clc; warning("off"); printf("\n\n example14.2.sce - pg726"); T=40+273.15; //[K] - temperature P=1; //[atm] - pressure // thermal conductivit of air sigma=3.711*10^-10; //[m] etadivkb=78.6; //[K] A=1.16145; B=0.14874; C=0.52487; D=0.77320; E=2.16178; F=2.43787; Tstar=T/(etadivkb); // using the formula si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar) si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar)); // using the formula K=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si)) M=28.966; //[kg/mole] - molecular weight of air k=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si)); printf("\n\n Thermal conductivity of air is \n k=%fW/m*K",k); printf("\n\n Agreement between this value and original value is p[oor;the Chapman-Enskog theory is in erreo when applied to thermal conductivity of polyatomic gases"); // thermal conductivity of argon sigma=3.542*10^-10; //[m] etadivkb=93.3; //[K] A=1.16145; B=0.14874; C=0.52487; D=0.77320; E=2.16178; F=2.43787; Tstar=T/(etadivkb); // using the formula si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar) si=(A/(Tstar^B))+(C/exp(D*Tstar))+(E/exp(F*Tstar)); // using the formula K=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si)) M=39.948; //[kg/mole] - molecular weight of argon k=(8.3224*(10^-22))*(((T/M)^(1/2))/((sigma^2)*si)); printf("\n\n Thermal conductivity of argon is \n k=%fW/m*K",k); printf("\n\n The thermal conductivity from Chapman-Enskog theory agrees closely with the experimental value of 0.0185; note that argon is a monoatomic gas");