clear; clc; // Illustration 6.7 // Page: 358 printf('Illustration 6.7 - Page: 358\n\n'); // solution //*****Data*****// // a-benzene b-toluene xa = 0.46; xb = 0.54; Tb = 395; // [bottom temp., K] Tt = 360; // [top temp., K] alphab = 2.26; alphat = 2.52; D = 1.53; // [diameter of column, m] f = 0.81; // [flooding] deltaP = 700; // [average gas-pressure drop, Pa/tray] //*****// Tavg = (Tb+Tt)/2; // [K] alpha_avg = (alphab+alphat)/2; printf('Illustration 6.7(a) - Page: 359\n\n'); // Solution(a) // Constants for components 'a' and 'b' Aa = 4.612; Ba = 148.9; Ca = -0.0254; Da = 2.222*10^-5; ua = exp(Aa+Ba/Tavg+Ca*Tavg+Da*Tavg^2); // [cP] Ab = -5.878; Bb = 1287; Cb = 0.00458; Db = -0.450*10^-5; ub = exp(Ab+Bb/Tavg+Cb*Tavg+Db*Tavg^2); // [cP] // At the average column temperature ul = ua^xa*ub^xb; // [cP] K = alpha_avg*ul; // From the O’Connell correlation Eo = 0.52782-0.27511*log10(K) + 0.044923*(log10(K))^2; printf("The overall tray efficiency using the O’Connell correlation is %f.\n\n",Eo); printf('Illustration 6.7(b) - Page: 359\n'); // Solution(b) Nideal = 20; // [number of ideal stages] Nreal = Nideal/(Eo); // [nnumber of real stages] disp(Nreal); // Since real stages cannot be fractional, therefore Nreal = 34; // From Table 4.3 tray spacing t = 0.6; // [m] // Adding 1 m over the top tray as an entrainment separator and 3 m beneath // the bottom tray for bottoms surge capacity, the total column height is Z = 4+Nreal*t; // [m] printf("The number of real trays and the total tower height are %f and %f m respectively.\n\n",Nreal,Z); printf('Illustration 6.7(c) - Page: 359\n\n'); // Solution(c) // Total gas pressure drop deltaPc = deltaP*Nreal/1000; // [kPa] printf("The total gas-pressure drop through the column is %f kPa.\n\n",deltaPc);