Scilab Textbook Companion for Digital Telephony by J. C. Bellamy¹

Created by
Harish Shenoy
B.Tech
Electronics Engineering
NMIMS, MPSTME
College Teacher
Not decided
Cross-Checked by
TechPassion

August 17, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Digital Telephony

Author: J. C. Bellamy

Publisher: Wiley India (P.) Ltd., New Delhi

Edition: 3

Year: 2000

ISBN: 9788126509294

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
3	Voice Digitization	6
5	Digital Switching	9
6	Digital Modulation and Radio Systems	14
7	Network Synchronization Control and Management	16
8	Fiber Optic Transmission System	19
9	Digital Mobile Telephony	26
10	Data and Asynchronous Transfer Mode Network	28
11	Digital Subscriber Access	31
12	Traffic Analysis	34

List of Scilab Codes

Exa 3.1	Program to calculate quantization interval and bits needed	
	to encode each sample	6
Exa 3.2	Program to calculate the minimum bit rate for a PCM	
	encoder must provide for high fidelity	7
Exa 3.4	Program to calculate how many bits per sample can be	
	saved by using DPCM	8
Exa 5.1	Program to find the idle path in a three stage 8192 line	
	switch	9
Exa 5.2	Program to determine the implementation complexity of	
	the TS switch	10
Exa 5.3	Program to determine the implementation complexity of	
	a 2048 channel	11
Exa 5.5	Program to determine the implementation complexity of	
	a 131072 channel	12
Exa 6.4	Program to determine system gain of 10Mbps 2Ghz dig-	
	ital microwave repeater using 4 PSK modulation	14
Exa 7.2	Program to determine relative accuracy of maintaining	
	a mutual slip rate ojective of one slip in 20hrs	16
Exa 7.3	Program to determine the minimum and maximum in-	
	put channel rate accommodated by an M12 multiplexer	17
Exa 8.1	Program to determine the loss limit and the multimode	
	dispersion limit of a graded index FOC	19
Exa 8.2	Program to determine the loss limit and the chromatic	
	dispersion limit of a high performance SMF FOC	20
Exa 8.3	Program to determine the BDP of SMF system and DS	
2110 010	SMF system using DFB LD	21
Exa 8.4	Program to determine the difference in wavelength of	
	two optical signal	22
	one obsessed signatures.	

Exa 8.5	Program to determine the system gain	23
Exa 8.6	Program to determine the range of SPE data rates that can be accommodated by the byte stuffing operation	24
Exa 9.1	Progam to determine the probability of maximum interference of a 64 channel CDMA system	26
Exa 10.1	Program to determine the amount of transmission capacity	28
Exa 10.3	Program to determine the probability that the delay of an ATM voice cell	29
Exa 11.1	Program to determine the distance limit imposed by the need to echo E bit in a BRI ST interface	31
Exa 11.2	Program to determine the theoretical maximum data rate of a prefectly equalized voiceband modem	32
Exa 12.1	Program to calculate how often do two calls arrive with less than 1 milisec between them	34
Exa 12.2	Program to calculate the probability that eight or more arrivals occur in an chosen 30 sec	35
Exa 12.3	Program to calculate the probability that a 1000 bit data block experiences exactly 4 errors while being transmitted over a link having error	36
Exa 12.4	Program to calculate the percentage of total traffic carried by first five ckt and traffic carried by all other re-	
Exa 12.5	maining	37 38

Voice Digitization

Scilab code Exa 3.1 Program to calculate quantization interval and bits needed to encode each sample

```
1 // Caption: Program to calculate quantization interval
       and bits needed to encode each sample
 3 //Example 3.1
  //Page 101
7 \text{ sqr} = 30 //\text{SQR} = 30 \text{dB}
9 q=1*10^{-(sqr-7.78)/20}
10
11 disp ('Thus 13 quantization intervals arer needed for
       each polarity for a total of 26 intervals in all
      . The number of bitz required are determined as')
12
13 N = log 2 (26)
14
15 // Result
16
17 / q = 0.078 V
```

```
18
19 //N = 4.7 = 5 bits per sample
```

