Scilab Textbook Companion for Chemical Reactor Design by P. Harriott¹

> Created by Sneha R Iyer B-Tech Chemical Engineering Chemical Engineering SASTRA University ,Thanjavur College Teacher NA Cross-Checked by Spandana

> > May 24, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Chemical Reactor Design Author: P. Harriott Publisher: CRC Press Edition: 1 Year: 2002 ISBN: 978-0824708818 Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	4
1	Homogeneous Kinetics	5
2	Kinetic Models for Heterogeneous Reactions	14
3	Ideal Reactors	18
4	Diffusion and Reaction in Porous Catalysts	38
5	Heat and Mass Transfer in Reactors	51
6	Nonideal Flow	60
7	Gas Liquid Reactions	71
8	Multiphase Reactors	95
9	Fluidized Bed Reactors	103
10	Novel Reactors	107

List of Scilab Codes

Exa 1.4	Activation energy from packed bed data	5
Exa 1.5	Methods to determine km and vm	10
Exa 2.1	Effectiveness factor for solid catalyzed reaction	14
Exa 3.1	Time to reach desired conversion for bimolecular batch	
	reaction	18
Exa 3.2	Residence time and heat generation for four STR s in	
	series	19
Exa 3.3	Effect of temperature on yield	22
Exa 3.4	Volume of reactor for Gas Phase isothermal reaction .	25
Exa 3.5	Rate Equation to fit Initial Rate data	26
Exa 3.6	Optimum reaction temperature	30
Exa 3.7	Equilibrium temperature as a function of conversion and	
	optimum feed temperature	32
Exa 4.1	Diffusivity of Chlorine and tortuosity in catalyst pellet	38
Exa 4.2	Effective diffusivity of O2 in air	41
Exa 4.3	Influence of Pore diffusion over rate	43
Exa 4.4	Effectiveness factor for solid catalyzed reaction	45
Exa 4.5	The optimum pore size distribution for a spherical pellet	47
Exa 5.1	Temperature Profiles for tubular reactor	51
Exa 5.2	Maximum internal temperature difference	54
Exa 5.3	Overall heat transfer coefficients and radial average bed	
	temperature for packed bed reactor	55
$Exa \ 6.1$	Power Consumption at 300 rpm speed of stirrer and	
	blending time	60
Exa 6.2	Effect of diffusion on conversion for laminar flow	63
Exa 6.3	Effect of Axial dispersion and length on conversion	65
Exa 6.4	Conversion in packed bed for same superficial velocity	67

Exa 7.1	Overall Reaction Rate Coefficient Percent Resistance	
	Reaction Volume and Reactor Size	71
Exa 7.2	The gradient for B in the liquid film	74
Exa 7.3	Overall mass transfer coefficient and percent resistance	75
Exa 7.4	Local selectivity due to mass transfer limitations	77
Exa 7.5	Maximum rate of CO absorption and Dimensions of	
	Bubble Column Reactor	79
Exa 7.6	Fraction of O2 Power of agitator kLa and average dis-	
	solved oxygen concentration	84
Exa 7.7	Apparent value of kLa regime of operation and selectiv-	
	ity dependency on gas mixing	90
Exa 8.1	Gas absorption coefficient and fraction of overall resis-	
	tance	95
Exa 8.2	External Mass Transfer resistance	97
Exa 8.3	Apparent rate constant and consistency	99
Exa 9.1	Model II Volumetric Mass Transfer Coefficient K	103
Exa 9.2	Model II Fraction unconverted naphthalene	105
Exa 10.1	Fraction unconverted naphthalene based on model II $% \mathcal{A}$.	107
Exa 10.2	Conversion as a function of No of Gauzes	109

Chapter 1

Homogeneous Kinetics

Scilab code Exa 1.4 Activation energy from packed bed data

```
1 //Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc., USA, pp 436.
2 //Chapter-1 Ex1.4 Pg No. 23
3 //Title: Activation energy from packed bed data
4 //
```

```
14 //Basis is 1mol of feed A(Furfural) X moles reacted
      to form Furfuran and CO
15 x=(T-330)./130;//Conversion based on fractional
      temperature rise
16 n=length (T); //6 moles of steam per mole of Furfural
       is used to decrease temperature rise in the bed
  P_mol=x+7; // Total No. of moles in product stream
17
18 for i=1:(n-1)
19
       T_avg(i) = (T(i)+T(i+1))/2
       P_molavg(i) = (P_mol(i)+P_mol(i+1))/2
20
       delta_L(i)=L(i+1)-L(i)
21
22
       k_1(i) = ((P_molavg(i))/delta_L(i)) * log((1-x(i)))
          /(1-x(i+1)))
       u1(i)=(1/(T_avg(i)+273.15));
23
24 end
25 v1 = (log(k_1));
26 \quad i = length(u1);
27 X1=[u1 ones(i,1)];
28 result1= X1 \setminus v1;
29 k_1_dash=exp(result1(2,1));
30 E1=(-R)*(result1(1,1));
31
32 / OUTPUT (Ex1.4.a)
33 //Console Output
34 mprintf('\n OUTPUT Ex1.4.a');
35 mprintf('\n
      n')
36 mprintf('L \t \t T \t\t x \t\t T_average (7+x) ave
      \langle tk_1' \rangle
37 mprintf('\n(ft) \t \t ( C ) \t\t ( \t ( C ) \t
                                                         ')
38 mprintf(' \ n
      ')
39 for i=1:n-1
40 mprintf(' \ N\% f \ t \ \% f \ ', L(i+1), T(i+1), x(i+1))
41 mprintf('\t %f \t %f \t %f',T_avg(i),P_molavg(i),k_1
      (i))
```

```
42 \text{ end}
43 mprintf('\n\nThe activation energy from the slope =
      %f kcal/mol',E1 );
44
  45
46
47 // Title: II Order Reaction
48 //
49 //CALCULATION (Ex 1.4.b)
50 for i=1:(n-1)
       T_avg(i) = (T(i)+T(i+1))/2
51
       P_molavg(i) = (P_mol(i)+P_mol(i+1))/2
52
       delta_L(i)=L(i+1)-L(i)
53
       k_2(i) = ((P_molavg(i))/delta_L(i)) * ((x(i+1)-x(i)))
54
          /((1-x(i+1))*(1-x(i))))
       u2(i)=(1/(T_avg(i)+273.15));
55
56 \text{ end}
57 v2=(log(k_2));
58 plot(u1.*1000,v1,'o',u2.*1000,v2,'*');
59 xlabel("1000/T (K<sup>-1</sup>)");
60 ylabel("\ln k_1 or \ln k_2");
61 xtitle("ln k vs 1000/T");
62 legend('\ln k_1', '\ln k_2');
63 j = length(u2);
64 X2=[u2 ones(j,1)];
65 result2= X2 \setminus v2;
66 k_2_dash=exp(result2(2,1));
67 E2=(-R)*(result2(1,1));
68
69 / OUTPUT (Ex 1.4.b)
70 mprintf('\ N OUTPUT Ex1.4.b');
71 mprintf(' \ n
```

n ')

```
72 mprintf('L \t \t T \t\t x \t\t T_average (7+x) ave
      \langle tk_2' \rangle
73 mprintf('\n(ft) \t \t ( C ) \t\t ( C ) \t
                                                         ')
74 mprintf(' \ n
      ')
75 for i=1:n-1
76 mprintf(' n\%f \ t \%f \ t \%f \ ',L(i+1),T(i+1),x(i+1))
77 mprintf('\t \%f \t \%f \t \%f', T_avg(i), P_molavg(i), k_2
      (i))
78 end
79 mprintf('\n\nThe activation energy from the slope =
      \%f kcal/mol',E2 );
80
81 //FILE OUTPUT
82 fid= mopen('.\Chapter1-Ex4-Output.txt', 'w');
83 mfprintf(fid, '\n OUTPUT Ex1.4.a');
84 mfprintf(fid, ' \ n
      n')
85 mfprintf(fid,'L \t \t T \t\t x \t\t T_average t(7+x)
      ) ave \langle tk_1' \rangle
86 mfprintf(fid, '\n(ft) \t \t ( C ) \t\t \t ( C ) \
      t ')
87 mfprintf(fid, ' \ n
      ')
88 for i=1:n-1
89 mfprintf(fid, ^{n}f \ t \% f \ t \% f , L(i+1), T(i+1), x(i
      +1))
90 mfprintf(fid, '\t \%f \t \%f \t \%f', T_avg(i), P_molavg(i
      ),k_1(i))
91 end
92 mfprintf(fid, '\n\nThe activation energy from the
      slope =%f kcal/mol',E1 );
93 mfprintf(fid, ' \ n \ n
```

```
n ')
```

```
94 mfprintf(fid, '\n OUTPUT Ex1.4.b');
95 mfprintf(fid, ' \ n
        n ')
 96 mfprintf(fid,'L \t \t T \t\t x \t\t T_average t(7+x)
        ) ave \langle tk_2' \rangle
   mfprintf(fid, (h(ft) \setminus t \setminus t (C) \setminus t \setminus t (C) \setminus t \setminus t
 97
        t ')
 98 mfprintf(fid, ' \ n
        ')
99 for i=1:n-1
100 mfprintf(fid, ^{n}f \setminus t \% f \setminus t \% f ', L(i+1), T(i+1), x(i)
        +1))
101 mfprintf(fid, '\t \%f \t \%f \t \%f', T_avg(i), P_molavg(i
        ),k_2(i))
102 end
103 mfprintf(fid, '\n\nThe activation energy from the
        slope = \%f kcal/mol', E2 );
104 mclose(all);
105
106
```

```
END OF PROGRAM
```

- 108 // The value should be 452.5 and 4.955476 respectively instead of 455 and 18.2 as printed in the textbook.
- 109 //Hence there is a change in the activation energy obtained from the code
- 110 // The answer obtained is 21.3935 kcal/mol instead of 27 kcal/mol as reported in the textbook.
- 111 //Figure 1.8 is a plot between ln k_1 vs 1000/T instead of k_1 vs 1000/T as stated in the solution of Ex1.4.a

112 //

113	//Disclaimer (1	Ex1.4.b):	There	i s	a discrepan	ncy
	between the	computed	value o	of	activation	energy
	and value re	eported in	textbo	ok		

- 114 // Error could have been on similar lines as reported for example Ex.1.4.a
- 115 // Further, intermeidate values for Ex.1.4.b is not available/ reported in textbook and hence could not be compared.
- 116 //Figure 1.8 is a plot between ln k_2 vs 1000/T instead of k_2 vs 1000/T as stated in the solution of Ex1.4.b

Scilab code Exa 1.5 Methods to determine km and vm

```
1 // Harriot P., 2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc., USA, pp 436.
```

- 2 // Chapter 1 Ex1.5 Pg No. 29
- 3 //Title: Methods to determine km and vm
- 4 //

```
5 clear
```

- 6 clc
- 7 clf
- 8 //INPUT
- 9 S=[2;5;10;15]*10⁽⁻³⁾;//Concentration of substrate [HCO3]
- 10 r_reciprocal = [95;45;29;25] * 10⁽³⁾; // Reciprocal rates

```
(L-sec/mol)
11
12 //CALCULATION
13 //Plot 1 refer equation 1.24 Pg No.29
14 x1=(S).(-1);
15 y1=r_reciprocal;
16 scf(0)
17 plot(x1,y1*10^(-3), 'RED');
18 xlabel("1/[S]");
19 ylabel("(1/r)*10^{-3}");
20 xtitle("1/r versus 1/S");
21 p=length(x1);
22 X_1=[x1 ones(p,1)];
23 R1=X_1y1;
24 slope(1)=R1(1,1);
25 intercept(1)=R1(2,1);
26 v_m(1)=(1/(intercept(1))); //Maximum Reaction Rate(
     mol/L-sec)
27 k_m(1)=slope(1)*v_m(1);//Michaelis-Menton constant
28
29 //Plot 2 refer equation 1.25 Pg No.29
30 x2=S;
31 y2=S.*r_reciprocal;
32 scf(1)
33 plot(x2*10^(3),y2);
34 \text{ xlabel}("(S) * 10^3");
35 ylabel("(S)/r");
36 xtitle("(S)/r versus (S)");
37 q=length(x2);
38 X_2 = [x2 ones(q,1)];
39 R2=X_2y2;
40 slope(2)=R2(1,1);
41 intercept(2)=R2(2,1);
42 v_m(2)=1/(slope(2));//Maximum Reaction Rate (mol/L-
      sec)
43 k_m(2)=intercept(2)/(slope(2));//Michaelis-Menton
      constant
```

```
45
46
  //OUTPUT
  mprintf('\n
47
      ');
48 mprintf(' \ n
                   49 mprintf(' \ n
      ');
  i=1
50
                               t\%f, slope(i), slope(i
       mprintf('\n
                     Slope
51
          +1));
52
       mprintf('\n
                     Intercept
                                 t\%ft, intercept(i),
          intercept(i+1));
       mprintf('\n
                    Km (M)
                                  t\%f, k_m(i), k_m(i
53
          +1));
       mprintf('\n
                     Vm(mol/L-sec) %f\t%f',v_m(i),v_m(i
54
          +1));
55
  //FILE OUTPUT
56
57 fid= mopen('.\ Chapter1-Ex5-Output.txt', 'w');
58 mfprintf(fid, ' \ n
      ');
59 mfprintf(fid, ' \ n
                         t \quad tMethod_1 \quad tMethod_2 ;
60 mfprintf(fid, ' \ n
      ');
  i=1
61
       mfprintf(fid, '\n
                           Slope
                                     t\%ft\%f, slope(i),
62
          slope(i+1));
       mfprintf(fid, '\n
                                       t\%f t\%f', intercept
63
                           Intercept
          (i), intercept(i+1));
       mfprintf(fid, '\n
                          Km (M)
                                        \langle t\%f \rangle t\%f', k_m(i),
64
          k_m(i+1));
       mfprintf(fid, '\n
                           Vm(mol/L-sec) \%f t\%f', v_m(i),
65
          v_m(i+1));
66 mclose(fid);
```

68	//	
	END OF PROGRAM	
69	//Disclaimer: Least Square method is used	d to find
	the slope and intercept in this examp	le.
70	// Hence the values differ from the grap	hically
	obtained values of slope and intercept	in the

textbook.

Chapter 2

Kinetic Models for Heterogeneous Reactions

Scilab code Exa 2.1 Effectiveness factor for solid catalyzed reaction

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc. USA, pp 436.
2 // Chapter-2 Ex2.1 Pg No.52
3 // Title: Effectiveness factor for solid catalyzed
reaction
4 //
5 clear
6 clc
7 clf
8 //INPUT
9 // Case: I constant hydrogen pressure: P_H2= 2110
torr
10 P_B=[70 185 286]; // Benzene Pressure (torr)
```

```
11 r_1=1E-3 *[4.27 5.4 6.12]; //(mol/hr g) observed
      rates
12 P_H2_const=2110; // Constant Hydrogen Pressure (torr)
13
14
15 // Case: II Constant benzene pressure P_B_const=70
      torr
16 P_H2=[1050 2105 2988]; // Hydrogen Pressure (torr)
17 r_2=1E-3 * [3.81 4.27 4.5]; //(mol/hr g) observed
      rates
18 P_B_const=70; // Constant Benzene Pressure (torr)
19
20 //CALCULATION
21 // Case: I constant hydrogen pressure: P_H2= 2110
      torr
22
23 n = length(P_B)
24 for i=1:n
       Y_1(i) = (P_B(i) * P_H2_const/r_1(i))^{(1/3)};
25
26
       X_1(i) = P_B(i);
27 \text{ end}
28 coefs_I=regress(X_1', Y_1');
29 intercept_1=coefs_I(1)
30 slope_1=coefs_I(2)
31
32 // Case: II Constant benzene pressure P_B_const=70
      torr
33 m=length(P_H2)
34 for i=1:n
       Y_2(i) = (P_B_const*P_H2(i)/r_2(i))^{(1/3)};
35
       X_2(i) = (P_H2(i))^{0.5};
36
37 end
38 coefs_II=regress(X_2',Y_2');
39 intercept_2=coefs_II(1);
40 slope_2=coefs_II(2);
41 coef_1=(intercept_1)^0.5;
42 coef_2=(slope_1*slope_2)^(1/2)*(slope_1/slope_2)*
      intercept_1;
```

```
44 function y=funct1(K_H2)
       y=coef_2*K_H2^0.5-coef_1*K_H2^(4/3)-1
45
46 endfunction
47
48 [K_H2_res]=fsolve(0,funct1);
49
50 K_B=K_H2_res^{(4/3)}*(slope_1/slope_2);
51
52 \ k=(0.635)^{(-1/3)} \times K_B^{2/K}_{H2}_{res};
53 scf(0)
54 plot(X_1,Y_1, '-*-')
55 xtitle('Benzene Hydrogenation(a) Variable benzene
      pressure ')
56 xlabel("P_B (torr)");
57 ylabel("(P_H2 P_B/10^3 r)^{(1/3)}");
58 legend('T=67.6 C');
59
60 scf(1)
61 plot(X_2,Y_2, '-*-')
62 xtitle('Benzene Hydrogenation(b) Variable hydrogen
      pressure ')
63 xlabel("P_H2 (torr)");
64 ylabel("(P_H2 P_B/10^3 r)^{(1/3)}");
65 legend('T=67.6 C');
66
67 //OUTPUT
68 mprintf('\n Solving for the three parameters gives')
69 mprintf('\n K_H2 = \%f torr^-1', K_H2_res);
70 mprintf('\n K_B = \%f torr^-1', K_B);
71 mprintf('\ k = \%E',k);
72
73 //FILE OUTPUT
74 fid= mopen('.\Chapter2-Ex1-Output.txt', 'w');
75 mfprintf(fid, '\n Solving for the three parameters
      gives ');
76 mfprintf(fid, '\n K_H2 = \%f torr^-1', K_H2_res);
```

```
77 mfprintf(fid, '\n K_B = %f torr^-1',K_B);
78 mfprintf(fid, '\n k = %E ',k);
79 mclose(fid);
80
81 //
```

- 82 // Disclaimer: Page 53 There is a typo in the equation for Y obtained for Model case I: Constant hydrogen pressure and variable benzene pressure formulation
- 83 // From Fig 2.7(a), It is evident that for $P_H2 = 2110$ torr, three experimental points are considered for linear regression. However, from table 2.1, only two points corresponds to $P_H2 = 2110$ torr. In comparison with Fig. 2.7(a), the table value corresponding to $P_H2 = 2105$ is also read as $P_H2 = 2110$.
- 84 // Therefore the values of the constants are different from that obtained in the textbook. Also regression is used to obtain the values of slopes and intercept whereas the textbook considers graphical method for the computation of the codes

Chapter 3

Ideal Reactors

Scilab code Exa 3.1 Time to reach desired conversion for bimolecular batch reaction

- 1 // Harriot P., 2003, Chemical Reactor Design (I-Edition)
 Marcel Dekker, Inc., USA, pp 436.
- 2 //Chapter-1 Ex3.1 Pg No.84

3 // Title: Time to reach desired conversion for bimolecular batch reaction

- 4 //
- 5 clear
- 6 clc
- 7 //INPUT
- 8 C_AO=1;//Assuming 1mol basis for the limiting reactant
- 9 C_B0_old=1.02; //2% Excess of reactant B is supplied
- 10 R_old=C_B0_old/C_A0;//Refer equation 3.7 Pg No.
- 11 X_A=0.995; // Conversion interms of limiting reactant

