clear; clc; // Illustration 1.2 // Page: 7 printf('Illustration 1.2 - Page: 7\n\n'); //*****Data***** // Component a-KNO3 b-H20 T = 293; // [K] s_eqm = 24; // [percent by weight, %] row = 1162; // [density of saturated solution, kg/cubic m] //*****// printf('Illustration 1.2 (a)- Page: 7\n\n'); // Solution (a) // Basis: 100 kg of fresh wash solution m_a = (s_eqm/100)*100; // [kg] m_b = 100 - m_a; // [kg] M_a = 101.10; // [gram/mole] M_b = 18.02; // [gram.mole] // Therefore moles of component 'a' and 'b' are n_a = m_a/M_a; // [kmole] n_b = m_b/M_b; // [kmole] m_total = 100; // [basis, kg] n_total = n_a+n_b; // [kmole] // Average molecular weight M_avg = m_total/n_total; // [kg/kmole] // Total molar density of fresh solution C = row/M_avg; // [kmole/cubic m] printf("Total molar density of fresh solution is %f kmole/cubic m\n\n",C); printf('Illustration 1.2 (b)- Page: 8\n\n'); // Solution (b) // mole fractions of components 'a' and 'b' x_a = n_a/n_total; x_b = n_b/n_total; printf("Mole fraction of KNO3 and H2O is %f %f",x_a,x_b);