Scilab code Exa 3.2 Program to calculate the minimum bit rate for a PCM encoder must provide for high fidelity

```
1 //Caption:Program to calculate the minimum bit rate
      for a PCM encoder must provide for high fidelity
  //Example 3.2
  //Page 105
  dr=40//dynamic range=400dB
  SNR=50//signal to noise ratio =5 0dB
9
10
11 SQR=dr+SNR
12
13 n = [(SQR - 1.76)/6.02]
14
15
  disp('This can be approximated to 15 bits per sample
      ')
16
  disp('Assuming excess sampling factor using D-type
17
      channel, we choose sampling rate as 48KHz')
18
19
  disp('Therefore required bit rate is')
20
  15*48000
21
22
23 // Result
24
25 / 720 \, \text{kbps}
```

Scilab code Exa 3.4 Program to calculate how many bits per sample can be saved by using DPCM

```
1 //Caption:Program to calculate how many bits per
      sample can be saved by using DPCM
   //Example 3.4
  //Page 128
7 \text{ w} = 800 / \text{Omega} = 800 \text{Hz}
   //x(t)=A \sin(2\pi i \cdot wt), equation for sine wave with
      maximum amplitude
10
  //x'(t)=A(2pi).w.cos(2pi.wt), diff w.r.t time
11
12
13
  (2*%pi)*800*(1/8000)
14
  //0.62831*a, x'(t)max
15
16
  disp('savings in the bits per sample can be
      determined as ')
18
19
  log2(1/0.628)
20
21 // Result
22
23 //0.67  bits
```

Digital Switching

Scilab code Exa 5.1 Program to find the idle path in a three stage 8192 line switch

```
1 //Caption: Program to find the idle path in a three
      stage 8192 line switch
3 //Example 5.1
5 // Page243
7 //Refer to table 5.2 on page236
  disp('From the table, space expansion factor of
      0.234 is 0.002. Hence the utilization of each
      interstage is given by')
10
11 0.1/0.234
12
13 p=1-[(1-0.427)^2]// probability that one of two
      links in series is busy
14
15 disp('Therefore, the expected number of paths to be
      tested are, ')
```

```
16
17 Np=[1-(0.672)^15]/(1-0.672)
18
19 //Result
20
21 //Only 3 of the 15 paths should be tested before an idle path is found
```

Scilab code Exa 5.2 Program to determine the implementation complexity of the TS switch

```
1 // Caption: Program to determine the implementation
      complexity of the TS switch
  //Example 5.2
5 //Page 253
  //Refer to figure 5.19 on page 252
  N=80//Number of links
10
11 Nc=24//Number of control words
12
13 Nb1=7//Number of bits per control word
14
15 Nb2=5//Number of bits per control word
16
  disp ('The number of crosspoints in the space stage
17
      is')
18
19 Nx = N^2
20
21 disp('The total number of memory bits for the space
      stage control store is')
```

```
22
23 Nbx=N*Nc*Nb1
24
25 disp('The total number of memory bits for the time stage is')
26
27 Nbt=(N*Nc*8)+(N*Nc*Nb2)
28
29 disp('Thus the implementation complexity is ')
30
31 Cmplx=Nx+[(Nbx+Nbt)/100]
32
33 //Result
34
35 //Complexity is 6784 equivalent crosspoint.
```

Scilab code Exa 5.3 Program to determine the implementation complexity of a 2048 channel

```
15
16 disp('The number of bits of memory can be determined are')
17
18 N=[2*7*128*4]+[7*128*8]+[7*128*7]
19
20 //Result
21
22 //The composite implementation complecity is 430 equivalent crosspoints.
```

Scilab code Exa 5.5 Program to determine the implementation complexity of a 131072 channel

```
2 //Caption:Program to determine the implementation
      complexity of a 131,072 channel
4 //Example 5.5
6 // Page 261
8 disp ('The space switch can be designed bt take the
      first space stage. A value of 32 is chosen as a
      convenient binary number.')
10 n=32//binary w.r.t (N/2)^2
11
12 k=27//determined as a blocking probability of 0.0015
13
14 //Refer equations 5.18 and 5.19
15
16 Nx = [2*1024*27] + [27+(32^2)]
17
18 Nx = [2*1024*27] + [27*(32^2)]
```

```
19
20 Nbx=[2*27*128*32*5]+{27*128*32*5}
21
22 Nbt=[2*1024*128*8]
23
24 Nbtc=[2*1024*128*7]
25
26 cmplx=[Nx+{(Nbx+Nbt+Nbtc)/100}]
27
28 //Result
29
30 //Complexity is 138,854 equivalent crosspoint.
```

