clc; warning("off"); printf("\n\n example5.12 - pg178"); // given T=0+273.15; //[K] - temperature in Kelvins pa2=1.5; //[atm] - partial presuure of a at point2 pa1=0.5; //[atm] - partial pressure of a at point 1 z2=20; //[cm] - position of point 2 from reference point z1=0; //[cm] - position of point1 from reference point p=2; //[atm] - total pressure d=1; //[cm] - diameter D=0.275; //[cm^2/sec] - diffusion coefficient A=(%pi*((d)^2))/4; R=0.082057; //[atm*m^3*kmol^-1*K^-1] - gas constant k=0.75; // using the formula (Na/A)=-(D/(R*T*(z2-z1)))*ln((1-(pa2/p)*(1-k))/(1-(pa1/p)*(1-k))) NabyA=-(D/(R*T*(z2-z1)))*(2*0.7854)*log((1-(pa2/p)*(1-k))/(1-(pa1/p)*(1-k)))/(10^6); printf("\n\n (Na/A)=%ekmol/sec",NabyA); printf("\n Note that this answer is larger than the rate for equimolar counter diffusion but smaller tahn the rate for diffusion through a stagnant film.Sometimes the rate for diffusin through a stagnant film can be considered as an upper bound, if k ties between zero and one");