clear; clc; // Illustration 7.4 // Page: 439 printf('Illustration 7.4 - Page: 439\n\n'); // solution //*****Data*****// // C-acetic acid A-water // f-feed r-raffinate s-solvent f = 1000; // [kg/h] xCf = 0.35; // [fraction of acid] xAf = 1-xCf; // [fraction of water] // Solvent is pure xAr = 0.02; yCs = 0; //*****// printf('Illustration 7.4(a) - Page: 440\n\n'); // Solution(a) // From Figure 7.15 xCMmin = 0.144; // From equation 7.11 Smin = f*(xCMmin-xCf)/(yCs-xCMmin); // [kg/h] printf("The minimum amount of solvent which can be used is %f kg/h.\n\n",Smin); printf('Illustration 7.4(b) - Page: 441\n\n'); // Solution(b) S = 1.6*Smin; // [kg/h] // From equation 7.11 xCM = (f*xCf+S*yCs)/(f+S); // Data for equilibrium line // Data_eqml = [xCeq yCeq] Data_eqml = [0.0069 0.0018;0.0141 0.0037;0.0289 0.0079;0.0642 0.0193;0.1330 0.0482;0.2530 0.1140;0.3670 0.2160;0.4430 0.3110;0.4640 0.3620]; // Data for operating line // Data_opl = [xCop yCop] Data_opl = [0.02 0;0.05 0.009;0.1 0.023;0.15 0.037;0.20 0.054;0.25 0.074;0.30 0.096;0.35 0.121]; scf(1); plot(Data_eqml(:,1),Data_eqml(:,2),Data_opl(:,1),Data_opl(:,2)); xgrid(); legend('Equilibrium line,Operating line'); xlabel("wt fraction of acetic acid in water solutions, xC"); ylabel("wt fraction of acetic acid in ether solutions, yC"); // Now number of theoritical stages is determined by drawing step by step // stairs from xC = 0.35 to xC = 0.02 // From figure 7.16 // Number of theoritical stages 'N' is N = 8; printf("The number of theoretical stages if the solvent rate used is 60 percent above the minimum is %f.\n\n",N);