//clear// //Caption: Program to calculate E, D and volume charge density using divergence of D //Example4.3 //page 100 clc; x = -4; y = 3; z = 6; V = 2*(x^2)*y-5*z; disp(float(V),'Potential V at point P(-4,3,6)in volts is Vp =') x1 = sym('x1'); y1 = sym('y1'); z1 = sym('z1'); ax = sym('ax'); ay = sym('ay'); az = sym('az'); V1 = 2*(x1^2)*y1-5*z1; //Electric Field Intensity from gradient of V Ex = -diff(V1,x1); Ey = - diff(V1,y1); Ez = - diff(V1,z1); Ex1 = limit(Ex,x1,-4); Ex1 = limit(Ex1,y1,3); Ex1 = limit(Ex1,z1,6); Ey1 = limit(Ey,x1,-4); Ey1 = limit(Ey1,y1,3); Ey1 = limit(Ey1,z1,6); Ez1 = limit(Ez,x1,-4); Ez1 = limit(Ez1,y1,3); Ez1 = limit(Ez1,z1,6); E = Ex1*ax+Ey1*ay+Ez1*az; Ep = sqrt(float(Ex1^2+Ey1^2+Ez1^2)); disp(Ep,'Electric Field Intensity E at point P(-4,3,6) in volts E =') aEp = float(E/Ep); disp(aEp,'Direction of Electric Field E at point P(-4,3,6) aEp=') Dx = float(8.854*Ex); Dy = float(8.854*Ey); Dz = float(8.854*Ez); D = Dx*ax+Dy*ay+Dz*az; disp(D,'Electric Flux Density in pico.C/square.metre D =') dDx = diff(Dx,x1); dDx = limit(dDx,x1,-4); dDx = limit(dDx,y1,3); dDx = limit(dDx,z1,6); dDy = diff(Dy,y1); dDy = limit(dDy,x1,-4); dDy = limit(dDy,y1,3); dDy = limit(dDy,z1,6); dDz = diff(Dz,z1); dDz = limit(dDz,x1,-4); dDz = limit(dDz,y1,3); dDz = limit(dDz,z1,6); rV = dDx+dDy+dDz; disp(rV,'Volume Charge density from divergence of D in pC/cubic.metre is rV=') //Result //Potential V at point P(-4,3,6)in volts is Vp = 66. //Electric Field Intensity E at point P(-4,3,6) in volts E = 57.9050947672137 //Direction of Electric Field E at point P(-4,3,6) aEp= //0.01726963756851*(5*az-32*ay+48*ax) //equivalent to aEp= 0.0863482*az-0.5526284*ay+0.8289426*ax //Electric Flux Density in pico.C/square.metre D = // -35.416*ax*x1*y1-17.708*ay*x1^2+44.27*az //Volume Charge density from divergence of D in pC/cubic.metre is rV= // -106.248