```
13 C_B0_new=1.05; //5% Excess of reactant B
14 R_new=C_BO_new/C_AO; // Refer equation 3.7 Pg No.83
15
16 //CALCULATION
17 k=(\log((R_old-X_A)/(R_old*(1-X_A)))/((R_old-1)*t_old))
       *C_A0));
  t_{new=log}((R_{new}-X_A)/(R_{new}*(1-X_A)))/((R_{new}-1)*k*)
18
     C_AO);
19
20 //OUTPUT
21 mprintf('\nTime required to achieve required
      conversion for 5%% excess of B= %f hr',t_new);
22
23 //FILE OUTPUT
24 fid=mopen('.\Chapter3-Ex1-Output.txt', 'w');
25 mfprintf(fid,'\nTime required to achieve required
      conversion for 5%% excess of B= %f hr',t_new);
26 mclose(fid);
27 / =
     END OF PROGRAM
```

Scilab code Exa 3.2 Residence time and heat generation for four STR s in series

- 1 //Harriot P.,2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc., USA, pp 436.
- 2 //Chapter-3 Ex3.2 Pg No. 96
- 3 // Title: Residence time and heat generation for four STR's in series
- 4 //

5 clear

```
6 clc
7 // COMMON INPUT
8 X_A=0.95; // Given conversion
9 t_batch=6; //Batch time to reach the desired
      conversion
10 N=4//No.of reactors in series
11 X_final=X_A;
12
13 / CALCULATION (Ex3.2.a)
14 k=\log((1/(1-X_A)))/t_batch;//Refer equation 3.29 Pg
     No. 90
15 t_1=((1/(1-X_A))^{(1/N)-1})/k; //Refer equation 3.40 Pg
       No. 94
16 t_Tot=N*t_1;
17
18 / OUTPUT (Ex3.2.a)
19 mprintf('\ OUTPUT Ex3.2.a');
20 mprintf(' \ n
      ');
21 mprintf('\nThe total residence time of the four
      reactors in series = %f hr',t_Tot);
22
23 //
24
25 //Title:Heat generation in CSTR in Series
26 //
27 / CALCULATION (Ex3.2.b)
28 t_1=((1/(1-X_final))^(1/N)-1)/k;//Refer equation
      3.40 Pg No. 94
29 for i=1:N
       X(i)=1-(1/(1+k*t_1)^{(i)});
30
31 end
32
```

```
21
```

```
1
```

```
33 delQ_by_Q(1)=(X(1))/X_final; // Ratio of heat
      generated in 1st reactor
34 \text{ for } i=1:N-1
        delQ_by_Q(i+1)=(X(i+1)-X(i))/X_final; // Ratio
35
           of heat generated in 2nd, 3rd and 4th
           reactors
36 end
37
38 / OUTPUT (Ex3.2.b)
39 mprintf(' \ n
      n ')
40 mprintf('\ OUTPUT Ex3.2.b');
41 mprintf(' \ n
      '):
42 mprintf('\nReactor vessel \t Conversion \t Fraction
      of total heat released \langle n' \rangle
43 mprintf(' \ n
      ')
44 for i=1:N
       mprintf('\n %d \t \t \%0.3 \text{ f} \t \t \%0.3 \text{ f} \n',i,
45
          X(i),delQ_by_Q(i))
46
  end
47
48 //FILE OUTPUT
49 fid=mopen('.\Chapter3-Ex2-Output.txt', 'w');
50 mfprintf(fid, '\n OUTPUT Ex3.2.a');
51 mfprintf(fid, ' \ n
      _
      ');
52 mfprintf(fid, '\nThe total residence time of the four
       reactors in series = %f hr',t_Tot);
        mfprintf(fid, ' \ n
53
           ')
        mfprintf(fid, '\nReactor vessel \t Conversion \t
54
```

```
Fraction of total heat released \n')
       mfprintf(fid, '\n
55
          ')
56 for i=1:N
       mfprintf(fid, '\n %d \t \t \%0.3 f \t \t \%0.3 f \
57
          n',i,X(i),delQ_by_Q(i))
58
  end
59
  mclose(fid);
60
61
62 //
     END OF PROGRAM⊨
```

Scilab code Exa 3.3 Effect of temperature on yield

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc., USA, pp 436.
2 // Chapter-3 Ex3.3 Pg No. 97
3 // Title: Effect of temperature on yield
4 //
```

```
5 clear
6 clc
7 //INPUT
8 C_A0=1;//Initial concentration of A
9 C_B0=5;//Initial concentration of B
10 E1=15;//Activation energy for first reaction(kcal)
11 E2=20;//Activation energy for second reaction(kcal)
12 X_A=0.88;// Total conversion of reactant A
13 Y=0.81;//Yield for the reaction to produce C
```

```
14 R=1.987; //Gas Constant(cal/K^-1 mol^-1)
15 T_0=350; // Temperature (K)
16
17 //CALCULATION
18 //Assuming first order by taking concentration of B
     constant since B is in Excess
19 C_A= C_AO*(1-X_A); // Unreacted amount of A
20 C_B=C_BO-Y; // Unreacted amount of B
21 k1_plus_k2_t=(X_A/(1-X_A));
22 S=Y/X_A; //At 350K
23 k1_by_k2=11.57;
24 k1_plus_k2_by_k2=k1_by_k2+1; //Refer Ex3.3 for the
     coded equations
25 k2_t=k1_plus_k2_t/k1_plus_k2_by_k2;
26 k1_t=k1_plus_k2_t-k2_t;
27 T=345;
28 for i=1:7
29 T=T+5;
30 \text{ Temp(i)=T};
31 k1_dash_t(i)=k1_t*exp(((E1*1000/R)*((1/T_0)-(1/T))))
     ;//Arrhenius law
32 k2_dash_t(i)=k2_t*exp(((E2*1000/R)*((1/T_0)-(1/T))))
     ;//Arrhenius law
33 k1_plus_k2_t_new(i)=k1_dash_t(i)+k2_dash_t(i);
34 X_A_new(i)=k1_plus_k2_t_new(i)/(1+k1_plus_k2_t_new(i
     ));
35 S_new(i)=((k1_dash_t(i)/k2_dash_t(i))/(1+(k1_dash_t(
     i)/k2_dash_t(i))));
36 \quad Y_{new}(i) = S_{new}(i) * X_A_{new}(i);
37 end
38
39 //OUTPUT
                                                  =');
40 mprintf('=
41 mprintf('\ T \ T \ X_A \ T \ Y');
42 mprintf('\ K \ t (-) \ t (-) \ t (-)');
43 mprintf('\n=
                                                   =');
44 for i=1:7
       45
```

```
Temp(i),X_A_new(i),S_new(i),Y_new(i));
46 \text{ end}
47
     maximum=max(Y_new);
     mprintf('\n\t\nThe maximum value of yield is %f ',
48
        maximum);
49
     mprintf('\n\t\nHigh yield is obtained between 365K
         to 375K');
50
51 //FILE OUTPUT
52 fid=mopen('.\Chapter3-Ex3-Output.txt', 'w');
53 mfprintf(fid,'
                                             ____');
54 mfprintf(fid, '\n\t T \t X_A \t S \t Y');
55 mfprintf(fid, '\n\t K \t (-) \t (-) \t (-) ');
56 mfprintf(fid, ' \ n
                                             ___');
57 for i=1:7
       mfprintf(fid, '\n\t \%d \t \%0.3 f \t \%0.3 f \t \%0.3 f
58
          ',Temp(i),X_A_new(i),S_new(i),Y_new(i));
59
  end
     maximum=max(Y_new);
60
     mfprintf(fid, '\n\t\nThe maximum value of yield is
61
        %f ',maximum);
     mfprintf(fid, '\n\t\nHigh yield is obtained between
62
         365K to 375K');
63
     mclose(fid);
64 //
     END OF PROGRAM
```

```
65 //Disclaimer:Refer Ex3.3 in the textbook The
Arrhenius law equation has a typo error.
Exponential term missing in the textbook
```

Scilab code Exa 3.4 Volume of reactor for Gas Phase isothermal reaction

- 1 // Harriot P., 2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc., USA, pp 436.
- 2 //Chapter-3 Ex3.4 Pg No. 101
- 3 // Title: Volume of reactor for Gas Phase isothermal reaction
- 4 //

15

16

18

```
5 clear
6 clc
7 //INPUT
8 //First Order Reaction
9 //Basis: 1mol of feed
10 k=0.45; //Rate constant of first order reaction (s-1)
11 v0=120; //Volumetric flow rate(cm3/s)
12 C_AO=0.8;//Initial amount of reactant A (mol)
13 X_A=0.95; // Conversion in terms of reactant A
14 C_inert=0.2; // Concentration of inert (Nitrogen) in
     feed
  //CALCULATION
17 E_A = ((2*C_A0+C_inert)-(C_A0+C_inert))/(C_A0+C_inert)
     ;//Volume fraction
  Tot_mol=(C_A0+C_inert)+(E_A); // Total No. of moles
19 V=v0*((-(E_A)*X_A)+Tot_mol*(log(1/(1-X_A))))/(k);//
     Refer Performance Equation equation 3.44 and 3.42
       in Pg No. 100
20 V_l=V*10^-3; //Volume of reactor in liters
22 //OUTPUT
```

```
23 mprintf('\n\tThe Volume of the reactor required for
the given conversion is %.0f cm3 or %0.2f liters'
,V,V_l);
24
25 //FILE OUTPUT
26 fid= mopen('.\Chapter3-Ex4-Output.txt','w');
27 mfprintf(fid,'\n\tThe Volume of the reactor required
for the given conversion is %.0f cm3 or %0.2f
liters',V,V_l);
28 mclose(fid);
29 //
END OF PROGRAM
```

Scilab code Exa 3.5 Rate Equation to fit Initial Rate data

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
                ) Marcel Dekker, Inc.,USA, pp 436.
2 // Chapter -3 Ex3.5 Pg No. 104
3 // Title: Rate Equation to fit Initial Rate data
4 //
5 clear
6 clc
7 clf()
8 //INPUT (Ex3.5.1)
9 // Initial Rate Data
10 B_by_A= [5 7 10 20 37]; //B/A Mol Ratio
11 r_0=[75 65 50 33 18]; //Rate (mol/hr g)
```

```
12
13 / CALCULATION (Ex3.5.1)
14 //Assuming Eley Rideal Mechanism for the benzene
      alkylation with propylene
  for i=1:5
15
16
       C_B(i) = (B_by_A(i)/(1+B_by_A(i))); //In \text{ terms of}
          Mol Fraaction
17
       C_A(i) = (1/(1+B_by_A(i)));
       CA_CB(i) = C_B(i) * C_A(i);
18
       C_by_r(i) = CA_CB(i)/r_0(i);
19
20 end
21 coefs=regress(C_A,C_by_r);//The equation ((C_B*C_A)/
      r_0 = 1/(k * K_A) + (C_A/k)
22 scf(0)
23 plot(C_A,C_by_r, '*');
24 xtitle('Test of Eley-Rideal model for benzene
      alkylation ');
25 xlabel(' CA , Mol Fraction');
26 ylabel('CA CB/r_0');
27 intercept=coefs(1);
28 slope=coefs(2);
29 K_A=slope/intercept;
30 \text{ k=1/(slope)};
31 K_A_k = k * K_A;
32
33 / OUTPUT (Ex3.5.1)
34 mprintf('\n OUTPUT Ex3.5.1');
35 mprintf('\n
      ')
36 mprintf('\nThe rate equation for Eley-Ridely
      Mechanism is: \ r = \%0.0 \, fC_A \, C_B / (1 + \%0.2 \, fC_A)',
      K_A_k, K_A;
37
```

```
39 //Title:Conversion as a function of Space velocity
```

40 //

```
41 //INPUT (Ex3.5.2)
42 x = [0.16 0.31 0.40 0.75];
43 Exp_Inverse_WHSV=(10<sup>-3</sup>)*[4 8.2 17 39];//Weight
      Hourly Space Velocity
44 Feed_ratio=10;
45
46 //CALCULATION (Ex3.5.2)
47 //The integrated rate equation in terms of
      conversion \ln(1/(1-X)) + 0.236X = 60.4/WHSV (Page no
      . 106)
48 function [y]=integrated_rate_eqn(x0)
       y = \log(1 . / (1 - x0)) + 0.236. * x0 - 60.4.*
49
          Exp_Inverse_WHSV
50 endfunction
51
52 n = length(x)
53 x0=0.9*ones(1,n); // Provide guess value for
      conversion
54 [x_predicted]=fsolve(x0, integrated_rate_eqn, 1d-15);
      // Using fsolve to determine conversion from
      integrated rate expression for each operating
     WHSV
55
56 \, \mathrm{scf}(1)
57 plot(Exp_Inverse_WHSV,x, '*', Exp_Inverse_WHSV,
      x_predicted, '--- ')
58 xtitle('Integral analysis', 'Inverse of WHSV', '
      Conversion ')
59 legend('Experimental', 'Predicted')
60
61 / OUTPUT (Ex3.5.2)
62 //Console Output
63 mprintf('\n
```

```
n');
```

```
64 mprintf('\ OUTPUT Ex3.5.2');
65 mprintf('\n Predicted and Experimental Conversion
      Values ')
66 mprintf('\n
      ')
67 mprintf(' n10^3/WHSV tX_experimental tX_predicted')
68 mprintf('\n
      ')
69 for i=1:n
       mprintf('n \%0.2 f t t\%0.2 f t \%0.2 f',
70
          Exp_Inverse_WHSV(i)*10^3,x(i),x_predicted(i))
71 end
72
73 //FILE OUTPUT
74 fid= mopen('.\Chapter3-Ex5-Output.txt', 'w');
75 mfprintf(fid, '\n OUTPUT Ex3.5.1 ');
76 mprintf(' \ n
      ')
77 mfprintf(fid, '\nThe rate equation for Eley-Ridely
      Mechanism is: \ r = \% 0.0 \, fC_A \, C_B / (1 + \% 0.2 \, fC_A)',
      K_A_k, K_A);
78 mfprintf(fid, ' \ n
      n ')
79 mfprintf(fid, '\n OUTPUT Ex3.5.2');
80 mfprintf(fid, '\n Predicted and Experimental
      Conversion Values')
81 mfprintf(fid, ' \ n
      _
      ')
82 mfprintf(fid, ' n10^3/WHSV tX_experimental 
      tX_predicted ')
83 mfprintf(fid, ' \ n
      ')
```

```
84 for i=1:n
     mfprintf(fid, \ln \%0.2 \text{ f} \times t\%0.2 \text{ f} \cdot t\%0.2 \text{ f}
85
        Exp_Inverse_WHSV(i)*10^3,x(i),x_predicted(i))
86 end
87 mclose(fid)
88
                                                      =END OF
89 //=
      PROGRAM=
  //Disclaimer:Regression method is used to find the
90
      slope and intercept in Ex3.5.2
91 // Hence the rate equation differ from the
      graphically obtained values of slope and
      intercept in the textbook.
```

Scilab code Exa 3.6 Optimum reaction temperature

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc., USA, pp 436.
2 // Chapter-3 Ex3.6 Pg No. 114
3 // Title: Optimum reaction temperature
4 //
```

```
5 clear
6 clc
7 //INPUT
8 del_H=-20*10^3;//Heat of reaction(cal)
9 T_eq=[500 700];//Equivalent temperatures (K)
10 R=1.987;//Gas Constant (cal/mol K)
11 E2_by_E1=2;//Ratio of activation energy
12
13 //CALCULATION
14 T_opt(1)=T_eq(1)/(1+(log(E2_by_E1)*(R/(-del_H)))*
```

```
T_eq(1); // Refer equation 3.63 Pg No. 113
15 T_opt(2)=T_eq(2)/(1+(log(E2_by_E1)*(R/(-del_H)))*
      T_eq(2));
16 delta_T(1) = T_eq(1) - T_opt(1);
17 delta_T(2)=T_eq(2)-T_opt(2);
18
19
   //OUTPUT
20
                   \setminus t
   mprintf('\n
                       \t Temperature_1\t Temperature_2
21
       ');
  mprintf('\n
22
                   \ t
                          \setminus t
                                              ____');
23 mprintf(' \ln(T_eq - T_opt)(K): t\%0.0 f
                                                         t t 0.0 f
       ',delta_T(1),delta_T(2));
                    T_{opt}(K) : t \ t\%0.0 \ f \ t\%0.0 \ f', T_{opt}
24 mprintf(' \ n
       (1),T_opt(2));
25
26 fid= mopen('.\Chapter3-Ex6-Output.txt', w');
27 mfprintf(fid, ' \ n
                          \setminus t
                               t Temperature_1 t
                          ');
       Temperature_2
  mfprintf(fid, '\n
                         \ \ t
28
                                \setminus t
                                                =');
   mfprintf(fid, ' \ln(T_eq - T_opt)(K):
                                                \t%0.0 f
                                                               \langle t \rangle
29
      t\%0.0 f', delta_T(1), delta_T(2));
30 mfprintf(fid, '\n T_{opt}(K) : \langle t \rangle \langle t\%0.0 f \rangle t \langle t\%0.0 f',
       T_opt(1), T_opt(2));
31
  mclose(fid);
32
33 //
```

END OF PROGRAM

34	//]	Disclaimer: There is an arithmetic error in the
		optimum temperatures obtained in the textbook.
35	//	Based on the values $(T_eq - T_opt) = 17$ and (T_eq)
		$- T_{opt})2=32$ the optimum temperatures obtained
26	11	T opt1-483 K and T opt2-668 K respectively
30	//	1_0pt1=405 K and 1_0pt2=000 K respectively.

