clear; clc; // Illustration 2.11 // Page: 129 printf('Illustration 2.11 - Page: 129\n\n'); // solution //*****Data*****// // a-water b-air D = 25.4*10^-3; // [diameter of wetted wall tower, m] Gy = 10; // [mass velocity, kg/square m.s] T1 = 308; // [K] P = 101.3; // [kPa] p_a1 = 1.95; // [partial pressure of water vapor, kPa] R = 8.314; // [cubic m.Pa/mole.K] M_a = 18; // [gram/mole] Cpa = 1.88; // [kJ/kg.K] //*****// // Properties of dry air at 308 K and 1 atm pressure are u = 1.92*10^-5; // [kg/m.s] row = 1.14; // [kg/cubic m] D_ab = 0.242*10^-4; // [square m/s] Sc = 0.696; // [Schmidt number] Cp = 1.007; // [kJ/kg.K] k = 0.027; // [W/m.K] Pr = 0.7; // [Prandtl number] Re = D*Gy/u; // [Renoylds number] // From equation 2,74 Sh = 0.023*Re^0.83*Sc^0.44; // [Sherwood number] // From Table 2.1 kg = Sh*D_ab/(R*T1*D)*1000; // [mole/square m.s.kPa] printf("kg is %e\n",kg); // To estimate the heat-transfer coefficient, we use the Dittus-Boelter equation for cooling, equation 2.80 Nu = 0.023*Re^0.8*Pr^0.3; // [Nusselt number] // From Table 2.1 h = Nu*k/D; // [W/square m.K] printf("h is %f\n",h); T =373.15; // [K] lambda_a = 40.63; // [kJ/mole] Tc = 647.1; // [K] // Solution of simultaneous equation 2.78 and 2.79 function[f]=F(e) f(1) = kg*(p_a1 - exp(16.3872-(3885.7/(e(1)-42.98))))-e(2); f(2) = e(2)*M_a*Cpa*(T1-e(1))/(1-exp(-e(2)*M_a*Cpa/h)) + 1000*e(2)*lambda_a*((1-(e(1)/Tc))/(1-(T/Tc)))^0.38; funcprot(0); endfunction // Initial guess e = [292 -0.003]; y = fsolve(e,F); Ti = y(1); Na = y(2); printf("The temperature of the liquid water and the rate of water evaporation is %f K and %e mole/square m.s respectively",Ti,Na);