 1 \quad 0; \quad 0 \quad 0 \quad 1; -1 \quad -5 \quad -6];
13 B = [0; 0; 1];
14 P = [-2 + \%i*4, -2 - \%i*4, -10];
15
16 // Method 1
17 phi = poly(spec(A), 's');
18 disp(phi, 'Given systems characteristic eq = ');
19 cf = coeff(phi);
20 \ a = cf(1:\$-1)
21
22 phid = poly(P, 's');
23 disp(phid, 'Desired characteristic eq = ');
24 cf = coeff(phid);
25 \text{ alpha} = cf(1:\$-1)
26
27 T = eye(3,3) // in this case
28 K = (alpha - a) * inv(T)
29
30 // Method 2
31 [K, phiA] = ackermann(A,B,P);
32 disp(cont_mat(A,B), ' controllability matrix = ');
33 disp(phiA, 'phi(A) =');
34 disp(K, 'using ackermanns formula K = ');
```

check Appendix AP 3 for dependency:

ackermann.sci

Scilab code Exa 10.2 Gain matrix using ppol and Ackermanns formula

```
1 // Example 10-2
2 // Gain matrix using ppol and Ackermanns formula
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
```

```
7 // please edit the path
8 // cd "<path to dependencies >";
9 // exec("ackermann.sci");
10
11 A = [0 1 0; 0 0 1;-1 -5 -6];
12 B = [0; 0; 1];
13 P = [-2 + %i*4 , -2 - %i*4, -10];
14 K = ackermann(A,B,P);disp(K, 'using ackermanns
formula K = ');
15 K = ppol(A,B,P); disp(K, 'using ppol function K = ');
16
17 // ackermann's formula is computationally tedious
18 // and hence avoided
```

Scilab code Exa 10.3 Response to initial condition

```
1 // Example 10-3
2 // Response to initial condition
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
7 A = [0 1 0; 0 0 1; -1 -5 -6];
8 B = [0; 0; 1];
9 C = [0 0 0];
10 D = 0;
11 K = [199 55 8];
12 x0 = [1; 0; 0]; // initial state
13
14 G = syslin('c', (A - B*K), C', C, D, x0);
15 t = 0:0.01:4;
16 u = zeros(1,length(t)); // zero input response
17 [y x] = csim(u, t, G);
18
```



Figure 10.9: Response to initial condition

check Appendix AP 2 for dependency:

plotresp.sci

Scilab code Exa 10.4 Design of servo system with integrator in the plant

```
1 // Example 10-4
2 // Design of servo system with integrator in the
      plant
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod (0)
7
8 // please edit the path
9 // cd "<path to dependencies>";
10 // exec("plotresp.sci");
11
12 s = %s;
13 Gp = cont_frm(1, s*(s+1)*(s+2));
14 \quad A = Gp.A
15 B = Gp.B
16 J = [-2 + \%i * 2 * sqrt(3), -2 - \%i * 2 * sqrt(3), -10];
17 K = ppol(A,B,J)
18
19 A1 = A - B * K;
20 B1 = [0; 0; 160];
21 C1 = [1 0 0];
22 D1 = [0];
23
24 G = syslin('c', A1, B1, C1, D1); ssprint(G);
25
26 t = 0:0.01:5;
27 \text{ u} = \text{ones}(1, \text{length}(t));
28 plotresp(u,t,G, 'Unit-Step Response of servo system')
      ;
```



Figure 10.10: Design of servo system with integrator in the plant

Scilab code Exa $10.5\,$  Design of servo system without integrator in the plant

```
1 // Example 10-5
2 // Design of servo system without integrator in the
        plant
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
```

