clc; warning("off"); printf("\n\n example3.3 - pg69"); // given syms t x; hf1=-270; //[J/sec] - heat flow at face 1 hf2=-228; //[J/sec] - heat flow at face2 Qgen=1.5*10^6; //[J*m^-3*sec^-1] generation per unit volume per unit time v=6*10^-5; //[m^3] volume Cp=0.093; //[cal*g^-1*K^-1] heat capacity of copper sp=8.91; //specific gravity of copper a=0.0006; //[m^2] - area // (a) using the overall balance acc=hf1-hf2+Qgen*v; printf("\n\n (a) the rate of accumulation is %fJ/sec\n\n ",acc); // (b) SIx1=hf1/a; SIx2=hf2/a; x1=0; // solving for the constant of integration c1 in the equation [del(p*cp*T)/delt-der(SIx)]*x=-SIx+c1; c1=0+SIx1; x2=0.1; g=(-(SIx2)+c1)/x2+Qgen; SIx=c1-(g-Qgen)*x; disp(SIx,"SI(x)=","(b)"); // solving for constant of integration c3 in the equation p*cp*T=g*t+c3 T2=100+273.15; t2=0; p=sp*10^3; //[kg/m^3] - density cp=Cp*4.1840; //[J*kg^-1*K^-1] c3=p*cp*T2-g*t2; T=(g*(10^-3)/(p*cp))*t+c3/(p*cp); disp(T,"T="); // solving for constant of integration c2 in the equation -k*T=der(SIx)*x^2-c1*x+c2 k=380; //[w/m^1*K^1] x2=0.1; c2=k*T+(3.5*10^5)*x2^2-(4.5*10^5)*x2; function y=T(t,x) y=(-(3.5*10^5)*x^2+(4.5*10^5)*x+87.7*t+1.00297*10^5)/k; endfunction // at face 1; x1=0; t1=60; //[sec] T1=T(t1,x1); disp(T1,"T=","at face 1"); // at face 2 x2=0.1; t2=60; // [sec] T2=T(t2,x2); disp(T2,"T=","at face 2");