Scilab code Exa 3.7 Equilibrium temperature as a function of conversion and optimum feed temperature

- 1 // Harriot P,2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc. USA, pp 436
- 2 // Chapter 3 Ex3.7 Pg No. 115

```
3 // Title: Equilibrium temperature as a function of conversion and Optimum Feed Temperature
```

4 //

```
5 clear
6 clc
7 // COMMON INPUT
8 P_opt=1.5; //(atm) Operating pressure of first
     converter
9 x=[0.5 0.6 0.7 0.8 0.9 0.95]; // Conversion of SO2
10 k=[2E-06 5.1E-06 10.3E-06 18E-06 27E-06 37.5E-06 48E
     -06 59E-06 69E-06 77E-06] ; //Rate Constant (gmol
     /g cat sec atm)
11 T=420:20:600; // Temperature ( C)
12 X=0.68;
13 T_F=700; //Feed Temperature (K)
14 C_pi_800=[12.53 18.61 8.06 7.51];
15 F=100; // (mol) amount of feed
16 delta_H_700=-23270; //(cal/mol)
17 percent_SO2_f=11; // (%) Percentage of SO2 in feed
18
19
20 //CALCULATION (Ex3.7.a)
```

```
21 n = length(x);
22 m=length(k);
23 for i=1:n
24
       K_eq(i) = ((x(i)/(1-x(i))))*((100-5.5*x(i)))
          /(10-5.5*x(i)))^0.5*(1/P_opt)^0.5;
25
       T_eq(i) = (11412/(log(K_eq(i))+10.771));
       P_02(i) = (10*(10-5.5*x(i))*P_opt)/(100-5.5*x(i));
26
       P_SO3(i)=(11*x(i)*P_opt)/(100-5.5*x(i));
27
       P_SO2(i)=(11*(1-x(i))*P_opt)/(100-5.5*x(i));
28
29 end
30
31 for i=1:n
32
       for j=1:m
33
           r(j,i)=k(j)*(P_SO2(i)/P_SO3(i))^0.5*(P_O2(i)
              -(P_SO3(i)/(P_SO2(i)*K_eq(i)))^2)
34
       end
       r_max(i) = max(r(j,i));
35
36 end
37 clf()
38 scf(0)
39 plot(x,T_eq-273, '*');
40 xtitle('Temperature in Stage 1 of an SO2 converter')
      ;
41 xlabel('x, SO2 Conversion');
42 ylabel('Temperature, C');
43
44 //CALCULATION (Ex3.7.b)
45 n_SO2=F*percent_SO2_f*10^-2*(1-X);
46 n_SO3=F*percent_SO2_f*10^-2*X;
47 n_02 = (10 - 5.5 \times X);
48 n_N2 = 79;
49 sigma_n_C_pi=n_S02*C_pi_800(1)+n_S03*C_pi_800(2)+
      n_02*C_pi_800(3)+n_N2*C_pi_800(4);
50 Temp_change=(F*percent_SO2_f*10^(-2)*X*(-1)*
      delta_H_700)/sigma_n_C_pi;//Refer equation 3.60
      Pg No.110
51 mprintf('\nHeat Capacity evaluated at 800 K :%0.0f (
      cal/ C )',sigma_n_C_pi);
```

```
52 mprintf('\nTemperature Change to carry out the
reaction at T_F,\nusing the energy to heat the
product gas :%0.0 f C",Temp_change);
```

```
53 //From graphical procedure (Figure 3.19 ,Pg No.118)
the final temperature is obtained as 410 C
```

54 $T_F = 410; //(C)$ Final temperature

```
55 //From Figure 3.19 ,Pg No.118 temperature for corresponding conversion is obtained
```

- 56 X₋stage = [0.1; 0.2; 0.3; 0.4; 0.5; 0.6]
- 57 $T_{stage} = [441; 470; 500; 540; 565; 580]$
- 58 m=length (X_stage);
- 59 for i = 1:m

60
$$K_eq(i) = \exp((11412/T_stage(i)) - 10.771);$$

61 end

66
$$P_{-}O2(i) = 10*(10-5.5*X_stage(i))*P_{-}opt/(100-5.5*)$$

$$\begin{array}{c} \text{X}_\text{stage(i))} \\ \text{67} \qquad \text{r(i)}=k(i)*(P_\text{SO2(i)}/P_\text{SO3(i))}^{0.5*(P_\text{O2(i)}-(i))} \\ P_\text{SO3(i)}/(P_\text{SO2(i)}*K_\text{eq(i)}))^{2}*10^{6}; \end{array}$$

68
$$inverse_r(i) = (1/r(i));$$

69 end

```
70 \operatorname{scf}(1)
```

```
72 xtitle ('1/r vs x', 'X (conversion)', '10^{-6}/r');
```

```
73
74
```

```
75 //OUTPUT (Ex3.7.a)
```

```
76 mprintf('n \in OUTPUT Ex3.7.a');
```

```
77 mprintf('\n
```

```
');
```
```
78 mprintf('\ln X \ tPhi \ t \ tT_eq \ tT_eq \ tr_max');
 79 mprintf(' n - t(atm^{-0.5}) t(K) t(C) t(gmol/g cat
        sec)');
80 mprintf('\n
        ');
81 for i=1:n-1
         mprintf ( '\n \%0.2 \text{ f} \ t\%0.2 \text{ f} \ t\%0.0 \text{ f} \ t\%0.0 \text{ f} \ t\%0.6 \text{ E}
82
            ',x(i),K_eq(i),T_eq(i),T_eq(i)-273,r_max(i));
83
   end
84 mprintf('n \% 0.2 f t \% 0.2 f t \% 0.0 f t \% 0.0 f t \% 0.6 E', x
       (n), K_{eq}(n), T_{eq}(n), T_{eq}(n) - 273, r_{max}(n));
85
86 //OUTPUT (Ex3.7.b)
87 mprintf('\n\n OUTPUT Ex3.7.b');
88 mprintf(' \ n
        ');
     mprintf('\n
89
                                                           =');
90
     mprintf('\ln 10^{-6}/r \times tX (conversion)');
     mprintf('\n (gmol/g cat, s) \setminus t(-)');
91
     mprintf(' \setminus n
92
                                                           ='):
93
     for i=1:m
94
          mprintf('\ln \%0.2 f \setminus t \setminus t\%0.2 f', inverse_r(i),
             X_stage(i));
95
     end
     mprintf('\nFrom graphical procedure (1/r vs x) the
96
        optimum temperature obtained is T_opt: 412 C');
97
98 // FILE OUTPUT
99 fid= mopen('.\Chapter3-Ex7-Output.txt', 'w');
100 mfprintf(fid, '\nHeat Capacity evaluated at 800 K :%0
        .0f (cal/ C)',sigma_n_C_pi);
101 mfprintf(fid, '\nTemperature Change to carry out the
       reaction at T_F, nusing the energy to heat the
       product gas :%0.0f C ",Temp_change);
```

```
102 mfprintf(fid , '\n OUTPUT Ex3.7.a');
103 mfprintf(fid, ' \ n
                                    ');
104 mfprintf(fid, '\n X\tPhi\t\tT_eq\tT_eq\t\tr_max');
105 mfprintf(fid, 'n - t(atm^{-0.5}) t(K) t(C) t(gmol/
                                  g cat sec)');
106 mfprintf(fid, ' \ n
                                    ');
107 for i=1:n-1
                                          mfprintf(fid, '\n \%0.2 \text{ f} \times \%0.0 \text{ f} 
108
                                                        t\%0.6E', x(i), K_eq(i), T_eq(i), T_eq(i)-273,
                                                        r_max(i));
109 end
110 mfprintf(fid, '\n \%0.2 \text{ f} t\%0.2 \text{ f} t\%0.0 \text{ f} t\%0.0 \text{ f} t\%0
                                   .6E', x(n), K_eq(n), T_eq(n), T_eq(n) - 273, r_max(n));
111 mfprintf(fid, ' n n  OUTPUT Ex3.7.b');
112 mfprintf(fid, ' \ n
                                    ');
                          mfprintf(fid, '\n
113
                                                                                                                                                                                                                                                                  ____');
                          mfprintf(fid, \sqrt{n} 10^{-6}/r tX (conversion);
114
                         mfprintf(fid, '\n (gmol/g \text{ cat}, s) \setminus t(-)');
115
                          mfprintf(fid, '\n
116
                                                                                                                                                                                                                                                                               =');
117
                          for i=1:m
118
                                               mfprintf(fid, '\n \%0.2 \text{ f} \setminus t \setminus t\%0.2 \text{ f}', inverse_r(i)
                                                               ,X_stage(i));
119
                          end
                          mfprintf(fid, '\nFrom graphical procedure (1/r \text{ vs } x)
120
                                               the optimum temperature obtained is T_opt: 412
                                               C ');
                          mclose(fid);
121
122
123
```

END OF PROGRAM

124 // Disclaimer: The optimum temperature for each conversion is found by trial at maximum rate and the kinetic data in the textbook is not sufficient to calculate the optimum temperature in the code.

Chapter 4

Diffusion and Reaction in Porous Catalysts

Scilab code Exa 4.1 Diffusivity of Chlorine and tortuosity in catalyst pellet

1 // Harriot P.,2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc., USA, pp 436. 2 // Chapter-4 Ex4.1 Pg No. 135 3 // Title: Diffusivity of Chlorine and tortuosity in catalyst pellet 4 //

```
5 clear
6 clc
7
8 // COMMON INPUT
9 S_g=235;//Total surface per gram (m2/g)
10 V_g=0.29E-6;//Pore volume per gram (cm3/g)
11 rho_p=1.41;//Density of particle (g/cm3)
12 D_He=0.0065;//Effective diffusivity of He (cm2/sec)
```

```
13 D_AB=0.73; // at 1atm and 298K
14 M_He=4; // Molecular weight of He
15 M_Cl2=70.09; // Molecular weight of Cl2
16 T_ref=293; // Reference temperature
17 T_degC=300;
18 T_01=T_degC+273; // Reaction temperature (K) (Ex4.1.a)
19 T_02=298; // Operating temperature (Ex4.1.b)
20 T_03=573; // operating temperature (Ex4.1.c)
21 P_ref=1; // Reference pressure
22 D_Cl2_CH4=0.15; // at 1 atm 273K
23 P=15; //operating pressure
24 //tau=1.25;//From value calculated in Ex4.1.b Pg. No
      . 136
25
26
27 / CALCULATION (Ex4.1.a)
28 r_bar=2*V_g/S_g; //Mean Pore radius
29 D_Cl2_Ex_a=D_He*((M_He/M_Cl2)*(T_01/T_ref))^(0.5);//
      Assuming Knudsen flow at 573K
30
31 / CALCULATION (Ex4.1.b)
32 r_bar=2*V_g*(10<sup>6</sup>)/(S_g *(10<sup>4</sup>));
33 D_K=9700*(r_bar)*(T_ref/M_He)^(0.5);//Knudsen flow
34 D_AB1=D_AB*(293/298)^(1.7)// at 1.5 atm and 293K
35 D_pore=1/((1/D_K)+(1/D_AB1));//pore diffusion
36 Epsilon=V_g * rho_p * (10^6);
37 tau=(D_pore*Epsilon)/D_He;//Tortusity
38
39 / CALCULATION (Ex4.1.c)
40 D_Cl2_CH4_new=D_Cl2_CH4*(P_ref/P)*(T_03/T_ref)^(1.7)
      ;
41 D_K_Cl2=9700*r_bar*sqrt(T_03/M_Cl2);
42 D_pore=1/((1/D_Cl2_CH4_new)+(1/D_K_Cl2));
43 Epsilon=V_g*rho_p;
44 D_Cl2_Ex_c=D_pore*Epsilon/tau;
45
46
47 //OUTPUT
```

```
48 mprintf('\ OUTPUT Ex4.1.a');
49 mprintf(' \ n
       ');
50 mprintf('\nThe predicted diffusivity of Chlorine is
      \%0.2 \, e \, cm2/s ',D_Cl2_Ex_a);
51 mprintf('\n\n OUTPUT Ex4.1.b');
52 mprintf(' \ n
       '):
53 mprintf('\nThe tortusity value = \%0.2 \text{ f'},tau);
54 mprintf('\n\ OUTPUT Ex4.1.b');
55 mprintf(' \ n
       ')
56 mprintf('\nThe Effective diffusivity of Chlorine at
      \%g K and \%g atm = \%0.2 \, \text{e} \, \text{cm}2/\text{sec} ',T_03, P,
      D_Cl2_Ex_c);
57
58 //FILE OUTPUT
59 fid= mopen('.\ Chapter4-Ex1-Output.txt', 'w');
60 mfprintf(fid, '\n OUTPUT Ex4.1.a');
61 mfprintf(fid, ' \ n
      _
       ');
62 mfprintf(fid, '\nThe predicted diffusivity of
      Chlorine is \%0.2 \text{ cm}2/\text{s} ',D_Cl2_Ex_a);
63 mfprintf(fid, ' n \in OUTPUT Ex4.1.b');
64 mfprintf(fid, ' \ n
       ');
65 mfprintf(fid, '\nThe tortusity value = \%0.2 f', tau);
66 mfprintf(fid, ' n \in OUTPUT Ex4.1.b');
67 \text{ mfprintf(fid, '\n}
       ')
68 mfprintf(fid, '\nThe Effective diffusivity of
      Chlorine at \%g K and \%g atm = \%0.2 \text{ e cm}2/\text{sec}',
```

```
T_03, P, D_C12_Ex_c);
69 mclose(fid)
70 //______END OF
PROGRAM
```

Scilab code Exa 4.2 Effective diffusivity of O2 in air

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc., USA, pp 436.
2 // Chapter-4 Ex4.2 Pg No. 140
3 // Title: Effective diffusivity of O2 in air
4 //
```

```
5 clear
6 clc
7 // COMMON INPUT
8 S_g=150; // Total surface per gram (m2/g)
9 V_g=0.45; //Pore volume per gram (cm3/g)
10 V_i=0.30; // Micropore volume per gram (cm3/g)
11 V_a=0.15;// Macropore volume per gram (cm3/g)
12 rho_P=1.2; // Density of particle (g/cm3)
13 tau=2.5; // Tortusity
14 r_bar_i=40*(10^(-8)); // Micropore radius
15 r_bar_a=2000*(10<sup>(-8)</sup>);//Macropore radius
16 D_AB=0.49; //For N2 O2 at 1 atm (cm2/s)
17 M_02=32; // Molecular weight of O2
18 T=493; // Opereating Temperature (K)
19
20
21
22 //CALCULATION (Ex4.2.a)
```

```
23 Epsilon=V_g*rho_P;
24 D_K_i=9700*(r_bar_i)*sqrt(T/M_02);//Knudsen flow for
       micropore
25 D_Pore_i=1/((1/D_K_i)+(1/D_AB))
26 D_K_a=9700*(r_bar_a)*sqrt(T/M_02);
27 D_Pore_a=1/((1/D_K_a)+(1/D_AB));///Knudsen flow for
       macropore
28 D_Pore_Avg=(V_i*D_Pore_i+V_a*D_Pore_a)/(V_i+V_a);
29 D_e=Epsilon*D_Pore_Avg/tau;
30
31 //CALCULATION (Ex4.2.b)
32 Epsilon=V_g*rho_P;
33 r_bar=2*V_g/(S_g*10^4);
34 D_K=9700*(r_bar)*sqrt(T/M_02);//Knudsen Flow
35 D_Pore=1/((1/D_K)+(1/D_AB));
36 tau=D_Pore*Epsilon/D_e;
37
38 //OUTPUT
39 mprintf('\n OUTPUT Ex4.2.a');
40 mprintf(' \ n
      '):
41 mprintf('\n The effective diffusivity of O2 in air =
      \%0.2 e cm2/s', D_e);
42 mprintf(' \in OUTPUT Ex4.2.b');
43 mprintf(' \ n
      ');
44 mprintf('\n The calculated surface mean pore radius
     = \%.0 \, e \, cm', r_bar);
45 mprintf('\n The predicted pore diffusivity = \%0.2 \,\mathrm{e}
      cm2/sec',D_Pore);
  mprintf('\n The corresponding tortusity = \%0.2 f', tau
46
      );
47
48 //FILE OUTPUT
49 fid= mopen('.\Chapter4-Ex2-Output.txt', w');
50 mfprintf(fid, '\n OUTPUT Ex4.2.a');
```

```
51 mfprintf(fid, ' \ n
       ');
52 mfprintf(fid, '\n The effective diffusivity of O2 in
       air = \%0.2 \, \text{e} \, \text{cm}2/\text{s}', D_e);
53 mfprintf(fid, ' n \in OUTPUT Ex4.2.b');
54 mfprintf(fid, ' \ n
       '):
55 mfprintf(fid, '\n The calculated surface mean pore
       radius = \%.0 \, \text{e} \, \text{cm}', \text{r_bar};
56 mfprintf(fid, '\n The predicted pore diffusivity = \%0
       .2 e cm2/sec', D_Pore);
  mfprintf(fid, '\n The corresponding tortusity = \%0.2 f
57
       ',tau);
   mclose(fid);
58
59
60
61 //
      END OF PROGRAM
```

Scilab code Exa 4.3 Influence of Pore diffusion over rate

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc., USA, pp 436.
2 // Chapter-4 Ex4.3 Pg No. 154
3 // Title: Influence of Pore diffusion over rate
4 //
```

5 clear

```
6 clc
7 //INPUT
8 d_p=1/4; // Spherical Catalyst pellet size(inch)
9 k = [7.6*10^{-3} 14*10^{-3}]; //Reaction rates (mol/hr)
10 f_A=[0.1 0.2]; //Feed fraction of reactant A
11 D_e=0.0085; // Diffusivity of A (cm2/s)
12 rho_p=1.4 ;// Density of catalyst particle(g/cm3)
13 V_ref=22400; // reference volume(cm3)
14 T_ref=273; // Reference Temperature (K)
15 P_ref=1; // Reference Pressure (atm)
16 P=1.2; // Operating Pressure (atm)
17 T_C=150;
18 T=T_C+273; // Operating Temperature (K)
19
20 //CALCULATION
21 //For 10% of A
22 C_A(1)=f_A(1)*T_ref*P_ref/(V_ref*T*P);
23 R=d_p*2.54/2;
24 k_app(1)=k(1)*rho_p/(3600*C_A(1));//Refer equation
      4.53 Pg. No. 153
25 phi_app(1)=R*sqrt(k_app(1)/D_e);//Refer equation
      4.55 Pg. No. 155
26 C_A(2)=f_A(2)*T_ref*P_ref/(V_ref*T*P);
27 //If C_A is doubled the order is quite close to 1,
      from the Figure 4.8 Pg. No. 148, refer value of
      effectiveness
28 eta_graph=0.42;
29 \text{ k_app}(2) = \text{k_app}(1) / \text{eta_graph};
30 phi_app(2)=R*sqrt(k_app(2)/D_e);
31 eta_calc=(3/phi_app(2))*((1/tanh(phi_app(2)))-(1/
      phi_app(2)));
32 eff_rate=(1-eta_graph)*100;
33
34 //OUTPUT
35 mprintf('\n The effectiveness from graph = \%0.2 f \n
      The calculated effectiveness = \%0.2 \,\text{f}', eta_graph,
      eta_calc);
```

36 mprintf('\n The pore diffusion decreased the rate by

```
%.0f%%',eff_rate);
37
38 //FILE OUTPUT
39 fid= mopen('.\Chapter4-Ex3-Output.txt','w');
40 mfprintf(fid,'\n The effectiveness from graph = %0.2
    f \n The calculated effectiveness = %0.2f',
    eta_graph,eta_calc);
41 mfprintf(fid,'\n The pore diffusion decreased the
    rate by %.0f%%',eff_rate);
42 mclose(fid);
43 //
END OF PROGRAME
```

Scilab code Exa 4.4 Effectiveness factor for solid catalyzed reaction

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
        ) Marcel Dekker, Inc. USA, pp 436.
2 // Chapter -4 Ex4.4 Pg No.157
3 // Title: Effectiveness factor for solid catalyzed
        reaction
4 //
5 clear
6 clc
7 //INPUT
8 D_e_A=0.02; // (cm2/s)
9 D_e_B=0.03; // (cm2/s)
10 D_e_C=0.015; // (cm2/s)
11 X_f_A=0.3;
```