Digital Modulation and Radio Systems

Scilab code Exa 6.4 Program to determine system gain of 10Mbps 2Ghz digital microwave repeater using 4 PSK modulation

```
15
16 snr = 13.7 / SNR = 13.7 dB
17
18 disp('Since 4 PSK modulation provides 2bps/Hz, the
      sampling rate is 5 MHz, which is Nqyuist rate,
      therefore')
19
20 a1=10*log10(125000000000000)
21
22 \quad a2=10*log10(1.3)
23
24 \quad A0 = a1 - 13.7 - 7 - 3 - a2
25
26 disp('At a carrier frequency of 2GHz, the wavelength
       is')
27
28 (3*10^8)/(2*10^9)
29
30 FM=116+60+20*log10(0.15)-5-20*log10(4*%pi*5*10^4)//
      Fade Margin can be found by Equation 6.31
31
32 / Result
33 / A0 = 116 dB
34 // wavelength = 0.15 m
35 / \text{Fade Margin} = 38.5 \text{ dB}
```

Network Synchronization Control and Management

Scilab code Exa 7.2 Program to determine relative accuracy of maintaining a mutual slip rate ojective of one slip in 20hrs

```
//Caption:Program to determine relative accuracy of
maintaining a mutual slip rate ojective of one
slip in 20 hrs

//Example 7.2

//Page 350

disp('The slip rate objective implies that thee
frame rate produced by one clock can be different
than the frame rate produced by the other clock
by no more then')

dF=[1/(20*60*60)]

dF=[1/(20*60*60)]
```

```
14 disp('Since there are 8000 frame per second, the
      relative accuracy is determined as')
15
16 ans=[dF/8000]
17
18 //Result
19
20 //Hence the clock must be accurate to 1.7 parts in
      10^9.
```

Scilab code Exa 7.3 Program to determine the minimum and maximum input channel rate accommodated by an M12 multiplexer

```
1
  //Caption:Program to determine the minimum and
     maximum input channel rate accommodated by an M12
      multiplexer
4 //Example 7.3
6 // Page 354
8 disp("The maximum information rate per channel is
     determined as")
9
10 Imax = [(6.312*288)/1176]
11
12 disp ('The minimum information rate per channel is
      determined as')
13
14 Imin = [(6.312*287)/1176]
15
16 disp('Since there are three possible combinations of
      two errors in the C bits, the probability of
     misinterpreting an S bit is')
```

```
17
18 3*(10^-6)^2
19
20 1176/6.312//duration of each master frame
21
22 [(3*10^-12)/(186*10^-6)]
23
24 //Result
25
26 //0.016*10^-6 misframes per second
```

Fiber Optic Transmission System

Scilab code Exa 8.1 Program to determine the loss limit and the multimode dispersion limit of a graded index FOC

```
// Caption: Program to determine the loss limit and
the multimode dispersion limit of a graded index
FOC

// Example 8.1

// Page 388

// Refer to figure 8.2 on page 385

Pin=42//input power = 42dB

disp('The attenuation of a multimode fiber operating
at 820nm is approximately 3db/km. Thus,')

A=3//attenuation
```

```
16 LL=(Pin/A) // Loss Limit
17
18 disp('Using 2 Gbps-km as typical BDP of graded index multimode fiber, the multimode dispersion distance is determined as')
19
20 D1=(2000/90) // Dispersion limit
21
22 // Result
23
24 // Loss Limit = 14 km
25
26 // Dispersion Limit = 22.2 km
```

Scilab code Exa 8.2 Program to determine the loss limit and the chromatic dispersion limit of a high performance SMF FOC

```
//Caption:Program to determine the loss limit and
the chromatic dispersion limit of a high
performance SMF FOC

//Example 8.2

//Page 389

//Refer figure 8.2 on page 385

disp('The attenuation of single-mode fibre operating
at 1300nm is approximately 0.35dB/km. Thus,')

Pin=42//input power = 42dB

A=0.35
```