```
7
8 function smallplot(i)
      subplot(3,2,i);xgrid(color('gray'));
9
      plot(t,x(i,:));
10
11 endfunction
12
13 // Plant
14 \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}; 20.601 \quad 0 \quad 0 & 0 \end{bmatrix}; 0 \quad 0 \quad 0 \quad 1; \quad -0.4905 \quad 0 \quad 0 \end{bmatrix};
15 B = [0; -1; 0; 0.5];
16 C = [0 0 1 0];
17 J = [-1 + \%i * sqrt(3), -1 - \%i * sqrt(3), -5, -5, -5];
18
19
20 // Error dynamics with the error as a state variable
21
22 Ahat = [A \text{ zeros}(4,1); -C 0];
23 Bhat = [B ; 0];
24 Khat = ppol(Ahat, Bhat, J)
25 \text{ K} = \text{Khat}(1: \$-1)
26 \text{ k1} = -\text{Khat}(\$)
27
28 // Over all system with the error as a state
       variable
29 A1 = Ahat - Bhat*Khat;
30 B1 = [zeros(4,1); 1];
31 C1 = [C, 0];
32 D1 = [0];
33 G = syslin('c', A1, B1, C1, D1);
34
35 t = 0:0.02:6;
36 \ u = ones(1, length(t));
37 [y, x] = csim(u, t, G);
38
39 smallplot(1);
40 xtitle('x1', 't (sec)', '');
41 smallplot(2);
42 xtitle('x2', 't (sec)', 'x2');
43 smallplot(3);
```



Figure 10.11: Design of servo system without integrator in the plant

```
44 xtitle('', 't (sec)', 'x3');
45 smallplot(4);
46 xtitle('', 't (sec)', 'x4');
47 smallplot(5);
48 xtitle('', 't (sec)', 'error');
```

check Appendix AP 3 for dependency:

ackermann.sci

Scilab code Exa $10.6\,$  Observer Gain matrix using ch eq and Ackermanns formula

```
1 // Example 10-6
2 // Observer Gain matrix using ch eq and Ackermanns
      formula
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod (0);
7
8 // please edit the path
9 // cd "<path to dependencies >";
10 // exec("ackermann.sci");
11
12 \quad A = [0 \quad 20.6; \quad 1 \quad 0];
13 C = [0 \ 1];
14 P = [-10 - 10];
15
16 // Method 1
17 phi = poly(spec(A), 's');
18 disp(phi, 'Given systems characteristic eq = ');
19 cf = coeff(phi);
20 a = cf(1:\$-1),
21
22 phid = poly(P, 's');
23 disp(phid, 'Desired characteristic eq = ');
24 cf = coeff(phid);
25 \text{ alpha} = cf(1:\$-1),
26
27 T = eye(2,2) // in this case
28 Ke = inv(T) * (alpha - a)
29
30 // Method 2
31 [Ke, phiA] = ackermann(A',C',P);
32 disp(obsv_mat(A,C), 'observability matrix = ');
33 disp(phiA', phi(A) = ');
34 disp(Ke', 'using ackermanns formula Ke = ');
```

Scilab code Exa 10.7 Designing a controller using a full order observer

```
1 // Example 10-7
2 // Designing a controller using a full order
      observer
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 function smallplot(i)
9
     subplot(2,2,i);xgrid(color('gray'));
10
     plot(t,x(i,:));
11 endfunction
12
13 s = %s;
14 \quad A = [0 \quad 1; \quad 20.6 \quad 0];
15 B = [0; 1];
16 C = [1 0];
17 D = [0];
18 P = [-1.8 + \%i * 2.4 , -1.8 - \%i * 2.4 ];
19 Q = [-8 - 8]; // observer poles
20
21 K = ppol(A,B,P)
22 Ke = ppol(A', C', Q)'
23
24 // The transfer function of observer controller
25 \text{ A1} = \text{A} - \text{B} \times \text{K} - \text{K} \times \text{C}
26 M = s * eye(A1) - A1
27 UbyE = K * inv(M) * Ke;
28 disp(UbyE, 'U(s) / E(s) = ');
29
30 // Plant dynamics
31 Gp = syslin('c', A, B, C, D);
```

