//clear// //Caption: Program to verify the Divergence theorem for the field 'D' //Example3.5 //page 74 clc; x = sym('x'); y = sym('y'); z = sym('z'); //Components of Electric Flux Density in cartesian coordinate system Dx = 2*x*y; Dy = x^2; Dz = 0; //Divergence of electric flux density 'D' dDx = diff(Dx,x); dDy = diff(Dy,y); dDz =0; divD = dDx+dDy+dDz disp(divD,'Divergence of Electric Flux Density D in C/cubic.metre, divD =') //Evaluate volume integral on divergence of 'D' Vol_int_divD = integ(divD,x); Vol_int_divD = limit(Vol_int_divD,x,1)-limit(Vol_int_divD,x,0); Vol_int_divD = integ(Vol_int_divD,y); Vol_int_divD = limit(Vol_int_divD,y,2)-limit(Vol_int_divD,y,0); Vol_int_divD = integ(Vol_int_divD,z); Vol_int_divD = limit(Vol_int_divD,z,3)-limit(Vol_int_divD,z,0); disp(Vol_int_divD,'Volume Integral of divergence of D, in coulombs vol_int(divD)=') //Evaluate surface integral on field D Dx = limit(Dx,x,1); sur_D = integ(Dx,y); sur_D = limit(sur_D,y,2) - limit(sur_D,y,0); sur_D = integ(sur_D,z); sur_D = limit(sur_D,z,3) - limit(sur_D,z,0); disp(sur_D,'Surface Integral of field D, in coulombs sur_int(D.ds)=') if(sur_D==Vol_int_divD) disp('Divergence Theorem verified') end //Result // Divergence of Electric Flux Density D in C/cubic.metre, divD = // 2*y //Volume Integral of divergence of D, in coulombs vol_int(divD)= // 12 // Surface Integral of field D, in coulombs sur_int(D.ds)= // 12