Scilab code Exa 8.3 Program to determine the BDP of SMF system and DS SMF system using DFB LD

```
//Caption:Program to determine the BDP of SMF system
       and DS SMF system using DFB LD
4 //Example 8.3
6
  //Page 393
  //Refer to table 8.1 on page 392, also to figure 8.6
      on page 391
9
10
  smf = 16
11
  smf=16//dispersion co-efficient of SMF at 1550nm
12
13
14 sw=0.4//spectral width of the source
15
16 BDP=[250/(smf*sw)]//assuming line code as NRZ
```

```
17
  disp ('The BDP of the DS SMF system is determined as'
18
19
20
   smf=3.5//dispersion co-efficient of DS SMF at 1550nm
21
22 BDP=[250/(smf*sw)]//assuming line code as NRZ
23
24
  //Result
25
26 / BDP = 39 Gbps=km (SMF)
27
28
  //BDP = 179 \text{ Gbps-km} (DS SMF)
```

Scilab code Exa 8.4 Program to determine the difference in wavelength of two optical signal

```
//Caption:Program to determine the difference in
      wavelength of two optical signal
4
  //Example 8.4
6
  //Page 402
  c=3*10^8//\text{speed} of light
10
  wl = 1500*10^{-9} / wavlength = 1500nm
11
12 f = [(3*10^8)/w1]
13
14 disp('Thus the upper and lower frequencies are
      determined as 200,001 and 199,999 GHz
      respectively. The corresponding wavelengths are')
15
```

```
16 lam1=[c/(199999*10^9)]
17
18 lam2=[c/(200001*10^9)]
19
20 //Result
21
22 //The difference in wavelenghts is 0.015nm
```

Scilab code Exa 8.5 Program to determine the system gain

```
//Caption:Program to determine the system gain
4 //Example 8.5
6 // Page 405
   //Refer to table 8.2 and figure 8.8 on page 394
10 dr = 565 / / data rate
11
12 wl = 1550 * 10^{-9} / wavelength
13
   disp('The use of 5B6B line code implies the line
      data rate is,')
15
16 565*(6/5)
17
  //678Mbps
18
19
20 disp ('The receiver sensitivity for 678 Mbps is
      determined from fig 8.8 or table 8.2 as ')
21
22 \text{ rsen} = -34.5
23
```

```
24 A=(-5-rsen)//system gain
25
26
  BDP = [500/(17*0.4)]
27
28 BDPs = [73.6/0.678]
29
30 \ lossp=(0.2+0.2)*(65)
31
32
  lossm=A-lossp
33
34 // Result
35
36
  //System gain = 29.5 dB
37
38 / BDP = 73.6 Gbps
39
  //BDP \text{ spacing} = 109 \text{ km}
40
41
42
  //Path Loss = 26 dB
43
44 // Loss Margin = 3.5 dB
```

Scilab code Exa 8.6 Program to determine the range of SPE data rates that can be accommodated by the byte stuffing operation

```
1
2 //Caption:Program to determine the range of SPE data
    rates that can be accommodated by the byte
    stuffing operation
3
4 //Example 8.6
5
6 //Page 415
7
8 frames=4*9*87//Four SPE frames
```

```
10 rate=8*frames*2000//normal rate SPE
12 disp('When positive byte stuffing is used to
      accomodate a slow incoming SPE rate, 3131 bytes
      of data are transmitted in four frames. Thus, the
       lowest slip rate is')
13
14 Rmin=8*3131*2000//minimum SPE rate
15
16 disp ('When negative byte stuffing is used to
      accomodate a fast incoming SPE rate, 3133 bytes
      of data are transmitted in four frames. Thus, the
       highest slip rate is')
17
18 Rmax=8*3133*2000//maximum SPE rate
19
20 //Result
21
22 //Normal SPE rate = 50.112 Mbps
23
\frac{24}{\text{Minimum SPE rate}} = 50.096 \text{ Mbps}
25
26 //Maximum SPE rate = 50.128 Mbps
```

Digital Mobile Telephony

Scilab code Exa 9.1 Progam to determine the probability of maximum interference of a 64 channel CDMA system

```
1
  //Caption:Progam to determine the probability of
     maximum interference of a 64 channel CDMA system
  //Example 9.1
6 //Page 447
  disp('The probability of 63 destructive interferers
     is merely the probability of occurence of 63
     equally likely binary events, ')
10 Pmax = (0.5) ^63 // maximum probability
11
12 disp('The value of a desired receive signal is the
      autocorrelation of a codeword with itself and can
      therefore be represented as a value of 64. ')
13
14 disp('The mean and varience of a sum of 63 such
      variable are 0 and 63, respectively. The signal-
```

```
to-interference ratio is now determined as,')

15

16 a=[(64^2)/63]

17

18 SIR=10*log10(a)

19

20 //Result

21

22 //Signal to interference ratio = 18.1 dB
```