```
32 disp('plant dynamics'); ssprint(Gp);
33 YbyU = ss2tf(Gp)
34
35 // Observer controller dynamics
36 disp('observer controller dynamics (x = xbar), (u = ybar)
     y), (y = u)');
37 Goc = syslin('c', A1, Ke, -K, [0]);
38 ssprint(Goc);
39
40 // Overall System transfer function
41
42 GsFullsystem = UbyE * YbyU /. 1
43
44 // Overall System
45 x0 = [1; 0; 0.5; 0]; // initial state
46 As = [A-B*K, B*K; zeros(2,2), A-Ke*C];
47 Gss = syslin('c', As, [1;0;0;0], [1 0 0 0], [0], x0);
48
49 // Unit step response
50 t = 0:0.01:4;
51 u = zeros(1, length(t));
52 [y x] = csim(u,t,Gss);
53
54 smallplot(1);
55 xtitle('Response to initial condition', 't (sec)', 'x1
      ');
56 smallplot(2);
57 xtitle('Response to initial condition', 't (sec)', 'x2
      ');
58 smallplot(3);
59 xtitle('', 't (sec)', 'e1');
60 smallplot(4);
61 xtitle('', 't (sec)', 'e2');
```



Figure 10.12: Designing a controller using a full order observer
Scilab code Exa $10.8\,$  Designing a controller using a minimum order observer

```
1 // Example 10-8
2 // Designing a controller using a minimum order
      observer
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod (0);
7
8 A = [0 1 0; 0 0 1; -6 -11 -6];
9 B = [0; 0; 1];
10 C = [1 0 0];
11 D = [0];
12 P = [-2 + \%i * 2 * sqrt(3), -2 - \%i * 2 * sqrt(3), -6];
13 Q = [-10 - 10]; // observer poles
14
15 K = ppol(A, B, P)
16
17 // Observer design
18 Aaa = A(1,1)
19 Aab = A(1,2:\$)
20 Aba = A(2:\$,1)
21 Abb = A(2:\$, 2:\$)
22
23 Ke = ppol(Abb', Aab', Q)'
24
25 \text{ Ba} = B(1,1)
26 \text{ Bb} = B(2:\$,1)
27
28 Ahat = Abb - Ke*Aab;
29 disp(Ahat, 'Ahat = Abb - Ke*Aab =');
30 Bh = Aba - Ke*Aaa;
31 disp(Bh, 'Aba - Ke*Aaa =');
32 Chat = [zeros(1,2); eye(2,2)]
33 Dhat = [1; Ke]
34 Fhat = Bb - Ke*Ba;
```

Scilab code Exa 10.9 Design of quadratic optimal regulator system

```
1 // Example 10.9
2 // Design of quadratic optimal regulator system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod (0);
\overline{7}
8 A = [0 1; 0 0];
9 B = [0;1];
10 \quad Q = [1 \quad 0; \quad 0 \quad 1];
11 R = [1];
12
13 // solve the riccati equation
14 P = riccati(A, B*inv(R)*B', Q, 'c')
15 K = inv(R) * B' * P
16 E = \text{spec}(A - B * K) // \text{eigen values}
```

Scilab code Exa 10.10 Design of quadratic optimal regulator system

```
1 // Example 10-10
2 // Design of quadratic optimal regulator system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 mode(0);
7
8 A = [-1 1;0 2];
9 B = [1;0];
10 Q = [1 0; 0 1];
```

```
11 R = [1];
12
13 // solve the riccati equation
14 P = riccati(A, B*inv(R)*B', Q, 'c')
15 K = inv(R)*B'*P
16 E = spec(A - B*K) // eigen values
17 // when a solution does not exist
18 // a different method is used - least square
solution
```

Scilab code Exa 10.11 Design of quadratic optimal regulator system

```
1 // Example 10-11
2 // Design of quadratic optimal regulator system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod(0);
7
8 A = [0 1; 0 -1];
9 B = [0;1];
10 \quad Q = [1 \quad 0; \quad 0 \quad 1];
11 R = [1];
12
13 // solve the riccati equation
14 P = riccati(A, B*inv(R)*B', Q, 'c')
15 K = inv(R) * B' * P
16 E = \text{spec}(A - B * K) // \text{eigen values}
```

Scilab code Exa 10.12 Design of quadratic optimal regulator system and finding the response

1 // Example 10 - 12