```
12 X_f_B = (1 - X_f_A);
```

```
13 eta_assumed=0.68; // Effectiveness factor from Fig.4.8
```

```
for first order reaction
14 T=150; //(\deg C)
15 T_K=T+273; //(K)
16 r=0.3; //(cm) Radius of catalyst sphere
17 P_opt=4; // (atm) Operating Pressure
18 R=82.056; // (cm3 atm/K mol) Gas constant
19
20
21 //CALCULATION
22 //Kinetic equation r= (2.5*10^{-}-5*P_A*P_B)/(1+0.1*P_A
      +2*P_C)^2
23 P_A=X_f_A*P_opt;
24 P_B=X_f_B*P_opt;
25 \text{ r_star}=(2.5*10^{-5*P}A*P_B)/(1+0.1*P_A)^2;
26 C_A=P_A/(R*T_K);
27 k=r_star/C_A;
28 Phi= r*(k/D_e_A)^{(0.5)};
29 P_A_bar=eta_assumed*P_A;
30 delta_P_A=P_A*(1-eta_assumed);
31 delta_P_B=delta_P_A*(D_e_A/D_e_B);
32 P_B_bar=P_B-delta_P_B;
33 delta_P_C=delta_P_A*(D_e_A/D_e_C);
34 P_C_bar=delta_P_C;
35 r_calc=(2.5*10<sup>-5</sup>*P_A_bar*P_B_bar)/(1+0.1*P_A_bar+2*
      P_C_bar)^2
36 eta_calc=r_calc/r_star;
37 eta_approx=(eta_calc+eta_assumed)/2;
38
39 //OUTPUT
40 //Console Output
41 mprintf('\tBased on average pressures calculated
      Rate and Effectiveness factor');
42 mprintf(' \in : \%0.2E \pmod{s \text{ cm}3}, r_calc);
43 mprintf(' \in ta_calc : \%0.3 f', eta_calc);
44 mprintf('\n The actual value of Effectiveness factor
       eta_actual :%0.1 f',eta_approx);
45
```

```
46 //File Output
```

```
47 fid= mopen('.\Chapter4-Ex4-Output.txt', 'w');
48 mfprintf(fid, '\tBased on average pressures
calculated Rate and Effectiveness factor');
49 mfprintf(fid, '\n\t r : %0.2E (mol/s cm3)',r_calc);
50 mfprintf(fid, '\n\t eta_calc : %0.3f ',eta_calc);
51 mfprintf(fid, '\n The actual value of Effectiveness
factor eta_actual :%0.1f',eta_approx);
52 mclose(fid);
53 //
END OF PROGRAM
```

Scilab code Exa 4.5 The optimum pore size distribution for a spherical pellet

- 1 // Harriot P.,2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc., USA, pp 436.
- 2 //Chapter-4 Ex4.5 Pg No. 164
- 3 // Title: The optimum pore size distribution for a spherical pellet
- 4 //

```
5 clear
6 clc
7 //INPUT
8 d_pellet=5*10^-1;//Catalyst pellet size (cm)
9 k_cat =3.6;// True Rate Constant (sec -1)
10 V_g_cat=0.60 ;// Pore Volume of the catalyst(cm3/g)
11 S_g_cat=300*10^4;//Surface area of catalyst (cm2/g)
12 dp=0.02;// Size of powdered catalyst(cm)
13 rho_p=0.8 ;// Density of catalyst particle(g/cm3)
```

```
14 r_bar_narrow= 40*10^(-10) // narrow distribution
15 D_KA=0.012 ; //(cm2/sec)
16 D_AB= 0.40 ; //(cm2/sec)
17 r_macro=2000*10<sup>(-10)</sup>; //For Macropores
18 V_cat=1/rho_p;//Total catalyst volume (cm3/g)
19 eta=1;//For powdered catalyst
20
21 //CALCULATION
22 epsilon=V_g_cat/V_cat;
23 r_bar=2*V_g_cat/S_g_cat;
24 R = dp/2;
25 R_pellet=d_pellet/2;
26 D_pore_a=1/((1/D_KA)+(1/D_AB));
27 tau=3;//Assumed value
28 D_e_cat=D_pore_a*epsilon/tau;
29 Phi_app=R*sqrt(k_cat/D_e_cat);//Refer equation 4.55
     Pg. No. 153
30 D_KB=D_KA*(r_macro/r_bar_narrow);
31 D_pore_b=1/((1/D_KB)+(1/D_AB));
32 V_a=0.35;
33 del_V_a=-0.05;
34 V_a=V_g_cat:del_V_a:V_a_end;
    for i=1:6
35
        V_b(i)=V_g_cat-V_a(i); //Refer Equation 4.81 Pg.
36
            No. 164
37
        S_a(i) = 2*(V_a(i)/r_bar_narrow)*(10^{-6});
38
        S_b(i) = 2*(V_b(i)/r_macro)*(10^{-6});
        S_g(i) = S_a(i) + S_b(i);
39
        k(i)=k_cat*S_g(i)/(S_g_cat*10^{-4});
40
        D_e(i) = ((D_pore_a * V_a(i) + D_pore_b * V_b(i)) /
41
           V_g_cat)*(epsilon/tau);
        phi(i)=R_pellet*sqrt(k(i)/D_e(i));
42
        eta(i)=(3/phi(i))*((1/tanh(phi(i)))-(1/phi(i)))
43
        eta_k(i)=eta(i)*k(i)
44
45
      end
    //OUTPUT
46
    mprintf('\n
47
```

```
')
     mprintf('\ V_a \ t \ V_b \ t \ s_a
                                              t S_b t
                                                             S_g \setminus
48
        t k \setminus t D_e \setminus t phi\teta\teta_k');
     mprintf('\nVolume \t cm3/g \t\t Surface Area \t m2/
49
        g \setminus t \setminus t \quad s-1 \setminus t \quad cm2/s \setminus t
                                              (-) \setminus t(-) \setminus t(-);
      mprintf('\n
50
          ')
     for i=1:6
51
               mprintf('\n %.2 f \t %0.2 f \t\ \%.0 f \t %.1 f
52
                   t \%0.1 f t t \%0.2 f t\%0.2 e t\%0.2 f t
                  %0.2 f \t %0.2 f', V_a(i), V_b(i), S_a(i), S_b
                  (i),S_g(i),k(i),D_e(i),phi(i),eta(i),
                  eta_k(i));
53
     end
54
   //FILE OUTPUT
55
56 fid= mopen('.\Chapter4-Ex5-Output.txt', 'w');
     mfprintf(fid, '\n
57
        ')
     mfprintf(fid, 'NV_a \setminus t V_b \setminus t \setminus s_a
                                                  t S_b t
58
        S_g \setminus t \setminus b_e \setminus t
                                        phi\teta\teta_k');
     mfprintf(fid, '\nVolume t cm3/g tt Surface Area 
59
        t m2/g \t\t s-1 \t cm2/s \t
                                                   (-) \setminus t(-) \setminus t
        (-) ');
      mfprintf(fid, '\n
60
          ')
61
     for i=1:6
               mfprintf(fid, '\n \%.2 f \t \%0.2 f \t\\%.0 f \t
62
                   %.1 f \t %0.1 f \t \t %0.2 f \t%0.2 e \t%0.2 f
                   \t %0.2 f \t %0.2 f', V_a(i), V_b(i), S_a(i)
                   ,S_b(i),S_g(i),k(i),D_e(i),phi(i),eta(i)
                   ,eta_k(i));
63
     end
64 //
```

END OF PROGRAM

=

Chapter 5

Heat and Mass Transfer in Reactors

Scilab code Exa 5.1 Temperature Profiles for tubular reactor

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc. USA, pp 436
2 // Chapter -5 Ex5.1 Pg No. 185
3 // Title: Temperature Profiles for tubular reactor
4 //
```

```
5 clear
6 clc
7 clf
```

- 8 //INPUT
- 9 delta_H=-25000; // (kcal/mol) Enthalpy
- 10 D=2;//(cm) Diameter of Tubular Reactor
- 11 C_AO=0.002; //(mol/cm3) Initial concentration of feed
- 12 k=0.00142; //(s-1) Rate Constant

```
13 E_by_R=15000; //(K-1)
14 rho=0.8; //(g/cm3)
15 c_p = 0.5; // (cal/g C)
16 U=0.025; //(cal/sec cm 2 C)
17 u=60; //(cm/s)
18
19
20 //CALCULATION
21 function diffeqn = Simul_diff_eqn(l,y,T_j)
       diffeqn(1) = (k*exp(E_by_R*((1/T_initial)-(1/y(2)
22
          ))))*(1-y(1))/u;// Derivative for the first
          variable
23
       diffeqn(2) = (C_A0*(k*exp(E_by_R*((1/T_initial))
          -(1/y(2))))*(1-y(1))*(-1*delta_H)-U*(4/D)*(y
          (2)-T_j))/(u*rho*c_p) ; // Derivative for the
           second variable
24 endfunction
25
26 / / =
27
28 T_j_data = [ 348 349 350 351];
29 m = length(T_j_data);
30 n = 1;
31 while n <= m
32 T_j = T_j_data(n)
33 T_initial=340; // for rate constant
34 \times 0 = 0;
35 \quad T0 = 344;
36 \quad 10=0;
37 \quad 1=0:0.1E2:70E2;
38 y = ode([x0;T0],10,1,list(Simul_diff_eqn,T_j));
39 x_data(n,:) = y(1,:);
40 T_data(n,:) = y(2,:);
41 n = n + 1;
42 end
43 // =
44 scf(0)
45 plot(1,T_data(1,:), 'r-',1,T_data(2,:), 'b-',1,T_data
```

```
(3,:), 'k-',1,T_data(4,:), 'g-')
46 xtitle('Temperature Profiles for a jacketed
                                                 tubular
        reactor ')
47 xlabel("Length (cm)")
48 ylabel("Temperature (K)")
49 legend(['348';'349';'350';'351']);
50
51 scf(1)
52 plot(1,x_data(1,:), 'r-',1,x_data(2,:), 'b-',1,x_data
      (3,:), 'k-', l, x_data(4,:), 'g-')
53 xtitle('Conversion for a jacketed tubular reactor'
     );
54 xlabel("Length (cm)")
55 ylabel("Conversion")
56 legend(['348'; '349'; '350'; '351']);
57
58 //OUTPUT
59 mprintf('\n The Temperature profiles for four feed
      temperatures are plotted ');
60 mprintf('\n For T0:348 K attains its maximum
     temperature at conversion of about 25\% -30% ');
61 mprintf('\n At T0:351 K the temperature increases by
       6.5 C high sensitivity that the reactor is
     nearing unstable');
62
63 //FILE OUTPUT
64 fid= mopen('.\Chapter5-Ex1-Output.txt', 'w');
65 mfprintf(fid, '\n The Temperature profiles for four
     feed temperatures are plotted.');
66 mfprintf(fid, '\n For T0:348 K attains its maximum
     temperature at conversion of about 25\% -30% ');
67 mfprintf(fid, '\n At T0:351 K the temperature
     increases by 6.5 C high sensitivity that the
     reactor is nearing unstable');
68 mclose(fid);
69
70 //
```

Scilab code Exa 5.2 Maximum internal temperature difference

- 1 //Harriot P.,2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc., USA, pp 436.
- 2 // Chapter -5 Ex5.2 Pg No. 194
- 3 //Title: Maximum internal temperature difference
- 4 //

```
5 clear
6 \quad format(16)
7 clc
8 //INPUT
9 T_C=200; //Temperature(C)
10 P=1.2; // Pressure (atm)
11 f_ethylene=0.05; // fraction of ethylene
12 k_s=8*10^(-4); // Solid conductivity (cal/sec cm C)
13 D_e=0.02; // Diffusivity for ethylene (cm2/s)
14 del_H= -32.7*10^(3); //Heat of reaction (cal)
15 V_ref=22400; // reference volume(cm3)
16 T_ref=273; // Reference Temperature (K)
17 P_ref=1; // Reference Pressure (atm)
18 T_K=T_C+273; // Reaction Temperature (K)
19
20 //CALCULATION
21 C_s=f_ethylene*P*T_ref/(V_ref*T_K*P_ref);
22 Tc_minus_Ts=D_e*C_s*(-del_H)/k_s;//Refer equation
      5.51 Pg No. 194
```

```
23
```

```
24 //OUTPUT
25 mprintf('\n\tThe maximum internal temperature
        difference %0.3 f C ',Tc_minus_Ts);
26
27 //FILE OUTPUT
28 fid= mopen('.\Chapter5-Ex2-Output.txt','w');
29 mfprintf(fid, '\n\tThe maximum internal temperature
        difference %0.3 f C ',Tc_minus_Ts);
30 mclose(fid);
31
32 //
END OF PROGRAM
```

Scilab code Exa 5.3 Overall heat transfer coefficients and radial average bed temperature for packed bed reactor

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc.,USA, pp 436.
2 // Chapter-5 Ex5.3 Pg No. 209
3 // Title: Overall heat transfer coefficients and
radial average bed temperature for packed bed
reactor
4 //
5 clear
6 clc
7
8 // COMMON INPUT
9 k_s= 8*10^(-4);//(cal/sec cm C)
```

```
10 M_air_avg=29.24;// Average Molecular weight of air
```

```
11 Cp_air_mol=7.91; // cal/mol C;
12 Cp_air_g=Cp_air_mol/M_air_avg;//cal/g C
13 dp=0.4; //Size of the catalyst pellet (cm)
14 D=3.8; //Diameter of tube (cm)
15 R_pellet=D/2; // Radius
16 f_EO=0.7; // Fraction of ethylene forming ethylene
      oxide
17 f_CO2_H2O=1-f_EO;//Fraction of ethylene forming CO2
       and H2O
18 rho_p=2.5; // Density of catalyst particle (g/cm3)
19 V_ref=22400; // Reference volume(cm3)
20 T_ref=273; // Reference Temperature (K)
21 P_ref=1; // Reference Pressure (atm)
22 P=5; //System Pressure (atm)
23 T_C=230; //System Temperature (C)
24 T=T_C+273; //System Temperature (K)
25 u_ft=[1.5 3]; // Velocity (ft/s)
26 myu=0.026*(10^(-2)); // Viscosity of air (Poise)
27 M_wt=[28 32 44 28]; // Molecular weight
28 M_fraction=[0.04 0.07 0.06 0.83];
29 Cp=[15.3 7.4 10.7 7.4]; // (cal/mol C)
30 k_g=9.27*10^{(-5)}; //(cal/sec cm C)
31 del_H_rxn=[-29.9 -317];//(kcal/mol)
32 E=18*1000; // Activation Energy (cal)
33 R=1.987; //Gas Constant (cal/K.mol)
34
35 //CALCULATION (Ex5.3.a)
36 rho=M_air_avg*P*T_ref/(V_ref*P_ref*T);
37 u=30.533.*u_ft;//Velocity in (cm/s)
38 Re_p=(rho*dp/myu).*u;
39 Pr=Cp_air_g*myu/k_g;
40 ks_by_kg=k_s/k_g;
41 k0e_by_kg=3.5; //From figure 5.16 Pg. No. 203
42 kr_by_kg=2.5; //From equation 5.68 and 5.69 Pg. No.
     204
43 for i=1:2
       ktd_by_k_air(i)=(0.1*Pr)*Re_p(i);
44
45 ke_by_kg(i) = (k0e_by_kg+kr_by_kg)+ktd_by_k_air(i);
```

```
57
```

```
46 k_e(i)=ke_by_kg(i)*k_g;
47 h_bed(i)=4*k_e(i)/R_pellet;
48 Nu_w(i) = (1.94*Pr^{(0.33)})*Re_p(i)^{(0.5)}; //Refer
      equation 5.83 Pg. No. 208
49 h_w(i) = (k_g/dp) * Nu_w(i); //(cal/sec cm2 K)
50 h_j=100*10<sup>(-3)</sup>;//Assumed
         U(i) = 1/((1/h_j) + (1/h_w(i)) + (1/h_bed(i)));
51
52 end
53
54 //CALCULATION (Ex5.3.b)
55 minus_delH=f_EO*(-del_H_rxn(1))+f_CO2_H2O*(-
      del_H_rxn(2));
56 T_max = T + 20;
57 del_Tc= R*(T_max)^2/E;
58 T_{new} = 250 + 273;
59 X_E = 0.1;
60 k250_by_k230 = \exp((E/R) * ((1/T) - (1/T_new)));
61 P_E=P*(1-X_E)*M_fraction(1);
62 P_02=P*(1-f_E0*X_E)*M_fraction(2);
63 P_CO2=P*(1+f_CO2_H2O*X_E)*M_fraction(3);
64 r=k250_by_k230*((0.076*P_E*P_02)/(1+2*P_E+15*P_C02))
65 Q_dash=r*minus_delH*10^3/3600;
66 epsilon=0.4;
67 \text{ rho_bed=rho_p*(1-0.4)};
68 A_percm3=4/D;
69 Q=(Q_dash*rho_bed)
70 for i=1:2
71
       delta_T(i) = (Q/A_percm3) * (1/U(i));
72 end
73
74 //OUTPUT ((Ex5.3.a))
75 mprintf('\ OUTPUT Ex5.3.a');
76 mprintf(' \ n
```

```
')
```

77 mprintf('\nThe Overall Heat transfer coefficient for given Velocities')

```
78 mprintf(' \ n
       ')
79 mprintf(' \ n
                 u(velocity)
                                  U')
80 mprintf(' \ n
                 (ft/s)
                            (cal/cm2 sec K)')
81 mprintf('\n
       ')
82 for i=1:2
        mprintf('\n %0.1 f %3E',u_ft(i),U(i))
83
84 end
85
86 //OUTPUT ((Ex5.3.b)
87 mprintf('n\n OUTPUT Ex5.3.b');
88 mprintf('\n
       ')
89 mprintf('\nThe Peak Radial average bed temperature
      for given Velocities')
90 mprintf('\n
       ')
91 mprintf(' \ n
                u(velocity)
                                  delta_T ')
92 mprintf(' \ n
                 (ft/s)
                                   ( C) ')
93 mprintf(' \ n
       ')
94 for i=1:2
        mprintf('n \%0.1 f t t \%0.0 f',u_ft(i),
95
           delta_T(i))
96
   end
97
98 //FILE OUTPUT
99 fid= mopen('.\Chapter5-Ex3-Output.txt', 'w');
100 mfprintf(fid, '\n OUTPUT Ex5.3.a');
101 mfprintf(fid, '\n
```

```
')
```

```
102 mfprintf(fid, '\nThe Overall Heat transfer
       coefficient for given Velocities')
103 mfprintf(fid, ' \ n
       ')
104 mfprintf(fid, ^{\prime}\n
                       u(velocity)
                                        U')
105 mfprintf(fid, 'n
                       (ft/s) (cal/cm2 sec K)')
106 mfprintf(fid, ' \ n
       ')
107 for i=1:2
        mfprintf(fid, '\n %0.1 f
                                     %3E',u_ft(i),U(i))
108
109 end
110 mfprintf(fid, (n \in OUTPUT Ex5.3.b');
111 mfprintf(fid, ' \ n
       ')
112 mfprintf(fid, '\nThe Peak Radial average bed
       temperature for given Velocities')
113 mfprintf(fid, ' \ n
       ')
                       u(velocity)
                                         delta_T ')
114 mfprintf(fid, ' \ n
115 mfprintf(fid, ' \ n
                       (ft/s)
                                          ( C)')
116 mfprintf(fid, 'n
       ')
117 for i=1:2
        mfprintf(fid, 'n \%0.1 f t t \%0.0 f',u_ft(i),
118
           delta_T(i))
119 end
120 mclose(fid);
121 / =
                                                        =END
       OF PROGRAM
```

Chapter 6

Nonideal Flow

Scilab code Exa 6.1 Power Consumption at 300 rpm speed of stirrer and blending time

- 1 //Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
- 2 // Chapter 6 Ex6.1 Pg No.236
- 3 // Title: Power Consumption at 300 rpm, speed of stirrer and blending time
- 4 //

