//Chapter 14 //Example 14_10 //Page 371 clear;clc; v=400; ph_v=230; r=0.2; i=30; pfr=-0.866; pfy=0.866; pfb=1; ar=0; ay=-120; ab=120; //referring to the phasor diagram given in the text book air=-30; aiy=-90; aib=120; vr=ph_v*(cos(0)-%i*sin(0)); vy=ph_v*(cos(-120*%pi/180)-%i*sin(-120*%pi/180)); vb=ph_v*(cos(120*%pi/180)-%i*sin(120*%pi/180)); ir=i*(cos(-30*%pi/180)+%i*sin(-30*%pi/180)); iy=i*(cos(-90*%pi/180)+%i*sin(-90*%pi/180)); ib=i*(cos(120*%pi/180)+%i*sin(120*%pi/180)); in=ir+iy+ib; er=vr+r*ir+2*r*in; printf("Vr = %.0f/_%.0f \n", ph_v, ar); printf("Vy = %.0f/_%.0f \n", ph_v, ay); printf("Vb = %.0f/_%.0f \n\n", ph_v, ab); printf("Ir = %.0f/_%.0f \n", i, air); printf("Iy = %.0f/_%.0f \n", i, aiy); printf("Ib = %.0f/_%.0f \n\n", i, aib); printf("Nuetral current = %.2f+j(%.2f) \n\n", real(in), imag(in)); printf("The supply voltage of phase R to nuetral = Er = %.2f/_%.2f volts \n\n", abs(er), atan(imag(er)/real(er))*180/%pi);