Data and Asynchronous Transfer Mode Network

Scilab code Exa 10.1 Program to determine the amount of transmission capacity

```
//Caption:Program to determine the amount of
transmission capacity

//(a) Assume the link-by-link error control (b)
Assume end-to-end error control (c) Repeat the
calculation for a bit error probability of 10^-5

//Example 10.1

//Page 472

//(a) With link-by-link

frame=1000*10^-8

disp('The expected number of bits of transmission
capacity required to retransmit is')
```

```
15
16
  frame *1000
17
18 //(b) With end-to-end
19
20 frames=10*10^-5//corrupted frame
21
22 disp('The expected number of bits of transmission
      capacity required is')
23
24 \text{ frames}*1000
25
26
  //(c) With bit error 10^{-5}
27
28 \quad ans1=1000*10^-5
29
30 \quad ans1=1000*10^-5*1000
31
32
  ans=10*10^-2*1000
33
34 // Result
35
36 //(a)0.01 bit/link
37
38 //(b) 0.1  bit/link
39
40 //(c)1. 10 bits/link
41
42 //(c) 2. 100 bits/link
```

Scilab code Exa 10.3 Program to determine the probability that the delay of an ATM voice cell

```
2 //Caption:Program to determine the probability that
```

```
the delay of an ATM voice cell
3
  //Example 10.3
6 //Page 488
8 disp('Assuming the access link is 90% utilized on
      average. ')
10 disp('The queuing theory is provided in Chapter 12.
     It involves determining the probability that the
     DSI access queue contains enough cells to
     represent 10 msec of transmission time')
11
12 tm = [(53*8)/(192*8000)]
13
14 disp('Therefore, 10 msec delay represents 10/0.276 =
       36.2 cell times.')
15
16 p=(0.9)*{%e^[-(1-0.9)*36.2]}//Refer to equation
      12.25 in chap 12
17
18 disp("Result")
19
20 disp("P(>10 msec)) = 2.5\% delay will be displayed by
     more than 10 msec ")
```

Digital Subscriber Access

Scilab code Exa 11.1 Program to determine the distance limit imposed by the need to echo E bit in a BRI ST interface

```
1
2 //Caption:Program to determine the distance limit
     imposed by the need to echo E bit in a BRI S/T
     interface
3
  //Example 11.1
6 //Page 501
  //Refer to figure 11.5 on page 500
10 disp('By seeing the figure, it can be seen that the
     minimum delay between a terminal transmitting D
     bit and receiving it back in the following E bit
     is seven bit times')
11
12 disp('At a 192 kbps data rate the duration of bit is
      5.2 usec. Thus, the total round trip propagation
      time is ')
13
```

```
14 7*5.2//usec
15
  disp ('Assuming no appreciable circuitry delays in
16
      the NT, ')
17
  c=3*10^8// speed of light
18
19
20 Lmax = (36.4*10^-6)*(1/3)*c
21
22 disp('Because round trip propagation involves both
      direction of transmission')
23
24 \, \text{Dmax} = (1/2) * \text{Lmax}
25
26 disp("Result")
27
  disp("Maximum length of wire(Lmax) = 3640 m = 3.64
      km")
29
30 disp("Maximum distance(Dmax)= 1820 m = 1.82 km")
```

Scilab code Exa 11.2 Program to determine the theoretical maximum data rate of a prefectly equalized voiceband modem

```
1
2 //Caption:Program to determine the theoretical
    maximum data rate of a prefectly equalized
    voiceband modem
3
4 //Example 11.2
5
6 //Page 513
7
8 disp('The signal-to-quantizing-noise ratio(SQR) is
    given in chap3 to be on the order of 36dB, which
```

```
corresponds to power ratio of 3981.')

disp('Using this value in Shannon theorem for the theoretical capacity of a channel yield,')

SNR=3981

C=3100*[log2(1+SNR)]

disp("Result")

disp("data rate = 37 kbps")
```