```
2 // Design of quadratic optimal regulator system and
      finding the response
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6 \mod(0);
\overline{7}
8 A = [0 1 0; 0 0 1; -35 -27 -9];
9 B = [0; 0; 1];
10 \quad Q = [1 \quad 0 \quad 0; \quad 0 \quad 1 \quad 0; \quad 0 \quad 0 \quad 1];
11 R = [1];
12
13 // solve the riccati equation
14 P = riccati(A, B*inv(R)*B', Q, 'c')
15 K = inv(R) * B' * P
16 E = \text{spec}(A - B * K) // \text{eigen values}
17
18 x0 = [1; 0; 0]; // initial state
19
20 G = syslin('c', (A - B*K), [0;0;0], [0 0 0], [0], x0);
21 t = 0:0.01:8;
22 u = zeros(1, length(t));
23 [y x] = csim(u, t, G);
24
25 xtitle('Response to initial condition', 't (sec)', 'x1
      ');
26 subplot(3,1,1); xgrid(color('gray'));
27 plot(t,x(1,:));
28
29 subplot(3,1,2); xgrid(color('gray'));
30 xtitle('', 't (sec)', 'x2');
31 plot(t,x(2,:));
32
33 subplot(3,1,3);xgrid(color('gray'));
34 xtitle('', 't (\,{\rm sec}\,) ', 'x3');
35 plot(t,x(3,:));
```



Figure 10.13: Design of quadratic optimal regulator system and finding the response

Scilab code Exa 10.13 Design of quadratic optimal regulator system and finding the response

```
1 // Example 10-13
2 // Design of quadratic optimal regulator system
3
4 clear; clc;
5 xdel(winsid()); //close all windows
6
```

```
7 \quad A = [0 \quad 1 \quad 0; \quad 0 \quad 0 \quad 1; \quad 0 \quad -2 \quad -3];
8 B = [0; 0; 1];
9 C = [1 0 0];
10 \quad Q = [100 \quad 0 \quad 0; \quad 0 \quad 1 \quad 0; \quad 0 \quad 0 \quad 1];
11 R = [0.01];
12
13 // solve the riccati equation
14 P = riccati(A, B*inv(R)*B', Q, 'c');
15 K = inv(R) * B' * P;
16 disp(K, 'K = ');
17 \text{ k1} = K(1);
18
19 G = syslin('c', A - B*K, B*k1 , C, [0]);
20 t = 0:0.01:8;
21 u = ones(1, length(t));
22 [y,x] = csim(u,t,G);
23 plot(t,x);
24 xgrid(color('gray'));
25 xtitle('Step-Response', 't (sec)', 'state variables');
26 legend('x1 (= y)', 'x2', 'x3');
```



Figure 10.14: Design of quadratic optimal regulator system and finding the response

## Appendix

Scilab code AP 1 Determine Gains and transfer function for minimal order observer

```
1
2 // Determine Gains and transfer function for minimal
       order observer
3
4 function G = transferf(A,B,C,D)
     H = syslin('c', A, B, C, D);
5
6
     G = clean(ss2tf(H));
7 endfunction
8
  function [K,Ke,Go,ch,AA,Ahat,Bhat,Chat,Dhat,Fhat] =
9
      minorder(A,B,P,Q)
     s = \% s;
10
     K = ppol(A, B, P);
11
12
     Ka = K(1);
13
     Kb = K(2:\$);
14
15
     Aaa = A(1,1);
16
     Aab = A(1, 2: $);
17
     Aba = A(2:\$,1);
     Abb = A(2:\$, 2:\$);
18
19
     Ba = B(1,1);
     Bb = B(2:\$,1);
20
21
22
     Ke = ppol(Abb', Aab', Q)'
23
```

