clear; clc; // Illustration 2.12 // Page: 131 printf('Illustration 2.12 - Page: 131\n\n'); // solution //*****Data*****// // a-water b-dry air D = 25.4*10^-3; // [Internal diameter of tower, m] Z = 1.5; // [length of the wetted section, m] Gy = 10; // [mass velocity of air, kg/square m.s] Tair = 308; // [K] Twater = 295; // [K] P = 101.3; // [kPa] M_a = 18; // [gram/mole] M_b = 29; // [gram/mole] R = 8.314; // [cubic m.Pa/mole.K] //*****// // The water vapor partial pressure at the interface remains constant at the vapor pressure of liquid water at 295 K, which is pa1 = Pa = 2.64 kPa // The water vapor partial pressure at the bulk of the gas phase increases from pA2 = pAin = 0 for the dry inlet air to pa2= pAout for the air leaving the tower Pa = 2.64; // [kPa] Gm = Gy/M_b; // [Assuming that gas phase is basically dry air, kmole/square m.s] // The properties of dry air at 308 K and 1 atm are (from example 2.9) row = 1.14; // [kg/cubic m] u = 1.92*10^-5; // [kg/m.s] D_ab = 0.242*10^-4; // [square m/s] Sc = 0.692; // [Schmidt number] Re = Gy*D/u; // [Renoylds number] if(Re<35000 & Re>2000) // From equation 2.74 Sh = 0.023*Re^0.83*Sc^0.44; // [Sherwood number] printf("Sherwood number is %f\n\n",Sh); else() printf('We cannot use equation 2.74') end c = P/(R*Tair); // [kmole/cubic m] // Now using equation 2.89 Pa_out = Pa*(1-exp((-4*Sh*Z*c*D_ab)/(Gm*D^2))); // [kPa] printf("The partial pressure of water in the air leaving the tower is %e kPa\n\n",Pa_out);