```
5 clear
6 clc
7 // COMMON INPUT
8 D_a=0.1;
9 D_t=0.3;
10 H=0.3;
11 N_P=5.5;
12 rho=1000;
13 n=5;
14 S_f=6;//Scale up factor in diameter
```

```
15 P_by_V_limit=10; // Pressure per unit volume (HP/1000
     gal)
16 n1=5;
17 Da_by_Dt1=D_a/D_t;
18 Da_by_Dt2=0.5;
19
20 / CALCULATION (Ex6.1.a)
21 P_unit_vol=(N_P*n^3*D_a^5)/(%pi*(1/4)*D_t^2*H);
22 P_thousand_gal=P_unit_vol*5.067;
23 t=(4/n)*(D_t/D_a)^2*(H/D_t);
24 P_unit_vol_new=S_f^2*P_thousand_gal;
25
26 / CALCULATION (Ex6.1.b)
27 n_limit=(P_by_V_limit/P_unit_vol_new)^(1/3) *n1;//
      Pressure per unit vol propotional to n3
28 t_inc_factor=n1/n_limit;//t inversely propotional to
      n
29 rotational_speed=n_limit*60;//Speed in rpm
30
31 / CALCULATION (Ex6.1.c)
32 n2=(Da_by_Dt1/Da_by_Dt2)^(5/3)*n_limit;
33 rotaional_speed=n2*60;
34 t1=4*(1/Da_by_Dt1)^2*(H/D_t)*(1/n_limit);
35 t2=4*(1/Da_by_Dt2)^2*(H/D_t)*(1/n2);
36
37 //OUTPUT (Ex6.1.a)
38 mprintf('\ OUTPUT Ex6.1.a');
39 mprintf('\n
      ');
40 mprintf('\n The Power consumption per unit volume at
       300rpm = \%.2 f HP/1000 gal', P_thousand_gal);
41 mprintf('\n\ The Power consumption scaling up
      sixfold in diameter = \%.0 f HP/1000 gal',
     P_unit_vol_new);
```

42 43

```
44 //OUTPUT (Ex6.1.b)
```

```
45 mprintf('\n\n OUTPUT Ex6.1.b');
46 mprintf(' \ n
      ');
47 mprintf('\n The speed of the stirrer = \%.2 f sec -1
      or %.0 f rpm',n_limit,rotational_speed);
48 mprintf('\n Blending time increases by factor of %.2
      f ',t_inc_factor);
49
50 //OUTPUT(Ex6.1.c)
51 mprintf(' n n OUTPUT Ex6.1.c');
52 mprintf(' \ n
      '):
53 mprintf('\n The new stirrer speed = \%.2 f sec -1 or \%
      .0 f rpm',n2,rotaional_speed);
54 mprintf('\n The new blending time for Da/Dt ratio
      of 0.5 = \%.1 \, \text{f} sec',t2);
55
56 //FILE OUTPUT
57 fid= mopen('.\ Chapter6-Ex1-Output.txt', 'w');
58 mfprintf(fid, '\n OUTPUT Ex6.1.a');
59 mfprintf(fid, ' \ n
      _
      ');
60 mfprintf(fid, '\n The Power consumption per unit
      volume at 300 \text{ rpm} = \%.2 \text{ f HP}/1000 \text{ gal}',
      P_thousand_gal);
61 mfprintf(fid, '\n\ The Power consumption scaling up
      sixfold in diameter = \%.0 f HP/1000 gal',
      P_unit_vol_new);
62 mfprintf(fid, (n \in OUTPUT Ex6.1.b');
63 mfprintf(fid, ' \ n
      '):
64 mfprintf(fid, '\n The speed of the stirrer = \%.2 f
      \sec -1 or \%.0 \text{ f rpm',n_limit,rotational_speed};
65 mfprintf(fid, '\n Blending time increases by factor
```

72 //Disclaimer: In Ex6.1.c there is an arithematic error in the value of D_a/D_t . The value of D_a/D_t should be 11.4 instead of the value reported in the textbook for $D_a/D_t=11.1$.

Scilab code Exa 6.2 Effect of diffusion on conversion for laminar flow

```
1 // Harriot P., 2003, Chemical Reactor Design (I-
Edition), Marcel Dekker, Inc., USA, pp 436.
2 // Chapter-6 Ex6.2 Pg No. 239
3 // Title: Effect of diffusion on conversion for
laminar flow
4 //
5 clear
6 clc
7 //INPUT
```

8 D=1*10⁽⁻²⁾;//Diameter of pipeline (m)

```
9 R=D/2; //Radius (m)
10 D_m=10^{(-4)}; // Diffusivity (m2/sec)
11 k=1; // Reaction rate constant (sec -1)
12
13
14 //CALCULATION
15 alpha=D_m/(k*(R^2)); // Refer topic ('Diffusion in
      laminar flow reactors ') Pg No.239
16
17
18 //OUTPUT
19 if (alpha <= 0.01)
20
       then
       mprintf('\n The effect of radial diffusion
21
                                                      on
          conversion can be neglected as alpha = \%.0 f',
          alpha )
22 else
23
       mprintf('\n The effect of radial diffusion makes
           conversion almost as same as plug flow as
          alpha = \%.0 f', alpha)
24 end
25
26 //FILE OUTPUT
27 fid= mopen('.\ Chapter6-Ex2-Output.txt', 'w');
28 if (alpha <= 0.01)
29
       then
30
       mfprintf(fid, '\n The effect of radial diffusion
            on conversion can be neglected as alpha = \%
          .0 f', alpha )
31 else
       mfprintf(fid, '\n The effect of radial diffusion
32
          makes conversion almost as same as plug flow
          as alpha = \%.0 f', alpha)
33 end
34 mclose(fid);
35 / =
     END OF PROGRAM
```

Scilab code Exa 6.3 Effect of Axial dispersion and length on conversion

```
1 //Harriot P., 2003, Chemical Reactor Design (I-
Edition), Marcel Dekker, Inc., USA, pp 436.
```

- 2 //Chapter-6 Ex6.3 Pg No. 248
- 3 //Title:Effect of Axial dispersion and length on conversion
- 4 //

```
5 clear
6 clc
7 // COMMON INPUT
8 u=1; // Superficial velocity (cm/s)
9 D=2*10^{(-5)} / Molecular Diffusivity (cm2/s)
10 Re=30; //Reynolds No.
11 Pe_a=0.25; // Peclet No. corresponding Re No. from Fig
       6.10
12 dp=3*(10<sup>-1</sup>); // Particle Size (cm)
13 L=48; //Length of the bed (cm)
14 X_A=0.93; // Conversion
15 L_old=48;// Old bed length (cm)
16 L_new=L_old/2; //New bed length (cm)
17
18
19
20 //CALCULATION (Ex6.3.a)
21 Pe_dash=Pe_a*L/dp;//Refer Pg.No.247
22 one_minus_X_A=(1-X_A);
23 k_rho_L_by_u1=2.65; //From Fig6.12 for given Pe_dash
24 X_A1=1-\exp(-k_rho_L_by_u1);
```

```
25 //To increase the conversion more catalyst is needed
26 k_rho_L_by_u2=2.85; //From Fig6.12
27 X_A2=1-\exp(-k_rho_L_by_u2);
28 Percentage_excess_cat_a=((k_rho_L_by_u2-
     k_rho_L_by_u1)/k_rho_L_by_u1)*100;
29
30 / CALCULATION(Ex6.3.b)
31 k_rho_L_by_u_new=k_rho_L_by_u1/2;
32 X_A_cal=(1-exp(-k_rho_L_by_u_new));//Calculated
      conversion
33 Pe_dash_new=Pe_dash/2;
34 k_rho_L_by_u_graph=1.3992; //Value obtained from
      Figure 6.12 for the calculated conversion
35 Percentage_excess_cat_b=((k_rho_L_by_u_graph-
     k_rho_L_by_u_new)/k_rho_L_by_u_new)*100;
36
37 / OUTPUT(Ex6.3.a)
38 mprintf('\n OUTPUT Ex6.3.a');
39 mprintf('\n
      '):
40 mprintf('\n The effect of axial dispersion is
      significant and the percentage excess of catalyst
      = %.0f%%', Percentage_excess_cat_a );
41
42 //OUTPUT (Ex6.3.b)
43 mprintf('\n\n OUTPUT Ex6.3.b');
44 mprintf(' \ n
      '):
45 mprintf('\n The effect of axial dispersion is less
      on reducing the bed length \n The percentage
      excess of catalyst = \%.0 \, \text{f}\%\%',
     Percentage_excess_cat_b );
46
47 //FILE OUTPUT
48 fid= mopen('.\Chapter6-Ex3-Output.txt', w');
49 mfprintf(fid, '\n OUTPUT Ex6.3.a');
```

```
50 mfprintf(fid, ' \ n
      '):
51 mfprintf(fid, '\n The effect of axial dispersion is
      significant and the percentage excess of catalyst
       =~\%.0\,\mathrm{f}\%\% ', <code>Percentage_excess_cat_a</code> );
52 mfprintf(fid, ' n n OUTPUT Ex6.3.b');
53 mfprintf(fid, ' \ n
      '):
54 mfprintf(fid, '\n The effect of axial dispersion is
      less on reducing the bed length \n The percentage
       excess of catalyst = \%.0 \, \text{f}\%\%',
      Percentage_excess_cat_b );
55 mclose(fid);
56 //=-----
                                                      =END
      OF PROGRAM
```

Scilab code Exa 6.4 Conversion in packed bed for same superficial velocity

```
1 // Harriot P., 2003, Chemical Reactor Design (I-
Edition), Marcel Dekker, Inc., USA, pp 436.
2 //Chapter-6 Ex6.4 Pg No.251
3 //Title:Conversion in packed bed for same
superficial velocity
4 //
```

5 clear 6 clc

```
7 //COMMON INPUT
8 L=2.5; //Lendth of bed(ft)
9 X_A=0.95; // Conversion
10 L_a=3; //Length of section a (ft)
11 L_b=2; //Length of section b (ft)
12 u_oa_by_u0=0.88; // Refer equation 3.64
13 \ u_ob_by_u0=1.12;
14 L=2.5; //(ft)
15
16
17 //CALCULATION (Ex6.4.a)
18 k_rho_L_by_u=log(1/(1-X_A)); // First Order reactions
19 //For Section a
20 k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L);
21 X_A_section_a=(1-exp(-k_rho_L_by_u_a));
22 //For Section b
23 k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L); // Dimensionless
     Group based on ideal plug flow for first order
      reaction
24 X_A_section_b=(1-exp(-k_rho_L_by_u_b));
25 X_A_Ave=(X_A_section_b+X_A_section_a)/2;
26 Percent_X_A_Ave=X_A_Ave*100
27
28 / (CALCULATION (Ex6.4.b))
29 k_rho_L_by_u=log(1/(1-X_A)); // First Order reaction
30 //For Section a
31 k_rho_L_by_u_a=k_rho_L_by_u*(L_a/L)*(1/u_oa_by_u0);
32 X_A_section_a=(1-exp(-k_rho_L_by_u_a));
33 delP_a_by_alpha_u0_pow=L_a*(u_oa_by_u0);//Refer
      equation 3.64
34
35 //For Section b
36 \text{ k_rho_L_by_u_b=k_rho_L_by_u*(L_b/L)*(1/u_ob_by_u0);}
     //Dimensionless Group based on ideal plug flow
      for first order reaction
37 delP_b_by_alpha_u0_pow=L_b*u_ob_by_u0;
38 X_A_section_b=(1-exp(-k_rho_L_by_u_b));
```

```
39 X_A_avg=(u_oa_by_u0*X_A_section_a+u_ob_by_u0*
```

```
X_A_section_b)/2;
40 Percent_X_A_avg=X_A_avg*100;
41
42 //OUTPUT(Ex6.4.a)
43 mprintf('\ N OUTPUT Ex6.4.a');
44 mprintf(' \ n
      ');
45 mprintf('\nThe average converion when each section
      has same superficial velocity:%0.1f%%',
      Percent_X_A_Ave );
46
47 //OUTPUT(Ex6.4.b)
48 mprintf('\n\n OUTPUT Ex6.4.b');
49 mprintf(' \ n
      '):
50 mprintf('\nThe overall conversion for different
      velocities:\%0.1f\%\% ', Percent_X_A_avg );
51
52 //FILE OUTPUT
53 fid= mopen('.\Chapter6-Ex4-Output.txt', 'w');
54 mfprintf(fid, '\n OUTPUT Ex6.4.a');
55 mfprintf(fid, ' \ n
      '):
56 mfprintf(fid, '\nThe average converion when each
      section has same superficial velocity: %0.1f%%',
      Percent_X_A_Ave );
57 mfprintf(fid, ' n n OUTPUT Ex6.4.b');
58 mfprintf(fid, ' \ n
      '):
59 mfprintf(fid,'\nThe overall conversion for different
       velocities:\%0.1f\%\% ', Percent_X_A_avg );
60 mclose(fid);
61 //
```

END OF PROGRAM

_
Chapter 7

Gas Liquid Reactions

Scilab code Exa 7.1 Overall Reaction Rate Coefficient Percent Resistance Reaction Volume and Reactor Size

- 1 // Harriot P., 2003, Chemical Reactor Design (I-Edition)
 Marcel Dekker, Inc., USA, pp 436.
- 2 //Chapter-7 Ex7.1 Pg No.260

3 //Title:Overall Reaction Rate Coefficient, Percent Resistance, Reaction Volume and Reactor Size

4 //

```
5 clear
```

```
6 clc
```

```
7 // COMMON INPUT
```

```
8 k2=8.5;//Reaction rate constant (L/mol-sec)
```

```
9 T=50;//Reaction condition temperature(C)
```

10 P=2; // Reaction Pressure (atm)

```
11 H_02=8*10^4; // Solubility (atm/mol fraction)
```

```
12 F=17000//Feed rate (L/hr)
```

- 13 C_B_feed=1.6; // Feed concentration (M)
- 14 C_B_product=0.8; // Product concentration (M)

- 16 k_g_a=80;//Gas film mass transfer coefficient(mol/hr L atm)
- 17 Epsilon=0.1; // Porosity
- 18 percent_inc=0.2; // Percentage excess required for reactor volume

```
19
```

```
20
21 //CALCULATION (Ex7.1.a)
22 H_O2_conv=H_O2*18/1000; // Convert (atm L/mole O2)
23 k_L_a_by_H=k_L_a/H_02_conv;
24 reaction_resistance=H_O2_conv/(k2*C_B_product*(1-
     Epsilon)*3600);
25 Kg_a=1/((1/k_g_a)+(1/k_L_a_by_H)+(
     reaction_resistance)); // Refer equation 7.10
26 gasfilm_resistance_per=((1/k_g_a)/(1/Kg_a))*100;
27 liq_film_resistance_per=((1/k_L_a_by_H)/(1/Kg_a))
      *100;
28 reaction_resistance_per=((reaction_resistance)/(1/
     Kg_a))*100;
29
30 //CALCULATION (Ex7.1.b)
31 delta_C_B=C_B_feed-C_B_product;
32 mol_02_needed=F*delta_C_B/4;
33 N_air=100;//Assuming 100 mole of feed air
34 f_02=0.209; // Fraction of O2
35 f_N2=1-f_02; // Fraction of N2
36 N_02_in=N_air*f_02;
37 N_N2_in=N_air*f_N2;
38 N_O2_out=N_O2_in/2; // Half of O2 fed
39 N_N2_out=N_N2_in;
40 N_air_out=N_N2_out+N_O2_out;
41 P_02_out=P*(N_02_out/N_air_out);
```

- 42 P_02_in=P*(N_02_in/N_air);
- 43 P_02_bar=(P_02_in-P_02_out)/(log(P_02_in/P_02_out)); //Log mean Pressure
- 44 volume=mol_02_needed/(Kg_a*P_02_bar);

```
45 reactor_vol=volume+volume*percent_inc;
46 volume_gal=volume*0.264;
47 reactor_vol_gal=reactor_vol*0.264;
48
49
50 //OUTPUT (Ex7.1.a)
51 mprintf('\ OUTPUT Ex7.1.a');
52 mprintf(' \ n
      '):
53 mprintf('\nThe percentage
                               gas-film resistance : %0
      .1 f%% ', gasfilm_resistance_per);
54 mprintf('\nThe percentage liquid-film resistance: %0
      .1f%%',liq_film_resistance_per);
55 mprintf('\nThe percentage chemical reaction
      resistance: %0.1f%%', reaction_resistance_per);
56
57 //OUTPUT (Ex7.1.b)
58 mprintf('\n\n OUTPUT Ex7.1.b');
59 mprintf(' \ n
      '):
60 mprintf('\n Reaction volume calculated : %0.0 f L ',
      volume );
61 mprintf('\n Reactor size to be chosen : %0.0f L',
      reactor_vol);
62
63
64 // FILE OUTPUT
65 fid= mopen('.\Chapter7-Ex1-Output.txt', 'w');
66 mfprintf(fid, '\n OUTPUT Ex7.1.a');
67 \text{ mfprintf(fid, '\n})
      ');
68 mfprintf(fid,'\nThe percentage gas-film resistance
      : %0.1f%%', gasfilm_resistance_per);
69 mfprintf(fid, '\nThe percentage liquid-film
      resistance: %0.1f%%',liq_film_resistance_per);
```

```
70 mfprintf(fid, '\nThe percentage chemical reaction
	resistance: %0.1f%%',reaction_resistance_per);
71 mfprintf(fid, '\n\n OUTPUT Ex7.1.b');
72 mfprintf(fid, '\n
	');
73 mfprintf(fid, '\n Reaction volume calculated : %0.0f
	L ',volume );
74 mfprintf(fid, '\n Reactor size to be chosen : %0.0f L
	',reactor_vol);
75 mclose(fid);
76 //
END OF PROGRAM
```

Scilab code Exa 7.2 The gradient for B in the liquid film

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc. USA, pp 436.
2 // Chapter -7 Ex7.2 Pg No.270
3 // Title: The gradient for B in the liquid film
4 //
5 clear
6 clc
7 //INPUT
8 C_B0_by_C_Ai=40;
9 D_A_by_D_B=1.2;
10 sqrt_M=10;
11 phi=sqrt_M;//Assume the gradient for A is the same
```

```
as when the gradient for B is negligible
12 eff_diff_distA_by_xL=(1/phi);
13
14 //CALCULATION
15 eff_diff_distB_by_xL=(1-eff_diff_distA_by_xL);
16 CB0_minus_CBbar_by_CB0=D_A_by_D_B*(1/C_B0_by_C_Ai)*(
     eff_diff_distB_by_xL/eff_diff_distA_by_xL);
17 C_Bbar_by_C_B0=(1-CB0_minus_CBbar_by_CB0);
18 sqrt_kC_B=sqrt(C_Bbar_by_C_B0);
19 phi_corrected=phi*sqrt_kC_B;
20 Percent_change=((phi-phi_corrected)/(phi))*100;
21
22 //OUTPUT
23 mprintf('\n Percentage Decrease in Rate :\%0.0f\%\%',
     Percent_change);
24 mprintf('\n The decrease in rate is significant ,
     hence the gradient for B is significant in liquid
      film ');
25 fid= mopen('.\Chapter7-Ex2-Output.txt','w');
26 mfprintf(fid, '\n Percentage Decrease in Rate :%0.0
     f\%\% ', Percent_change);
27 mfprintf(fid,'\n The decrease in rate is significant
      , hence the gradient for B is significant in
     liquid film ');
28 mclose(fid);
29 //====
     END OF PROGRAM
```

