clear; clc; // Illustration 2.6 // Page: 111 printf('Illustration 2.6 - Page: 111\n\n'); // solution //*****Data*****// // a-UF6 b-air M_a = 352; // [molecular weight of UF6, gram/mole] M_b = 29; // [gram/mole] d = 0.01; // [diameter, m] x = 0.1; // [length exposed to air stream, m] v = 1; // [m/s] Ts = 303; // [surface temperature of solid, K] P_a = 27; // [vapor pressure of UF6, kPa] Tb = 325; // [bulk temperature of solid ,K] P = 101.3; // [kPa] R = 8.314; // [cubic m.Pa/mole.K] //*****// y_a1 = P_a/P; // [mole fraction at point 1] y_a2 = 0; // [mole fraction at point 2] // Along the mass-transfer path-cylinder surface (point 1) to bulk air (point 2) Tavg = (Ts+Tb)/2; // [K] // At point 1, the gas is saturated with UF6 vapor, while at point 2 the gas is virtually free of UF6 // Therefore Pavg = (P_a+0)/2; // [average partial pressure, kPa] y_a = Pavg/P; // [mole fraction of UF6] Mavg = M_a*y_a+M_b*(1-y_a); // [gram/mole] row_avg = P*Mavg/(R*Tavg); // [kg/cubic m] // Parameter for c-O2, d-N2 and a-UF6 yi_c = 0.182; yi_d = 0.685; yi_a = 0.133; Tc_c = 154.6; Tc_d = 126.2; Tc_a = 505.8; // [K] Pc_c = 50.4; Pc_d = 33.9; Pc_a = 46.6; // [bar] M_c = 32; M_d = 28; M_a = 352; // [gram/mole] V_c = 73.4; V_d = 89.8; V_a = 250; // [cubic cm/mole] Z_c = 0.288; Z_d = 0.290; Z_a = 0.277; // From equation 2.52 and 2.53 Tcm = yi_c*Tc_c+yi_d*Tc_d+yi_a*Tc_a; // [K] Pcm = 10^6*R*Tcm*(yi_c*Z_c+yi_d*Z_d+yi_a*Z_a)/((yi_c*V_c+yi_d*V_d+yi_a*V_a)*100000); // [bar] M_avg = yi_c*M_c+yi_d*M_d+yi_a*M_a; // [gram/mole] // From equation 2.50 Em = 0.176*(Tcm/(M_avg^3*Pcm^4))^(1/6); // [uP]^-1 // From equation 2.51 Trm = Tavg/Tcm; f_Trm = (0.807*Trm^0.618)-(0.357*exp(-0.449*Trm))+(0.340*exp(-4.058*Trm))+0.018; // From equation 2.49 u = f_Trm/Em; // [uP] u = u*10^-7; // [viscosity, kg/m.s] Re = d*v*row_avg/u; // [Renoylds number] // Diffusivity of UF6 vapors in air at 314 K and 1 atm from equation 1.49 D_ab = 0.0904; // [square cm/s] Sc = u/(row_avg*D_ab*10^-4); // [Schmidt number] Sh_avg = 0.43 + 0.532*Re^0.5*Sc^0.31; // [Sherwood number] // From equation 1.7 c = P/(R*Tavg); // [kmole/cubic m] // From Table 2.1 F_av = Sh_avg*D_ab*c*10^-4/d; // [kmole/square m.s] // From equation 2.2 N_avg = F_av*log((1-y_a2)/(1-y_a1)); // [kmole/square m.s] S = 2*%pi*d^2/4 +%pi*d*x; // [total surface area of the cylinder, square m] w_a = N_avg*S*M_a; // [rate of sublimation of the solid, kg/s] printf("Rate of sublimation of a cylinder of UF6 is %e kg/s\n\n",w_a);