//ex17.4 P_dev_1=50*746; //developed power V_L=480; //line voltage PF=0.9; //power factor f=60; //frequency P=8; //number of poles X_s=1.4; //synchronous reactance //CASE a n_s=120*f/P; //speed of machine in rpm W_s=n_s*2*%pi/60; //speed in radians per second T_dev=P_dev_1/W_s; //developed torque printf(" All the values in the textbook are approximated hence the values in this code differ from those of Textbook") disp('CASE a:') disp(n_s,'speed in rpm') disp(T_dev,'developed torque in Nm') //CASE b V_a=V_L; //phase voltage I_a_max=P_dev_1/(3*V_a*PF); //phase current phi=acos(PF); I_a=I_a_max*complex(cos(phi),sin(phi)); E_r=V_a-%i*X_s*I_a; //voltage induced by rotor E_r_max=sqrt((real(E_r)^2)+(imag(E_r)^2)); E_r_phi=atan(imag(E_r)/real(E_r)); TA=-E_r_phi; //torque angle disp('CASE b:') disp('Phase current:') disp(I_a_max,'peak value in amperes') disp(phi*180/%pi,'phase angle in degrees') disp('Voltage induced by rotor:') disp(E_r_max,'peak value in volts') disp(E_r_phi*180/%pi,'phase angle in degrees') disp(TA*180/%pi,'torque angle in degrees') //CASE c //excitation constant means the values of I_f, B_r and E_r are constant P_dev_2=100*746; sin_t=P_dev_2*sin(TA)/P_dev_1; //developed power is proportional to sin_t t=asin(sin_t); E_r=E_r_max*complex(cos(-t),sin(-t)); //E_r is constant in magnitude I_a=(V_a-E_r)/(%i*X_s); //new phase current I_a_max=sqrt((real(I_a)^2)+(imag(I_a)^2)); I_a_phi=atan(imag(I_a)/real(I_a)); PF=cos(I_a_phi); disp('CASE c:') disp('Phase current:') disp(I_a_max,'peak value in amperes') disp(I_a_phi*180/%pi,'phase angle in degrees') disp('Voltage induced by rotor:') disp(E_r_max,'peak value in volts') disp(-t*180/%pi,'phase angle in degrees') disp(t*180/%pi,'torque angle in degrees') disp(PF,'power factor is')