Scilab code Exa 7.3 Overall mass transfer coefficient and percent resistance

```
1 // Harriot P., 2003, Chemical Reactor Design (I-Edition
      ) Marcel Dekker, Inc., USA, pp 436
2 //Chapter-7 Ex7.3 Pg No.274
3 // Title: Overall mass transfer coefficient and
      percent resistance
4 //
5 clear
6 clc
7 //INPUT
8 k2=8500; // (L/mol sec) at 25
                                   С
9 kg_a= 7.4 //(mol/hr ft3 atm)
10 k_star_L_a=32; //(hr-1)
11 a=34; //(ft_2/ft_3)
12 H_CO2=1.9*10^(3); // (atm/m f) Henry's Constant
13 D_CO2 = 2*10^{(-5)}; //(cm2/sec)
14 D_OH=2.8*10<sup>(-5)</sup>; //(cm2/sec)
15 P_CO2_in=0.04; //(atm)
16 P_CO2_out=0.004; //(atm)
17 Caustic_conc=[0.5 0.75];//Cocentration on both the
      ends of the column bottom and top(M)
18 n=2;
19 M_H2O=18; // Molecular Weight
20 H_H20=62.3; //(g/ft_3) Henry's Constant
21 H_H20_dash=H_H20/M_H20; //Henry's Constant converted
      into consistent units with kg_a
22
23
24 //CALCULATION
25 C_Ai=P_CO2_in/H_CO2*(1000/18);
26 k_star_L=(k_star_L_a/(a*3600))*(30.5);
27 \text{ H}_{CO2}_{dash}=H_{CO2}*(1/H_{H20}_{dash});
28 for i=1:2
29 Phi_a(i)=(1+(Caustic_conc(i)/(n*C_Ai))*(D_OH/D_CO2))
      ;//Refer equation7.51
30 sqrt_M(i)=sqrt(k2*Caustic_conc(i)*D_CO2)/k_star_L;
31 Phi(i)=sqrt_M(i);//Refer fig 7.7
```

```
77
```

```
32 K_ga(i)=(1/((1/kg_a)+(H_CO2_dash/(Phi(i)*k_star_L_a)
     )));//Overall Mass transfer coefficient
33 Percent_resis_gasfilm(i)=(K_ga(i)/kg_a)*100;
34 end
35
36 //OUTPUT
38 mprintf('\n Overall mass transfer coefficient (mol/
     hr ft3 atm): %0.1 f\t %0.1 f', K_ga(1), K_ga(2));
39 mprintf('\n Percenage resistance in gas film:
                      \%0.0 \, \text{f}\%\% \setminus t
                                      \%0.0 \, \text{f}\%\% ',
     Percent_resis_gasfilm(1) ,Percent_resis_gasfilm
     (2));
40
41 //FILE OUTPUT
42 fid= mopen('.\Chapter7-Ex3-Output.txt','w');
Bottom '):
44 mfprintf(fid, '\n Overall mass transfer coefficient (
     mol/hr ft3 atm): %0.1f\t %0.1f',K_ga(1),K_ga(2));
45 mfprintf(fid, '\n Percenage resistance in gas film:
                      \%0.0 \, \text{f}\%\% \setminus t
                                     \%0.0 \, \text{f}\%\% ',
     Percent_resis_gasfilm(1) ,Percent_resis_gasfilm
     (2));
46 mclose(fid);
47 //
     END OF PROGRAM
```

Scilab code Exa 7.4 Local selectivity due to mass transfer limitations

1 // Harriot P., 2003, Chemical Reactor Design (I-Edition

```
) Marcel Dekker, Inc., USA, pp 436
2 //Chapter-7 Ex7.4 Pg No.279
3 //Title:Local selectivity due to mass transfer
    limitations
4 //
```

```
5 clear
6 clc
7 //INPUT
8 C_Ai = 0.02; //(M)
9 C_B0=3; //(M)
10 D_A=10^{(-5)}; //(cm2/sec)
11 D_B=D_A; //(cm2/sec)
12 D_C=D_B; //(cm2/sec)
13 k_1=10<sup>(4)</sup>; //(L/mol sec)
14 k_star_l=0.015; // (cm/sec)
15 n=1;
16 C_c0 = [0 1.4];
17 X = [0 \ 0.5] // Conversion
18 Phi=[33 23];//From figure 7.7
19
20
21 //CALCULATION
22 k_2 = 0.09 * k_1;
23 for i=1:2
24
        C_B(i) = (1 - X(i)) * C_B0;
25 \operatorname{sqrt}_M(i) = \operatorname{sqrt}(C_B(i) * k_1 * D_A) / k_star_1;
26 Phi_a(i) = (1+(C_B(i)/(n*C_Ai))*(D_B/D_A)); // Refer
      equation 7.51
27 C_Bbar_by_C_B(i)=(Phi(i)/sqrt_M(i))^2;//Refer
      equation 7.59
28 delta_C_B(i)=(1-C_Bbar_by_C_B(i))*C_B(i); //Refer
      equation 7.60
29 delta_C_c(i)=delta_C_B(i);
30 \quad C_{cbar(i)} = delta_C_c(i) + C_cO(i);
31 C_Bbar(i)=C_Bbar_by_C_B(i)*(C_B(i));
32 S(i)=(1-(k_2*C_cbar(i)/(C_Bbar(i)*k_1)))*100;//Refer
```

```
equation 7.56
33 end
34
35 //OUTPUT
36 mprintf('\n\tLocal selectivity due to mass transfer
      limitations ');
  mprintf('\n\tThe local selectivity for Zero
37
      Conversion : \%0.0f\%\%', S(1));
  mprintf('\n\tThe local selectivity for 50%%
38
      Conversion : \%0.0 f\%\%', S(2));
39
40 //FILE OUTPUT
41 fid= mopen('.\Chapter7-Ex4-Output.txt', 'w');
42 mfprintf(fid, '\n\tLocal selectivity due to mass
      transfer limitations ');
  mfprintf(fid, '\n\tThe local selectivity for Zero
43
      Conversion is \%0.0 \, \text{f}\%\%',S(1));
44 mfprintf(fid, '\n\tThe local selectivity for 50%%
      Conversion is \%0.0f\%\%', S(2));
  mclose(fid);
45
46 //
     END OF PROGRAM
```

Scilab code Exa 7.5 Maximum rate of CO absorption and Dimensions of Bubble Column Reactor

- 1 //Harriot P.,2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc., USA, pp 436
- 2 //Chapter-7 Ex7.5 Pg No.293
- 3 //Title:Maximum rate of CO absorption and

Dimensions of Bubble Column Reactor

4 //

```
5 clear
6 clc
7 // COMMON INPUT
8 P_dash=5; // Partial pressure of acetic acid (atm)
9 P_total=20; // Total Pressure (atm)
10 myu=0.19; // Viscosity of acetic acid
11 T_C=180; // Temperature in ( C)
12 T_K=T_C+273; // Temperature in (K)
13 sigma_20=28;//Surface Tension(Dynes/cm) at 20 ( C)
14 sigma_180=20;//Surface Tension (Dynes/cm) at 180 ( C
15 M_CO=28; // Molecular weight of CO
16 M_B=60.05; // Molecular weight acetic acid
17 V_A= 30.7; // Molar volume
18 S_CO=7*10^{(-3)}; // Solubility of CO (mol/L atm)
19 f_CO=0.75; // Fraction of CO in feed
20 f_acetic_acid=1-f_CO;//Fraction of Acetic acid
21 R=82.056*(10<sup>-3</sup>); // (cm3 atm/ K
                                          mol)
22 rho_air=1.21; //(kg/m3) density of air at 20 ( C)
23 sigma_H2O=72;//Surface tension (Dynes/cm)
24 myu_H2O=1;//Viscosity of water
25 k_L_a_air_water=0.051; //(sec - 1)
26 D_02_water=2.4*(10^-5); //(cm2/sec) diffusivity for
      oxygen in waterat 20( C)
27 Conc_Rh=4*10<sup>(-3)</sup>; // Concentration of Rohdium(M)
28 Conc_CH3I=1; // Concentration of Methyl Iodide (M)
29 F_product_acetic_acid=0.1; // Rate of acetic acid
      produced (kmol/sec)
30 f_CO_reacted=0.8; //80\% of CO reacted
31 u_g=0.1; //(m/sec)
32 Epsilon_air_water_new=0.07;//At velocity
                                                3(\text{cm}/\text{sec})
33 Epsilon_air_water_old= 0.12; //At velocity 6(cm/sec)
34 u_g_c=5*(10^{(-2)}); //Gas Velocity Ex7.5.c(m/sec)
35
```

```
36
37
38 //CALCUATION (Ex7.5.a)
39 D_CO=(7.4*10^(-8)*M_B^(1/2)*T_K)/(myu*V_A^(0.6));//
      Diffusivity of CO (Wilke Chang equation Eq4.17)
40 M_ave=f_CO*M_CO+M_B*f_acetic_acid;//Average
      Molecular weight
41 rho_g=M_ave*P_total/(R*T_K);//From ideal gas law
42 epsilon_air_water= 0.12; //At velocity 6(cm/sec)
43 epsilon=epsilon_air_water*(sigma_H2O/sigma_180)
      ^(0.4)*(myu/myu_H2O)^(0.2)*(rho_g/rho_air)^(0.2);
     //From equation 7.64
44 u_G=6; //From figure 7.12(\text{cm/sec})
45 k_L_a=k_L_a_air_water*(D_CO/D_O2_water)^(0.5)*(
      epsilon/epsilon_air_water);//From equation 7.69
46 P_CO=P_total-P_dash;
47 C_CO_Star=S_CO*P_CO;
48 r_max=C_CO_Star*k_L_a;//Rate of CO absorption at 15
      \operatorname{atm}
49 r_test=158.8*(10<sup>(6)</sup>)*exp(-8684/T_K)*(Conc_Rh)*(
     Conc_CH3I); // Kinetic rate at 180 ( C)
50
51 //CALCULATION(Ex7.5.b)
52 F_feed_CO=F_product_acetic_acid/f_CO_reacted;//Rate
      of flow of CO (kmol/sec)
53 F_total=F_feed_CO/f_CO;
54 Q=F_total*R*T_K/(P_total);
55 S=Q/u_g;
56 D_t=sqrt(4*S/%pi);
57 r_test_b=(158.8*(10<sup>(6)</sup>)*exp(-8684/T_K)*(Conc_Rh)*(
      Conc_CH3I))*(10^(-3)); //Kinetic rate at 180 ( C)
58 liquid_vol= (F_product_acetic_acid/r_test_b)
      *(10^(-3));//liquid volume (m3)
59 h0=liquid_vol/S;//clear liquid
60 h=h0/(1-epsilon); // aerated liquid
61
62 / CALCULATION(Ex7.5.c)
```

```
63 Q=F_total*R*T_K/(P_total);
```

```
64 \quad S=Q/u_g_c;
65 D_t_c=sqrt(4*S/%pi);
66 Epsilon_new=(Epsilon_air_water_new/
      Epsilon_air_water_old)*epsilon;
  liquid_vol= (F_product_acetic_acid/r_test_b)
67
      *(10^(-3)); // liquid volume (m3)
68 h0=liquid_vol/S;//clear liquid
69 h_new=h0/(1-Epsilon_new);//aerated liquid
70
71 //OUTPUT (Ex7.5.a)
72 mprintf('\ OUTPUT Ex7.5.a');
73 mprintf(' \ n
      '):
74 mprintf('\n\tThe maximum rate of CO absorption at 15
      atm : %f (mol/L s)',r_max);
75 mprintf('\n\tThe kinetic rate of CO absorption at
      180( C) : %f (mol/L s)',r_test);
76 mprintf('\n\tThe predicted value of k_L_a : \%0.2 f (s
      -1)',k_L_a);
77
78 //OUTPUT (Ex7.5.b)
79 mprintf('\n\n OUTPUT Ex7.5.b');
80 mprintf('\n
      '):
81 mprintf('\n\tThe Dimensions of the reactor are ');
82 mprintf('\n\tDiameter:\%0.0 f m', D_t);
83 mprintf('\n\tHeight:%0.2 f m',h);
84
85 //OUTPUT (Ex7.5.c)
86 mprintf('\n\n OUTPUT Ex7.5.c');
87 mprintf(' \ n
      ');
88 mprintf('\n\tThe new dimensions of the reactor');
89 mprintf('\n\tDiameter:\%0.1 f m', D_t_c);
```

```
90 mprintf('\n\tHeight:\%0.1 f m',h_new);
```

```
91
92 //FILE OUTPUT
93 fid= mopen('.\Chapter7-Ex5-Output.txt', 'w');
94 mfprintf(fid, '\n OUTPUT Ex7.5.a');
95 mfprintf(fid, ' \ n
       ');
96 mfprintf(fid, '\n\tThe maximum rate of CO absorption
       at 15 atm : %f (mol/L s)',r_max);
   mfprintf(fid, '\n\tThe kinetic rate of CO absorption
97
       at 180(C) : \%f (mol/L s)',r_test);
98 mfprintf(fid, '\n\tThe predicted value of k_L_a : %0
       .2 f (s-1)', k_L_a);
99 mfprintf(fid, '\n\n OUTPUT Ex7.5.b');
100 mfprintf(fid, ' \ n
       ');
101 mfprintf(fid, '\n\tThe Dimensions of the reactor are
       '):
102 mfprintf(fid, '\n\tDiameter:%0.0 f m', D_t);
103 mfprintf(fid, ' \in \mathbb{R}^{0.2} f m', h);
104 mfprintf(fid, 'n \in OUTPUT Ex7.5.c');
105 mfprintf(fid, ' \ n
      ____
       ');
106 mfprintf(fid, '\n\tThe new dimensions of the reactor'
      );
107 mfprintf(fid, '\n\tDiameter: %0.1 f m', D_t_c);
108 mfprintf(fid, '\n\tHeight:%0.1 f m',h_new);
109 mclose(fid);
110
111 //=
      END OF PROGRAM
```

Scilab code Exa 7.6 Fraction of O2 Power of agitator kLa and average dissolved oxygen concentration

- 1 // Harriot P,2003, Chemical Reactor Design (I-Edition) Marcel Dekker, Inc., USA, pp 436.
- 2 //Chapter-7 Ex7.6 Pg No.300
- 3 // Title: Fraction of O2, Power of agitator, k_L_a and average dissolved oxygen concentration.
- 4 //

```
5 clear
6 clc
7 // COMMON INPUT
8 Vol_reactor=200; //Volume of reactor (m3)
9 D=4;//Diameter of reactor (m)
10 depth=12; // Depth of reactor (m)
11 u_g=3; // Superficial velocity (cm/sec)
12 T_C=30; // Temperature ( C)
13 T_K=273+T_C; // Temperature
                               (K)
14 f_02=0.21; // Fraction of O2 in air
15 myu_soln=1.5*(10<sup>(-3)</sup>);//Viscosity of solution (Pa
      sec)
16 R=0.08206; //Gas constant (m3 atm/ K kmol)
17 r_02_peak=45*(10^(-3)); //Flow rate of O2 at peak
      demand
18 Da_by_Dt = (1/3);
19 Da=1.333; //(m)
20 N=120; //(rpm)
21 N_conv = (N/60); //(sec - 1)
22 Press_top=1;//Pressure at the top of the vessel (atm
      )
```

- 23 rho=1000; // Density of water (kg/m3)
- 24 ug_sup1=3*(10^(-2)); //based on 30(C) and 1 (atm)
- 25 V=151;//Volume of solution calculated Ex7.6.a (m3)
- 26 ug_sup1=3*(10^(-2)); //based on 30(C) and 1 atm.
- 27 Press_top=1;//Pressure at the top of the vessel (atm)
- 28 Press_bottom=2;//From Ex7.6.c
- 29 ug_sup2=ug_sup1/Press_bottom;// at 2atm superficial velocity (cm/sec)
- 30 ug_ave=(ug_sup1+ug_sup2)/2;//Average superficial velocity (cm/sec)
- 31 depth=12; // Depth of reactor (m)
- 32 one_atm_water=10.3; //1 atm pressure corresponds to 10.3 (m) height of water
- 33 k_H_02=5.2*10^(4)// Henery's law constant for O2 in water for O2 (atm/mol fraction)
- 34 M_O2=32;//Molecular weight of O2
- 35 M_H2O=18;//Molecular weight of water
- 36 C_O2_critical=1*10^(-3);//Critical O2 Concentration (g/L)
- 37 percent_reduction=40/100;//Mass transfer coefficient in the upper region of the reactor is 40% less than the average
- 38 kLa_soln=0.22; //Value calculated in Ex7.6.d
- 39 r_conv=1.25*10^(-5);//Rate at peak O2 demand (mol/L sec)
- 40 depth=12; // Depth of reactor (m)
- 41

```
42
```

```
43 //CALCULATION (Ex7.6.a)
```

- 44 S=%pi*(D^2)/4;//Cross section area (m2)
- 45 V=S*depth; //Volume of solution (m3)
- 46 F_air=(S*u_g*(10^(-2))*3600)/(R*(10^(-3))*T_K);
- 47 $F_02=f_02*F_air;//Feed$ rate of O2 (mol/hr)
- 48 F_02_used=r_02_peak*V*(10^(3));//O2 used for aerobic fermentation (mol/hr)
- 49 F_O2_left=F_O2-F_O2_used;//O2 left after aerobic fermentation(mol/hr)

```
50 f_O2_exitgas=F_O2_left/F_air;//Fraction of O2 in
      exit gas
51 Percent_02_exitgas=(f_02_exitgas)*(100);
52 Frac_02_used=((f_02-f_02_exitgas)/f_02);
53
54 //CALCULATION (Ex7.6.b)
55 Re=(rho*N_conv*Da^2)/myu_soln;
56 N_p=6; //For a standard turbine
57 N_p_pitched=1.7; //For a pitched-blade turbine
58 PO=(N_p*rho*(N_conv^3)*(Da^5))*(10^(-3));//Refer
      equation 7.73 (kW)
59 //If the turbine is 2 m from the bottom, or 10 m
     below the surface, the pressure is about 2 atm
      since 1atm= 10.3 m water
60 Press_bottom=2
61 ug_sup2=ug_sup1/Press_bottom;
62 Q=ug_sup2*S;
63 N_Ae=Q/(N_conv*(Da^3));
64 Pg_by_P0=0.55; //From figure 7.15 based on N_Ae value
      calculated
65 Pg=Pg_by_P0*P0; //When aerated
66 P0_pitched=(N_p_pitched/N_p)*P0;
67 Pg_by_P0_pitched=0.8; //Solution reaching the upper
      stirrers is already aerated
68 Pg_pitched=Pg_by_P0_pitched*P0_pitched;
69 Tot_Pow_no_air=P0+Press_bottom*P0_pitched;//Total
     power when no air is presented
70 Tot_Pow_aerated=Pg+Press_bottom*Pg_pitched;//Total
     power when it is aerated
71
72 //CALCULATION (Ex7.6.c)
73 P_by_V_ave=Tot_Pow_aerated/V;
74 kLa_02_sulfite=0.32; //Using figure7.16 based on ave(
     P/V) value and ug_average value
75 kLa_soln=0.7*kLa_02_sulfite;//kLa for this solution
     is 70% of the value for oxygen absorption in
     sodium sulfite (sec -1)
```