Traffic Analysis

Scilab code Exa 12.1 Program to calculate how often do two calls arrive with less than 1 milisec between them

```
1
  //Caption:Program to calculate how often do two
      calls arrive with less than 0.01 sec between them
4 //Example 12.1
  //Page 524
8
  disp('The average arrival rate is')
10 lam = (3600/10000) / arrivals per sec
11
12
  disp('From equation 12.2, the probability on arrival
       in 0.01-\sec interval is ')//equation on page 524
13
14 P0 = (\%e^-0.0278)
15
16 disp('Thus 2.7% arrivals occur withnin 0.01 sec of
     the pervious arrival. Since the arrival rate is
      2.78 arrivals per second, the rate of occurrence
```

```
of intervarrival time less than 0.01 sec is')

17

18 2.78*0.027

19

20 disp("Result")

21 disp("0.075 times/sec")
```

Scilab code Exa 12.2 Program to calculate the probability that eight or more arrivals occur in an chosen 30 sec

```
2 //Caption:Program to calculate the probability that
      eight or more arrivals occur in an chosen 30 sec
4 //Example 12.2
6 // Page 526
8 disp('The average number of arrivals in a 30 sec
      interval is,')
9
10 lamt = 4*(30/60)
11
  disp('The probability of eight or more arrivals is,'
12
13
14 P0=1
15
16 P1 = [(2^1)/(1)]
17
18 P2 = [(2^2)/(1*2)]
19
20 P3 = [(2^3)/(1*2*3)]
21
```

```
22 P4=[(2^4)/(1*2*3*4)]
23
24 P5=[(2^5)/(1*2*3*4*5)]
25
26 P6=[(2^6)/(1*2*3*4*5*6)]
27
28 P7=[(2^7)/(1*2*3*4*5*6*7)]
29
30 i=1-{(%e^-2)*[P0+P1+P2+P3+P4+P5+P6+P7]}
31
32 disp("Result")
33
34 disp("P(2) = 0.0011")
```

Scilab code Exa 12.3 Program to calculate the probability that a 1000 bit data block experiences exactly 4 errors while being transmitted over a link having error

```
//Caption:Program to calculate the probability that
    a 1000 bit data block experiences exactly 4
    errors while being transmitted over a link having
    10^-5 error rate

//Example 12.3

//Page 527

disp('Assuming inpendenterror, we can obtain the probability of exactly 4 errors directly from the Poisson distribution. The average number of errors is,')

lamt=[(10^3)*(10^-5)]
```

```
12 disp('Thus,')
13
14 P4={[(0.01^4)/(1*2*3*4)]*%e^-0.01}
15
16 disp("Result")
17
18 disp("P(4) = 4.125*10^-10")
```

Scilab code Exa 12.4 Program to calculate the percentage of total traffic carried by first five ckt and traffic carried by all other remaining

```
2 // Caption: Program to calculate the percentage of
      total traffic carried by first five ckt and
      traffic carried by all other remaining
3
4 //Example 12.4
6 //Page 529
  disp('The Traffic intensity of system is,')
10 \quad A = 1 * 2
11
  disp ('The raffic intensity carried by i active ckt
      is exactly i erlangs. Hence the traffic carried
      by 1st 5 ckt is,')
13
14 P1 = [(1*2^1)/(1)]
15
16 P2 = [(2*2^2)/(1*2)]
17
18 P3 = [(3*2^3)/(1*2*3)]
19
20 P4 = [(4*2^4)/(1*2*3*4)]
```

```
21
22 P5=[(5*2^5)/(1*2*3*4*5)]
23
24 A5={(%e^-2)*[P1+P2+P3+P4+P5]}
25
26 disp('All of remaining ckts carry,')
27
28 Ar=2-1.89
29
30 disp("Result")
31
32 disp("A(5) = 1.89 erlangs")
33
34 disp("A(remaining) = 0.11 erlangs")
```

Scilab code Exa 12.5 Program to calculate how much traffic can the trunk group carry

```
disp('Thus the carried traffic intensity is ')

N*op

disp('Since the blocking probability is 0.1, the maximum level of offered traaffic is,')

A=[19.2/(1-0.1)]

disp("Result")

disp("A = 21.3 erlangs")
```