clc; warning("off"); printf("\n\n example11.5 - pg521"); // given Nre=50000; d=0.04; //[m] - diameter of pipe // physical properties of water T1=293.15; //[K] T2=303.15; //[K] T3=313.15; //[K] p1=999; //[kg/m^3] - density of water at temperature T1 p2=996.0; //[kg/m^3] - density of water at temperature T2 p3=992.1; //[kg/m^3] - density of water at temperature T3 mu1=1.001; //[cP] - viscosity of water at temperature T1 mu2=0.800; //[cP] - viscosity of water at temperature T2 mu3=0.654; //[cP] - viscosity of water at temperature T3 k1=0.63; //[W/m*K] - thermal conductivity of water at temperature T1 k2=0.618; //[W/m*K] - thermal conductivity of water at temperature T2 k3=0.632; //[W/m*K] - thermal conductivity of water at temperature T3 cp1=4182; //[J/kg*K] - heat capacity of water at temperature T1 cp2=4178; //[J/kg*K] - heat capacity of water at temperature T2 cp3=4179; //[J/kg*K] - heat capacity of water at temperature T3 Npr1=6.94; // prandtl no. at temperature T1 Npr2=5.41; // prandtl no. at temperature T2 Npr3=4.32; // prandtl no. at temperature T3 // (a) Dittus -Boelter-this correction evalutes all properties at the mean bulk temperature,which is T1 kmb=0.603 h=(kmb/d)*0.023*((Nre)^(0.8))*((Npr1)^0.4); printf("\n\n (a) Dittus -Boelter\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611); // (b) Seider Tate-this correlation evaluates all the properties save muw at the mean bulk temperature h=(kmb/d)*(0.027)*((Nre)^0.8)*((Npr1)^(1/3))*((mu1/mu3)^0.14); printf("\n\n (b) Seider Tate\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611); // (c) Sleicher-Rouse equation a=0.88-(0.24/(4+Npr3)); b=(1/3)+0.5*exp((-0.6)*Npr3); Nref=Nre*(mu1/mu2)*(p2/p1); Nnu=5+0.015*((Nref)^a)*((Npr3)^b); h=Nnu*(kmb/d); printf("\n\n (c) Sleicher-Rouse equation\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611); // (d) Colbum Analogy- the j factor for heat transfer is calculated jh=0.023*((Nref)^(-0.2)); Nst=jh*((Npr2)^(-2/3)); U=(Nre*mu1*10^-3)/(d*p1); h=Nst*(p1*cp1*U); printf("\n\n (d) Colbum Analogy\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611); // (e) Friend-Metzner f=0.005227; Nnu=((Nre)*(Npr1)*(f/2)*((mu1/mu3)^0.14))/(1.20+((11.8)*((f/2)^(1/2))*(Npr1-1)*((Npr1)^(-1/3)))); h=Nnu*(kmb/d); printf("\n\n (e) Friend-Metzner\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611); // (f) Numerical analysis Nnu=320; h=Nnu*(kmb/d); printf("\n\n (f) Numerical analysis\n the heat transfer coefficient is \n h = %f W/m^2*K = %f Btu/ft^2*h^-1*degF",h,h*0.17611);