//Example 2.10(b) clear; clc; Amin=1; Amax=10^3; AI=0.5; R1=100*10^3;//Tolerance (1%) R2=AI*R1;//Tolerance (1%) AImin=Amin/AI; AImax=Amax/AI; //AImin<=AI<=AImax //AImin=1+((2*R3)/(R4+R1)) -> 1+((2*R3)/(R4+R1))-Amin=0 -> (1-AImin)*R4+2*R3+(1-AImin)*R1=0...(i) and AImax=1+((2*R3)/(R4+0)) ->(1-AImax)*R4+2*R3=0....(ii) //Solving these two equations will give R3 and R4 A=[2 (1-AImin);2 (1-AImax)]; B=[(1-AImin)*R1;0]; R=linsolve(A,B); R3=R(1,1);//Tolerance (1%) R4=R(2,1);//Tolerance (1%) p=0.01; e=4*p*R2; R5=100*10^3; R2red=R2-e-500;//to be on the safer side 0.5 kohms more is reduced Rpot=2*(R2-R2red);//Potentiometer Resistance //Circuit is shown in Fig.2.21 in the book printf("Designed Instrumentation Amplifier with trimmed resistances :"); printf("\nR1=%.2f kohms",R1*10^(-3)); printf("\nR2=%.2f kohms",R2*10^(-3)); printf("\nR3=%.f kohms",R3*10^(-3)); printf("\nR4=%.f ohms",R4); printf("\nR5=%.f kohms",R5*10^(-3)); printf("\nR6=%.2f kohms",R2red*10^(-3)); printf("\nR7=%.2f kohms",Rpot*10^(-3));