```
24
     n = length(Kb);
25
     Ahat = Abb - Ke*Aab;
     Bhat = Ahat*Ke + Aba - Ke*Aaa;
26
27
     Chat = [zeros(1,n); eye(n,n)];
28
     Dhat = [1; Ke];
29
     Fhat = Bb - Ke*Ba;
     Atld = Ahat - Fhat*Kb;
30
     Btld = Bhat - Fhat*(Ka + Kb*Ke);
31
32
     Ctld = -Kb;
     Dtld = -(Ka + Kb * Ke);
33
34
35
     Go = transferf(Atld,Btld,-Ctld,-Dtld);
36 ch = det(s*eye(n+1,n+1) - A + B*K) * det(s*eye(n,n))
      - Abb + Ke*Aab);
  AA = [A - B * K, B * Kb; zeros(n, n+1), Abb - Ke * Aab];
37
38
39 endfunction
```

Scilab code AP 2 Plot System Response

```
1
2 // Plot System Response
3 // Computes the response and plots the input and
      response together
4
5 function y = plotresp(u,t,G,text)
6
     y = csim(u,t,G);
\overline{7}
     plot(t,u,t,y);
     xtitle(text, 't (sec)', 'Input and Output');
8
     xgrid(color('gray'));
9
     legend('input', 'output');
10
11 endfunction
```

Scilab code AP 3 Compute the feedback gain matrix using ackermanns formula

1 // Compute the feedback gain matrix using ackermanns formula

```
2
3 function [K , phiA] = ackermann(A, B, P)
     // construct charecteristic equation
4
     phi = poly(P, 'x');
5
6
     c = coeff(phi);
7
     phiA = eye(A) * c(1);
8
     powA = eye(A);
     for i=2:length(c)
9
10
           powA = powA * A;
            phiA = phiA + powA * c(i);
11
12
     end
13
     K = [zeros(1, length(B) - 1), 1] * inv(cont_mat(A, B))
        ) * phiA;
14 endfunction
```

Scilab code AP 4 Transfer function of A,B,C,D.

```
1
2 function G = transferf(A,B,C,D)
3 H = syslin('c',A,B,C,D);
4 G = clean(ss2tf(H));
5 endfunction
```

Scilab code AP 5 Inverse Laplace transform of a rational polynomial in s

```
1 // Inverse Laplace transform of a rational
      polynomial in s
2 // depends on pf_residu
3
4 function s = ilaplace(H)
     if(H \sim = 0) then
5
       [r z p] = pf_residu(H.num,H.den);
6
       n = length(r);
7
       s = '';
8
       for i = 1:(n-1);
9
         s = s + string(r(i)) + '*e^' + string(p(i)) +
10
            't + ';
11
       end
```

Scilab code AP 6 Partial Fraction Residue

```
1
2 // Partial Fraction Residue
3 // Gives the coefficients of partial fraction
      expansion for the given polynomial
4
5 function [r,z,p] = pf_residu(N,D)
     z = roots(N) //Zeros
6
     p = roots(D)
                     //Poles
7
8
     q = round(p);
9
     m = 1; // to keep a count of the root's
10
        multiplicity
11
12
     for i = 1:length(p)
13
       if(i < length(p) & q(i + 1) == q(i))</pre>
14
         m = m + 1;
15
       else
16
         P1 = N / pdiv(D, (s - p(i)) ^ m);
         r(i) = horner(P1 ,p(i));
17
         for j = 1:(m-1)
18
           P1 = derivat(P1);
19
           r(i - j) = horner(P1 / gamma(j + 1), p(i));
20
                         // \text{gamma}(j + 1) = j! (factorial
21
         end
            )
22
         m = 1;
23
       end
24
     end
25 endfunction
26
```

27 // for details on this method please refer 28 // http://en.wikipedia.org/wiki/Partial\_fraction

Scilab code AP 7 Plot the root locus in a box

```
1 // Plot the root locus in a box
2 // rootl(G,box,text)
3 // G : linear system
4 // box: so ordinates of axis bounds
5 // text: title of plot window
6
\overline{7}
  function rootl(G,box,text)
8
     evans(G);
9
     xgrid();
10
     a = gca();
     if box ~= 0 then
11
       a.box = "on";
12
       a.data_bounds = box;
13
14
     end
     a.children(1).visible = 'off'; //remove the legend
15
         block
     xtitle(text);
16
17 endfunction
```

Scilab code AP 8 Step response characteristics

