clc; warning("off"); printf("\n\n example12.5 - pg576"); T=290; //[K] - temperature of flowing water U=3; //[m/sec] - free stream velocity Tfs=285; //[K] - temperature of free stream vr=10^-3; //[m^3/kg] - volume per unit mass p=1/vr; //[kg/m^3] - density of water at Tfs mu=1225*10^-6; //[N*sec/m^2] k=0.590; //[W/m*K] Npr=8.70; // (a) The length of laminar boundary Nre=5*10^5; xc=(Nre)*(mu/(p*U)); printf("\n\n (a) The length of laminar boundary is \n xc = %f m",xc); // (b) Thickness of the momentum boundary layer and thermal boundary layer del=5*xc*((Nre)^(-1/2)); delh=del*((Npr)^(-1/3)); printf("\n\n (b) The thickness of momentum boundary layer is \n del = %e m\n The thickness of the hydryodynamic layer is \n delh = %e m",del,delh); // (c) Local heat transfer coefficient x=0.2042; //[ft] hx=((0.33206*k)/(x))*((Nre)^(1/2))*((Npr)^(1/3)); printf("\n\n (c) The local heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/hr*ft^2*degF",hx,hx*0.17611); // (d) Mean heat transfer coefficient hm=2*hx; printf("\n\n (d) The mean heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/hr*ft^2*degF",hm,hm*0.17611);