76 y_02=0.086; // If gas is backmixed

```
77 depth_ave=depth/2;
78 Press_ave=(Press_top+(depth_ave/one_atm_water));//
       Pressure at average depth (atm)
79 C_02_star=(Press_ave*y_02/k_H_02)*(1000/M_H20);//
      Conversion (mol/L)
80 r_conv=r_02_peak/3600;//Rate at peak O2 demand (mol/
      L sec)
81 C_ave=(C_02_star-(r_conv/kLa_soln))
82 C_ave_conv=C_ave*M_02*1000; //Converted value of O2
      concentration in (mg/L)
83
84 //CALCULATION (Ex7.6.d)
85 depth_ave=depth/2;
86 Press_ave=(Press_top+(depth_ave/one_atm_water));//
      Pressure at average depth (atm)
87 kLa_soln_reduced=kLa_soln*(1-percent_reduction);
88 C_star_minus_C=r_conv/kLa_soln_reduced;
89 C_02_new=(C_02_star-(C_star_minus_C));
90 C_02_new_conv=C_02_new*M_02*1000; // Converted value
      of O2 concentration in (mg/L)
91 C_02_star_new=C_02_star/Press_ave;
92
93 //OUTPUT (Ex7.6.a)
94 mprintf('\ OUTPUT Ex7.6.a');
95 mprintf(' \ n
       ');
96 mprintf('\nAt the peak demand, fraction of the
      oxygen supplied = \%.3 \, \text{f} ', Frac_02_used);
97
98 //OUTPUT(Ex7.6.b)
99 mprintf(' n n \in OUTPUT Ex7.6.b');
100 mprintf(' \ n
       ');
101 mprintf('\nThe total power required for the agitator
       before the air is turned on: %0.0f kW',
```

```
Tot_Pow_no_air);
```

```
102 mprintf('\nThe total power required for the agitator
        after the air is turned on: %0.0f kW',
       Tot_Pow_aerated);
103
104 / OUTPUT (Ex7.6.c)
105 mprintf('\n\n OUTPUT Ex7.6.c');
106 mprintf(' \ n
       '):
107 mprintf('\nThe calculated value of kLa (mass
       transfer coefficient) of solution: \%0.2 f (sec -1)',
      kLa_soln);
108 mprintf('\nThe calculated value of average dissolved
       O2 concentration: \%0.2 f (mg/L)', C_ave_conv);
109
     //OUTPUT (Ex7.6.d)
110
     mprintf(') \land n \land n OUTPUT Ex7.6.d');
111
112 mprintf(' \ n
       ');
113
     mprintf('\nThe new calculated value of average
                                     \%0.2 \, f \, (mg/L)',
        dissolved O2 concentration
        C_02_new_conv);
     if(C_star_minus_C>C_02_star_new)
114
         mprintf('\nThe reactor is operated above
115
            critical O2 concentration ');
116
     else
         mprintf('\nThe reactor should be operated at
117
            higher air rate otherwise C_O2 would drop to
             zero')
118
     end
     // FILE OUTPUT
119
120 fid= mopen('.\Chapter7-Ex6-Output.txt', 'w');
121 mfprintf(fid, '\n OUTPUT Ex7.6.a');
122 mfprintf(fid, ' \ n
       '):
```

123 mfprintf(fid, '\nAt the peak demand, fraction of the

```
oxygen supplied = \%.3 \, \text{f} ', Frac_O2_used);
124 mfprintf(fid, ' \ n \ n \ OUTPUT \ Ex7.6.b');
125 mfprintf(fid, ' \ n
       ');
126 mfprintf(fid, '\nThe total power required for the
       agitator before the air is turned on: %0.0f kW',
       Tot_Pow_no_air);
127 mfprintf(fid, '\nThe total power required for the
       agitator after the air is turned on: %0.0f kW',
       Tot_Pow_aerated);
128 mfprintf(fid, ' n n OUTPUT Ex7.6.c');
129 mfprintf(fid, ' \ n
       ');
130 mfprintf(fid, '\nThe calculated value of kLa (mass
       transfer coefficient) of solution: \%0.2 f (sec -1)',
      kLa_soln);
131 mfprintf(fid, '\nThe calculated value of average
       dissolved O2 concentration: %0.2f (mg/L)',
       C_ave_conv);
132 mfprintf(fid, ' n n \in OUTPUT Ex7.6.d');
133 mfprintf(fid, ' \ n
      _
       ');
134 mfprintf(fid, '\nThe new calculated value of average
       dissolved O2 concentration %0.2f (mg/L)',
       C_O2_new_conv);
     if(C_star_minus_C>C_02_star_new)
135
         mfprintf(fid, '\nThe reactor is operated above
136
            critical O2 concentration ');
137
     else
138
         mfprintf(fid, '\nThe reactor should be operated
            at higher air rate otherwise C_O2 would drop
             to zero')
139
     end
140
     mclose(fid);
141 //
```

END OF PROGRAM

Scilab code Exa 7.7 Apparent value of kLa regime of operation and selectivity dependency on gas mixing

```
1 // Harriot P., 2003, Chemical Reactor Design (I-Edition
      ) Marcel Dekker, Inc., USA, pp 436.
2 //Chapter-7 Ex7.7 Pg No.304
3 // Title: Apparent value of kLa, regime of operation
     and selectivity dependency on gas mixing
  4
5 clear
6 clc
7 //INPUT
8 Vol_reactor=35; //Volume of reactor(L)
9 No_reactor=3;//No. of reactor
10 T_C=155; // Operating Temperature (C)
11 T_ref=273; // Reference Temperature ( C)
12 T_K= T_C+T_ref; // Operating Temperature (K)
13 P=8.2; // Operating Pressure (atm)
14 X_conversion=9.5*10(-2); //Conversion
15 S=73*10^{(-2)}; // Selectivity
16 M_cyclohexane=84.16; // Molecular weight of
      cyclohexane
17 F_cyclohexane=100; //Feed rate of cyclohexane (L/hr)
18 F_air=9.9; //Feed rate of air (nm3/hr)
19 f_O2_air=0.21; // Fraction of O2 in air
20 V_ref=22400; // Reference volume at STP(cm3/mol)
```

```
21 y_02=0.002; //O2 in vent gas
22 f_O2_consumed=0.99; // Fraction of O2 Consumed
23 rho_cyclohexane=0.779;//Density of cyclohexane at 20
      ( C)
24 main_pdt_ratio=3/2;
25 by_pdt_ratio=(1-main_pdt_ratio);
26 stoi_rxn_02=[0.5 1];
27 rho_M=0.650;//Density of Cyclohexane at 155 ( C)
28 P_dash=5.8; //Vapour Pressure of cyclohexane at 155 (
       C)
29 D_reactor=30; // Diameter of reactor (cm)
30 h_reactor=50; // Height of reactor (cm)
31 myu_20=0.98;//(cp) Viscosity at 20( C)
32 myu_155=0.2// (cp) Viscosity at 155( C)
33 x_02=6.38*(10^(-6)); //Mol fraction of O2
34 D_B_by_D_A=0.5; //Assumed value (refer Ex7.7)
35 Phi=20; //Refer Fig. 7.7
36 n=1/(0.7);
37
38
39 / CALCULATION (Ex7.7.a)
40 F_02=(F_air*10^(6)*f_02_air)/(3600*V_ref);
41 delta_N_02=F_02*f_02_consumed;
42 F_C6=(F_cyclohexane*10^(3)*rho_cyclohexane)/(3600*
     M_cyclohexane)
43 F_prdts=F_C6*X_conversion*S;
44 F_02_prdts=F_prdts*(main_pdt_ratio*stoi_rxn_02(1)+
     by_pdt_ratio*stoi_rxn_02(2));
45 F_02_remain_used=delta_N_02-F_02_prdts;
46 F_02_prdts_conver=F_02_prdts/(F_C6*X_conversion*S);
47 F_O2_remain_used_conver=F_O2_remain_used/(F_C6*
     X_conversion*(1-S));
48 X_02=10^(0.366*log10(T_K)-3.8385);//O2 solubility
     from Wild et al. [37]:
49 PO2_plus_PN2=P-P_dash;
50 P_02=y_02*P02_plus_PN2;
51 x_02=P_02*X_02;//Mol fraction of O2
```

```
52 C_M=rho_M*10^(3)/M_cyclohexane;
```

```
53 C_02_star=C_M*x_02;
54
55 //Assume each reactor has 30 L solution
56 V_soln_n=30; //Volume of solution in each reactor
57 apparent_kLa=(delta_N_O2)/(V_soln_n*No_reactor*
      C_02_star);
58 F_total=(F_air*10^(6)/3600)*(T_K/T_ref)*(8.2/2.4)
      *(1/8.2);//The total vapor flow is 8.2/2.4 times
      the air flow
59 CSA_reactor=%pi*(D_reactor^2)/4;
60 u_g=F_total/(CSA_reactor*No_reactor);
61 //Calculation for predicted value of kLa
62 kLa_20=0.16; //From Figure 7.16, for O2 C6H12 at 20
       (C), 2 cm/sec, 5 kW/m3
63 T_data=20+T_ref; // Temperature at which data is taken
       from the table
64 D_{155}by_D_{20}=(T_K/T_data)*(myu_{20}/myu_{155});
65 Predicted_kLa=kLa_20*(D_155_by_D_20^(0.5))*(u_g/2)
      ^(0.5);
66
67 / CALCULATION (Ex7.7.b)
68 C_M=rho_M*10^(3)/M_cyclohexane;
69 C_BO = (1 - X_conversion) * C_M;
70 C_Ai = C_M * x_02;
71 Phi_a=(1+(C_B0/(C_Ai*n))*(D_B_by_D_A)^(0.5));
72 ratio=Phi_a/Phi;
73
74 //OUTPUT (Ex7.7.a)
75 mprintf('\ OUTPUT Ex7.7.a');
76 mprintf(' \ n
     _
      ');
77 mprintf('\nThe value of apparent kLa: \%0.2 f (sec -1)'
      ,apparent_kLa);
78 mprintf('\n The value of predicted kLa: %0.2f (sec
      -1)', Predicted_kLa);
79 if (apparent_kLa>Predicted_kLa)
```

```
80 mprintf('\nThe absorption of oxygen is greatly
```

```
enhanced by chemical reactions in the liquid
            film ')
        mprintf('\nThe kinetics can be approximated by
81
           a first-order expression, the reaction would
           fall in the pseudo-first-order regime, \backslash
           nwhere the rate varies with the square root
           of the oxygen diffusivity and the rate
           constant.')
82 end
83
84 //OUTPUT (Ex7.7.b )
85 mprintf('\n\n OUTPUT Ex7.7.b');
86 mprintf(' \ n
      ');
  mprintf('\nThe value of Phi (enhancement factor) %0
87
      .4E ', Phi_a);
  mprintf('\nThe value of ratio Phi_a_by_Phi:%0.1E',
88
      ratio);
  mprintf('\nFrom the ratio value Phi_a is greater
89
      than Phi hence there is no significant gradient
      for cyclohexane');
90
91 // FILE OUTPUT
92 fid= mopen('.\Chapter7-Ex7-Output.txt', 'w');
93 mfprintf(fid, '\n OUTPUT Ex7.7.a');
94 mfprintf(fid, ' \ n
      '):
95 mfprintf(fid, '\nThe value of apparent kLa: %0.2f (
      sec - 1)', apparent_kLa);
  mfprintf(fid, '\n The value of predicted kLa: %0.2f (
96
      sec - 1)', Predicted_kLa);
97
  if (apparent_kLa>Predicted_kLa)
        mfprintf(fid, '\nThe absorption of oxygen is
98
           greatly enhanced by chemical reactions in
           the liquid film ')
        mfprintf(fid, '\nThe kinetics can be
99
```

```
approximated by a first-order expression, the
             reaction would fall in the pseudo-first-
            order regime, \nwhere the rate varies with
            the square root of the oxygen diffusivity
            and the rate constant.')
100 end
101 mfprintf(fid, ' n n \in UTPUT Ex7.7.b');
102 mfprintf(fid, ' \ n
      _
       ');
103 mfprintf(fid, '\nThe value of Phi (enhancement factor
      ) %0.4E ',Phi_a);
104 mfprintf(fid, '\nThe value of ratio Phi_a_by_Phi:%0.1
      E', ratio);
105 mfprintf(fid, '\nFrom the ratio value Phi_a is
      greater than Phi hence there is no significant
      gradient for cyclohexane');
106 mclose(fid);
107 //
      END OF PROGRAM
```

Chapter 8

Multiphase Reactors

Scilab code Exa 8.1 Gas absorption coefficient and fraction of overall resistance

- 1 //Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
- 2 // Chapter -8 Ex8.1 Pg No. 323
- 3 //Title:Gas absorption coefficient and fraction of overall resistance
- 4 //

```
5 clear
6 clc
7 //INPUT
8 rho_oil=0.8;//Density of oil (g/cm3)
9 IV_init=130;//Iodine Value initial
10 IV_final=80;//Iodine Value final
11 P=45;//Pressure of system (psig)
12 T_C=204;// Temperature of system (C)
13 t_run=[26 17];//Time required for hydrogenation run
2;
```

```
14 frac_Ni=[0.005 0.0125] // Fraction of Nickel used for
      different run
15
16 //CALCULATION
17 r_ave=((IV_init -IV_final))*(0.039*rho_oil)*(1/60)
      .*(t_run.^(-1));//Relationship between Iodine
      value and Hydrogen consumption (mol- H2/ L sec)
18 H_H2= 4*10^(-3); // Solubility of H2 from Fig8.4 Pg No
      .322
19 P_H2=(P/14.7)+1;//Absolute Pressure in (atm)
20 C_H2 = P_H2 * H_H2;
21 Ci_by_r=C_H2.*(r_ave.^(-1));
22 Coeff_R_cat=frac_Ni.^(-1);
23 equation=[ones(1,2);Coeff_R_cat]//Simultaneous
      Equation
24 Resistance= Ci_by_r*inv(equation);
25 Gas_abs_resistance=(Resistance(1)*100 ).*(Ci_by_r
      .^(-1));
26 Gas_abs_coefficient=(1/Resistance(1));
27
28 //OUTPUT
29 mprintf('\nThe Gas absorption coefficient is %f sec
      -1', Gas_abs_coefficient);
30 mprintf('\n The Fraction of overall resistance due
      to gas absorption\n Run 1 %0.0f%% \n Run 2 %0.0
      f\%\%', Gas_abs_resistance(1), Gas_abs_resistance(2))
      ;
31
32 //FILE OUTPUT
33 fid= mopen('.\Chapter8-Ex1-Output.txt', 'w');
34 mfprintf(fid,'\nThe Gas absorption coefficient is %f
       \sec -1', Gas_abs_coefficient);
35 mfprintf(fid, '\n The Fraction of overall resistance
      due to gas absorption \ln \operatorname{Run} 1 \% 0.0 \text{f}\% \ln \operatorname{Run} 2
      \%0.0\,\mathrm{f}\%\%', Gas_abs_resistance(1), Gas_abs_resistance
      (2));
36 mclose(fid);
37 //
```

```
97
```

END OF PROGRAM

Scilab code Exa 8.2 External Mass Transfer resistance

```
1 // Harriot P., 2003, Chemical Reactor Design (I-
Edition), Marcel Dekker, Inc., USA, pp 436.
2 // Chapter-8 Ex8.2 Pg No. 329
```

```
3 // Title: External Mass Transfer resistance
```

```
4 //
```

```
5
6 clear
7 clc
8 //INPUT
9 Chi=1.9;
10 M_A=2; // Molecular weight of Hydrogen
11 M_B=32; // Molecular weight of methanol
12 rho=0.79; //Density of methanol
13 myu=0.52; // Viscosity of methanol (cP)
14 V_A=14.3//Molar volume H2
15 T_C=30; // Operating Temperature (C)
16 T_K=273+T_C//Temperature (K)
17 Epsilon=0.4; // Porosity
18 rho_cat_dry=1.2; // Density of dry catalyst (g/cm3)
19 rho_s=2; //Solid density
20 g=9.8// Acceleration due to gravity (m/s2)
21 d_p=10^{(-3)}; // Size of catalyst (cm)
22 lambda=1.3; //From equation 8.4 Pg. No. 317
23 r_vol=2.4; // Measured rate (L/min)
24 V_mol=22.4; //(L/mol) assuming ideal gas
```

```
25 C_H2=4.1*10^(-3); //From Figure 8.3 (mol/L) Pg. No.
     321
26
27
28 //CALCULATION
29 //Assume D_H2 is three times the value given by the
      Wilke Chang Equation
30 D_H2=3*(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(V_A
     )^{0.6}
31 Sc=myu*10^{-2}/(rho*D_H2);
32 rho_cat_methanol=(1-Epsilon)*rho_s+Epsilon*rho;
33 delta_rho=rho_cat_methanol-rho;
34 v_t=(g*10*(d_p)^2*delta_rho)/(18*myu*10^-2);// From
     Stoke's Law
35 Re=rho*v_t*d_p/(myu*10^-2);
36 Sh_star=2+0.6*(Re)^(0.5)*(Sc^(1/3)); // Refer equation
          Pg.No.325
      8.9
37 kc_star=Sh_star*D_H2/d_p;
38 kc=2*kc_star; //With vigorous agitation
39 a_c=6*lambda/(d_p*rho_cat_dry); //From Equation 8.4
     Pg. No. 317
40 r_mol=r_vol/(22.4*60);//
41 delta_C_ext=r_mol*10^3/(kc*a_c);
42 percent_ext_resistance=(delta_C_ext/C_H2)*100;
43
44 //OUTPUT
45 mprintf('\nThe external mass transfer resistance is
     about %0.0f%% of overall resistance',
     percent_ext_resistance);
46 mprintf('\n The external mass transfer resistance is
      barely significant');
47
48 //FILE OUTPUT
49 fid= mopen('.\Chapter8-Ex2-Output.txt', 'w');
50 mfprintf(fid, '\nThe external mass transfer
      resistance is about %0.0f%% of overall resistance
      ',percent_ext_resistance);
51 mfprintf(fid, '\n The external mass transfer
```

```
resistance is barely significant');
52 mclose(fid);
53 //
```

```
END OF PROGRAM
```

Scilab code Exa 8.3 Apparent rate constant and consistency

```
1 //Harriot P., 2003, Chemical Reactor Design (I-
Edition), Marcel Dekker, Inc., USA, pp 436.
2 //Chapter-8 Ex8.3 Pg No.
3 //Title:Apparent rate constant and consistency
4 //
```

```
5
```

```
6 clear
```

7 clc

```
8 // COMMON INPUT
```

```
9 LHSV_inv=[0.75 1.39]; //Refer table 8.2 Test Results
(Liquid Hourly Space Velocity)
```

10 X_S=[0.77 0.83];//Refer table 8.2 Percentage Sulphur removal

```
11 T_C=365; // Operating Temperature (C)
```

```
12 rho=0.64;//Density of Sulphur Compounds (g/cm3)
```

```
13 myu=0.5; // Viscosity(cP)
```

```
14 T_K=273+T_C; //Temperature (K)
```

```
15 M_B=374; //For CHS compounds (Refer table8.1)
```