```
1 // Step response characteristics
2 // Plots the step response and computes Maximum
     Overshoot
3 // Peak Time, Rise Time and Settling Time
4
5 function [Mp,tp,tr,ts] = stepch(G,from,to,step,
     settling_margin)
6
7
    t = from:step:to;
    u = ones(1,length(t));
8
9
    y = csim(u,t,G);
    plot(t,y);
10
```

```
xtitle('Unit Step Response', 't (sec)', 'Output');
11
     xgrid(color('gray'));
12
13
14
     [m t1] = max(y);
15
     tp = (t1 - 1) * step;
16
     Mp = m - 1;
17
18
     i = 1;
     if tp == to then
19
20
       tr = %nan;
21
     else
22
       while(y(i) < 0.1) i = i + 1; end;</pre>
23
       r1 = i;
       while(y(i) < 0.9) i = i + 1; end;</pre>
24
       tr = (i-r1) * step;
25
26
     end
27
28
     l = 1 - settling_margin;
     h = 1 + settling_margin;
29
     for i = length(t):-1:1
30
31
       if (y(i) < 1 | y(i) > h) break; end;
32
     end
33
     ts = (i - 1) * step;
34 endfunction
```

Scilab code AP 9 Polar plot of a linear system

```
1 // polar plot of a linear system
2 // repf = spolarplot(G, omega)
3 // G: linear sytem and omega: is frequency in rad/s
4 // repf: is the complex frequency response
5
6 function repf = spolarplot(G,omega)
     f = omega / 2 / \% pi;
7
     repf = repfreq(G,f);
8
     r = abs(repf);
9
10
     theta = atan(imag(repf), real(repf));
     polarplot(theta,r,style = 2);
11
```

## 12 endfunction

Scilab code AP 10 Display gain and phase margins

```
// Display gain and phase margins on a bode plot
1
2
3 function [gm,gcrf,pm,pcrf] = shmargins(G)
4
     show_margins(G, 'bode');
5
     xtitle('Bode diagram', 'rad/s');
6
     a = gcf(); set(a.children(2).x_label, 'text', 'rad/s'
7
        );
8
     [gm pcrf] = g_margin(G);
9
     [pm gcrf] = p_margin(G);
10
     disp(gcrf, 'Gain crossover frequency = ',pm, 'Phase
11
        margin (degrees) = ');
     disp(pcrf, 'Phase crossover frequency = ',gm, 'Gain
12
        margin (dB) = ');
13 endfunction
```

Scilab code AP 11 Frequency response characteristics

```
1 // Frequency response characteristics
2 function [Mr,wr,bw,repf] = freqch(G,omega)
3
4
     repf = repfreq(G,omega);
                               // frequency response
       (complex numbers)
5
     [mag phi] = dbphi(repf); // mag in db
6
                               // resonant peak
\overline{7}
     [Mr k] = max(mag);
     wr = omega(k);
                               // resonant freq.
8
9
     mag = abs(mag + 3);
                               // mag = abs(mag - (- 3))
       dB))
     [M j] = min(mag);
10
                                // j : is the point
        where mag == -3db
     bw = omega(j);
11
12
```

```
13 disp(wr, 'resonant frequency = ');
14 disp(Mr, 'resonant peak (dB)= ');
15 disp(bw, 'bandwidth = ');
16 endfunction
```

Scilab code AP 12 Gain at a point on a root locus

```
1 // Gain at a point on a root locus
2
3 function [K,p] = gainat(G)
     z = locate(1, 1);
4
     x = z(1); y = z(2);
5
     p = x + \%i*y;
6
     disp( p , ^{\prime}p = ^{\prime});
7
     K = 1 / abs(horner(G,p))
8
     disp(K, 'K = ');
9
     plot(x,y,'.');
10
     xstring(x,y,'K = ' + string(K));
11
12 endfunction
```