16 $V_A=M_B/0.6$; // Molar volume

```
17 Chi = 1;
```

18 Epsilon_by_tau=0.1;

```
19 D_pore_by_D_bulk=0.5; // Hinderance due to large
```

```
molecules
20 epsilon_holdup=0.6; // Assuming bed consists 60%
      catalyst
21 k_app_rhob=1.96//Refer Ex8.3.a Run 1
22 eta=0.74;
23 R=0.095; //Size of particle
24 C_H2_incorrect=0.48; //Solubility of H2 at 56 atm
25 P_incorrect=56; // Incorrect Pressure
26 P_correct=65; // Correct Pressure
27 m_feed=640; // Concentration of Feed (g/L);
28 percent_S=2.04; // Percentage of Sulphur
29 MW_S=32; // Molecular weight of Sulphur
30 N_H2=1.5; // Moles of H2
31 V_H2=14.3; // Solubility of Hydrogen
32
33 //CALCULATION (Ex8.3.a)
34 for i=1:2
35
       kapp_rhob(i) = log((1/(1-X_S(i))))*(1/LHSV_inv(i))
          ;//Refer Equation 8.21
36
37 \text{ end}
38 L=LHSV_inv(2)/LHSV_inv(1);
39 kapp_ratio=kapp_rhob(1)/kapp_rhob(2);
40 n=log10(kapp_ratio)/log10(L);
41
42 //CALCULATION (Ex8.3.b)
43 //FOR SULPHUR
44 D_CHS=(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(V_A)
      ^{0.6};
45 D_e_S=Epsilon_by_tau*D_pore_by_D_bulk*D_CHS;
46 epsilon_holdup=0.6; // Assuming bed consists 60%
      catalyst
47 k_app_S=k_app_rhob/(3600*epsilon_holdup);//Refer Ex8
      . 3. a
48 phi_app_S=R*(k_app_S/D_e_S)^(0.5);
49 //FOR H2
50 C_H2_corrected=C_H2_incorrect*(P_correct/P_incorrect
     );
```

```
51 C_S_initial=m_feed*percent_S*10^(-2)/MW_S;
52 Initial_rate=k_app_rhob*C_S_initial;
53 k_app_H2=N_H2*Initial_rate/(3600*epsilon_holdup*
     C_H2_corrected);
54 //Assume D_H2 is three times the value given by the
      Wilke Chang Equation
55 D_H2=3*(7.4*(10^(-8))*(Chi*M_B)^(0.5)*T_K)/(myu*(
     V_H2)^0.6);
56 D_e_H2=Epsilon_by_tau*D_H2;
57 phi_app_H2=R*(k_app_H2/D_e_H2)^(0.5);
58
59 //OUTPUT (Ex8.3.a)
60 mprintf('\n OUTPUT Ex8.3.a');
61 mprintf('\n
      ');
62 mprintf('\n\tThe Apparent rate constants are \n\t
     Run1 %0.2 f hr -1 \n\t Run2 %0.2 f hr -1 ', kapp_rhob
      (1),kapp_rhob(2))
63 mprintf('\n\tThe exponent value = \%0.1 f hence the
      difference is not consistent with repect to
      equations (8.23) and (8.24) for the
                                            apparent
     rate constants obtained ',n);
64 mprintf('\n\tThe error may be due to error in
      assuming a first order reaction');
65
66 / OUTPUT (Ex8.3.b)
67 mprintf('\n\n OUTPUT Ex8.3.b');
68 mprintf(' \ n
      ');
69 mprintf('\n\tThe internal effectiveness factor based
      on Sulphur and Hydrogen diffusion are %0.2f and
     %0.2f respectively', phi_app_S, phi_app_H2);
70 mprintf('\n\tThe internal effectiveness factor based
```

```
71
```

on Hydrogen is negligible');

```
72 //FILE OUTPUT
```

```
73 fid= mopen('.\ensuremath{\ \mathrm{Chapter8-Ex3-Output.txt'}, \ensuremath{\ \mathrm{w'}});
74 mfprintf(fid, '\n OUTPUT Ex8.3.a');
75 mfprintf(fid, ' \ n
       ');
76 mfprintf(fid, '\n\tThe Apparent rate constants are n
      t \, \text{Run1} \, \%0.2 \, \text{f} \, \text{hr} - 1 \, \text{hr} \, \text{Run2} \, \%0.2 \, \text{f} \, \text{hr} - 1 ',
      kapp_rhob(1),kapp_rhob(2))
77 mfprintf(fid, '\n\tThe exponent value = \%0.1 f hence
      the difference is not consistent with repect to
      equations (8.23) and (8.24) for the
                                                apparent rate
        constants obtained ',n);
78 mfprintf(fid, '\n\tThe error may be due to error in
      assuming a first order reaction');
79 mfprintf(fid, ' \ n \ n \ OUTPUT \ Ex8.3.b');
80 mfprintf(fid, ' \ n
       ');
81 mfprintf(fid, '\n\tThe internal effectiveness factor
      based on Sulphur and Hydrogen diffusion are %0.2f
        and %0.2f respectively', phi_app_S, phi_app_H2);
82 mfprintf(fid, '\n\tThe internal effectiveness factor
      based on Hydrogen is negligible');
83 mclose(fid);
84 //=
                                                          =END OF
       PROGRAM
```

Chapter 9

Fluidized Bed Reactors

Scilab code Exa 9.1 Model II Volumetric Mass Transfer Coefficient K

- 1 // Harriot P., 2003, Chemical Reactor Design (I-Edition)
 Marcel Dekker, Inc., USA, pp 436.
- 2 //Chapter-9 Ex9.1 Pg No.376
- 3 // Title: Model II Volumetric Mass Transfer Coefficient (K)
- 4 //
- 5
- 6 clear
- 7 clc
- 8 //INPUT
- 9 u0=[0.1 0.3 0.5 0.75 0.95 1.15];//Fluid Velocities (m/sec)
- 10 X=[0.923 0.872 0.846 0.775 0.728 0.664];//Conversion
- 11 h_by_h0=[1.26 1.44 1.66 2.0 2.3 2.7];//Height of bed under fluidized condition by height of packed bed
- 12 Epsilon_m=0.456; // Fraction of voids in packed bed

```
13 h0=0.75; //Height of packed bed (m)
14 k_r=4.45 ;//Reaction rate constant(sec-1)
15 W=5; //Weight of the bed (kg)
16
17
18 //CALCULATION
19 n=length(X);
20 for i=1:n
       KO_L_by_uO(i) = log(1/(1-X(i))); // Refer equation
21
          9.21 Pg No.371
       L(i)=h_by_h0(i)*h0;
22
       one_minus_epsilon(i)=(1-Epsilon_m)/h_by_h0(i);
23
24
       k_rhob(i)=k_r*one_minus_epsilon(i);
       KO(i) = KO_L_by_uO(i) * uO(i) / L(i);
25
       K(i)=1/((KO(i).^{(-1)})-(1/k_rhob(i))); //Refer
26
          equation 9.19 Pg No.371
27
  end
28
29
30 //OUTPUT
31 mprintf('\nThe values of K for given velocities')
32 mprintf('\n u (m/sec) \t K (sec -1)');
33 mprintf(' \ n
     _
      ');
34 for i=1:n
35
       mprintf(' \ \%.3g \ t \ t \ \%0.3f', uO(i), K(i));
36 end
37
38 //FILE OUTPUT
39 fid= mopen('.\Chapter9-Ex1-Output.txt', 'w');
40 mfprintf(fid, '\nThe values of K for given velocities
      ')
41 mfprintf(fid, '\n u (m/sec) \t K (sec -1) ');
42 mfprintf(fid, ' \ n
      ');
43 for i=1:n
```

```
105
```

```
44 mfprintf(fid, '\n %.3g \t \t %0.3f',u0(i),K(i));
45 end
46
47 // END
OF PROGRAM
```

Scilab code Exa 9.2 Model II Fraction unconverted naphthalene

```
1 // Harriot P.,2003, Chemical Reactor Design (I-Edition
) Marcel Dekker, Inc., USA, pp 436.
2 // Chapter -9 Ex9.2 Pg No.389
3 // Title: Model II-Fraction unconverted naphthalene
4 //
```

```
5 clear
6 clc
7 //INPUT
8 D=2.13 ; // Reactor Diameter (m)
9 L=7.9; //Reactor length (m)
10 dp_bar= 53*10<sup>(-6)</sup>; // Particle size (m)
11 u_mf=0.077; //Minimum fluidzation velocity (cm/s)
12 u_mb=0.5;//Minimum bubbling velocity(cm/s)
13 rho_bulk=770; //Bulk density (kg/m3)
14 rho_b=350; // Density (kg/m3)
15 Epsilon_m=0.44; // Porosity of bed
16 T_K=636; // Reaction Temperature (K)
17 P=266; //Reaction Pressure (kPa)
18 k_1=1.8; // Reaction rate constant (sec -1)
19 k_2=k_1;
20 u0=0.43; // Velocity (m/sec)
21 CO=2*10^{(-2)}; // Initial concentration (%)
```

```
22
23 //CALCULATION
24 k=k_1+k_2;
25 one_minus_epsilon=(1-Epsilon_m)*(rho_b/rho_bulk);
26 k_corrected=k*one_minus_epsilon;//based on bed
     volume
27 Nr=k_corrected*L/u0;
28 K=0.8; //From figure 9.12 at u0=0.43m/sec Pg No.376
29 Nm=K*L/u0;//Refer equation 9.21 Pg No.371
30 N=1/((1/Nm)+(1/Nr));//Refer equation 9.22 Pg No.371
31 X=(1-\exp(-N));//Refer equation 9.23 Pg No.371
32 \quad C_out = (1 - X) * CO;
33 C_out_ppm=C_out*(10^6);
34
35 //OUTPUT
36 mprintf('\nThe fraction of naphthalene unconverted
      is %0.0 f ppm ',C_out_ppm);
37
38 //FILE OUTPUT
39 fid= mopen('.\Chapter9-Ex2-Output.txt', 'w');
40 mfprintf(fid, '\nThe fraction of naphthalene
      unconverted is %0.0f ppm ',C_out_ppm);
41 mclose(fid);
42
43
44 //=
                                                  =END OF
     PROGRAM
```
Chapter 10

Novel Reactors

Scilab code Exa 10.1 Fraction unconverted naphthalene based on model II

- 1 //Harriot P., 2003, Chemical Reactor Design (I-Edition), Marcel Dekker, Inc., USA, pp 436.
- 2 // Chapter -10 Ex10.1 Pg No. 408
- 3 // Title: Fraction unconverted naphthalene based on model II
- 4 //

```
5 clear
6 clc
7 //INPUT
8 T_ref=273;//Reference Temperature
9 T_feed=300+T_ref;//Temperature in (K)
10 SV_STP=[60000 120000];//Space velocity(Hr-1)
11 t_cell=0.04;//Thickness(cm)
12 cell_unit_area=100/(2.54^2);//No of cells per unit
area(cells/cm2)
```

```
13 L_inch=6;// Length of monolithic converter (Inches)
```

```
14 Epsilon=0.68; // Porosity
15 myu=0.0284*(10<sup>-2</sup>);//Viscosity of air(Poise)
16 rho=6.17*10(-4); // Density of air (g/cm3)
17
18
19 //CALCULATION
20 d=sqrt(1/cell_unit_area) - t_cell;
21 Epsilon=(d^2/(d+t_cell)^2);
22
23 //Assume the wash coating lowers d to 0.21 cm and
      Epsilon to 0.68:
24 d_new=0.21;
25 Epsilon_new =0.68
26 a=4*Epsilon_new/d_new;
27 SV=SV_STP.*(T_feed/(T_ref*3600));//Refer equation
      10.13
28 L_cm=L_inch*2.54;
29 u0=SV.*(L_cm);
30 u=u0.*(1/Epsilon);
31 Nu=myu/rho;//Kinematic viscosity
32 D_CO_N2_1=0.192; // Diffusion coefficients for binary
      gas mixtures (cm2/sec) at 288K
33 D_CO_N2_2=D_CO_N2_1*(T_feed/288)^(1.7); //// Diffusion
       coefficients for binary gas mixtures (cm2/sec) at
       573K
34 \quad \text{Sc=Nu/D_CO_N2_2};
35 for i=1:2
36 Re(i)=d_new*u(i)/Nu;
37 Re_Sc_d_by_L(i)=Re(i)*Sc*(d_new/L_cm);
38 Sh(i) = 3.66 *(1+0.095*Re_Sc_d_by_L(i))^(0.45);//
      Refer equation 10.7
39 \text{ k_c(i)=Sh(i)*D_CO_N2_2/d_new};
40 X(i)=1-exp((-k_c(i)*a*L_cm*u0(i)^(-1)));//Refer
      equation10.12
41 Percent_X(i) = X(i) * 100;
42 end
43
44 //OUTPUT
```

```
45 mprintf('\n The Conversion expected for the given
      space velocities ');
46 mprintf(' \n Space Velocity (hr-1) \setminus t \setminus t Conversion (
      %%) ');
47 mprintf(' \ n
      ');
48 for i=1:2
       mprintf('\ \%.0 f \ t \ t \ \%.1 f',SV_STP(i),
49
          Percent_X(i));
50 \text{ end}
51
52 //FILE OUTPUT
53 fid= mopen('.\Chapter10-Ex1-Output.txt', 'w');
54 mfprintf(fid, '\n The Conversion expected for the
      given space velocities ');
55 mfprintf(fid, ' \n Space Velocity (hr-1)\t \t
      Conversion (\%\%) ');
56 mfprintf(fid, ' \ n
      ');
57 for i=1:2
       mfprintf(fid, '\n %.0 f \t \t \t \t \.1 f', SV_STP(i
58
          ), Percent_X(i));
59 end
60 mclose(fid);
61
62
63 //=
      END OF PROGRAM
```

Scilab code Exa 10.2 Conversion as a function of No of Gauzes

```
1 //Harriot P., 2003, Chemical Reactor Design (I-
      Edition), Marcel Dekker, Inc., USA, pp 436.
2 //Chapter-10 Ex10.2 Pg No. 414
3 // Title: Conversion as a function of No. of Gauzes
4 //
5 clear
6 clc
7 // COMMON INPUT
8 M_NH3=17; // Molecular weight NH3
9 M_air=29;//Molecular weight air
10 f_air=0.9; // Fraction of air in feed
11 f_NH3=(1-f_air); // Fraction of NH3 in feed
12 myu_air=0.0435*(10^-2); // Viscosity of air (Poise)
13 P_atm=(100+14.7)/14.7; // Pressure of the system
14 P_ref=1; // Reference Pressure
15 T_ref=273; // Reference temperature
16 T_inlet=300+T_ref; // Inlet Temperature
17 V_ref = 22400;
18 T_surf=700+T_ref; // Surface Temperature
19 u0=1.8; // Velocity at 300 C (m/sec)
20 d=0.076*(10<sup>-1</sup>);//Size of wire (cm)
21 D_NH3_N2=0.23; // Diffusivity at 298 K 1 \operatorname{atm}(\operatorname{cm}2/\operatorname{s})
22 N=32; //Gauzes (wires/cm)
23 frac_N2 = 0.25*(10<sup>(-2)</sup>);//Fraction of NH3 fed into
      N2 (Byproduct reaction)
24 n = [1 2 5 10 15 20]; //No. of Gauzes
25
26
27 //CALCULATION (Ex 10.2.a)
28 M_ave =f_air*M_air+f_NH3*M_NH3;
29 rho =(M_ave*T_ref*P_atm)/(V_ref*T_surf*P_ref);
30 \quad u0\_surf = u0*(T\_surf/T\_inlet);
31 Re = rho*u0_surf*100*d/myu_air;
32 Gamma = [1-32*(d)]^2; //From equation 10.5
```

```
33 Re_Gamma = Re/Gamma;
34 D_NH3 = 0.23*(T_surf/298)^(1.7)*(1/7.8);// at 7.8
      atm 700 C
35 Sc =(myu_air*P_ref)/(rho*D_NH3);
36 \text{ j_D} = 0.644*(\text{Re}_\text{Gamma})^{(-0.57)}; // \text{Refer equation}
       10.14
37 k_c = j_D*(u0_surf*100/Gamma)*(1/(Sc)^(2/3));
38 a_dash = 2*(%pi)*(d)*N
39 k_c_a_dash_u0 =(k_c*a_dash)/(u0_surf*100);
40 \text{ m} = \text{length}(n)
41 \text{ for } i = 1:m
        X(i) = (1 - \exp(-k_c_a_dash_u0*n(i)));
42
43 end
44 //CALCULATION (Ex 10.2.b)
45 \text{ for } i = 1:m
        X(i) = (1 - \exp(-k_c_a_dash_u0*n(i)));
46
        Yield(i) = X(i)-frac_N2*n(i);
47
48 end
49
50
51 //OUTPUT(Ex 10.2.a)
52 mprintf('\ OUTPUT Ex10.2.a');
_____');
54 mprintf('\n \ tThe Ammonia Conversion');
55 mprintf('\n======
                                                            =');
56 mprintf('\n\t Gauzes
                                     Conversion');
57 mprintf(' \setminus n \setminus t (n)
                                        (X) ');
58 mprintf('\n==
                                                           =');
59 for i=1:m
        mprintf(' \setminus n \setminus t \ \%.0 f \setminus t \setminus t \ \%.3 f', n(i), X(i));
60
61 end
62
63 / OUTPUT(Ex 10.2.b)
64 mprintf(' \ n \ n \ OUTPUT \ Ex10.2.b');
65 mprintf('\n
                                                      ____');
66 mprintf('\n \tThe Ammonia Yield');
67 \text{ mprintf}(' \setminus n
```

```
68 mprintf(' \in Gauzes
                                      Yield ');
69 mprintf(' \ t
                                          (X-\%fn)',frac_N2);
                     (n)
70 mprintf(' \ n
                                                         =');
71 for i=1:m
72
        mprintf('\setminus n \setminus t \ \%.0 f \setminus t \ \forall .3 f', n(i), Yield(i));
73 end
74 //FILE OUTPUT
75 fid= mopen('.\Chapter10-Ex2-Output.txt', 'w');
76 mfprintf(fid, '\n OUTPUT Ex10.2.a');
77 mfprintf(fid, ' \ n
                                            _____');
      ____
78 mfprintf(fid, '\n \tThe Ammonia Conversion');
79 mfprintf(fid, ' \ n
                                              _____');
80 mfprintf(fid, ' \in Gauzes
                                            Conversion');
81 mfprintf(fid, ' \setminus n \setminus t
                                                (X) ');
                            (n)
82 mfprintf(fid, ' \ n
                                                   =');
83 for i=1:m
        mfprintf(fid, '\n\t \%.0 f \t \t \%.3 f', n(i), X(i))
84
            ;
85 end
86 mfprintf(fid, (n \in OUTPUT Ex10.2.b');
87 mfprintf(fid, ' \ n
                                                        =; ) ;
88 mfprintf(fid, '\n \tThe Ammonia Yield');
89 mfprintf(fid, ' \ n
                                                      _____'):
90 mfprintf(fid, ' \setminus n \setminus t Gauzes
                                            Yield ');
91 mfprintf(fid, ' \setminus n \setminus t (n)
                                                (X-%fn)', frac_N2
       );
92 mfprintf(fid, ' \ n
                                                          =');
93 for i=1:m
        <code>mfprintf(fid, '\n\t \%.0f \t \t \%.3f',n(i),Yield(</code>
94
            i));
```

='):

```
95 end
96 mclose(fid);
97
98 //
```

-

END OF PROGRAM

_