//clear// //Caption:Program to find the fraction of incident power that is reflected and transmitted //Example13.7 //page460 clc; teta1 = 30; //incident angle in degrees n2 = 1.45;//refractive index of glass teta2 = snells_law(teta1,n2); etta1 = 377*cos(teta1/57.3); // intrinsic impedance in medium 1 in ohms etta2 = (377/n2)*cos(teta2); //intrinsic impedance in medium2 in ohms Tp = reflection_coefficient(etta1,etta2);//reflection coefficient for p-polarization Reflected_Fraction_p = (abs(Tp))^2; Transmitted_Fraction_p = 1-(abs(Tp))^2; etta1s = 377*sec(teta1/57.3); //intrinsic impedance for s-polarization etta2s = (377/n2)*sec(teta2); Ts = reflection_coefficient(etta1s,etta2s);//reflection coefficient for s-polarization Reflected_Fraction_s = (abs(Ts))^2; Transmitted_Fraction_s = 1-(abs(Ts))^2; disp(teta2*57.3,'Transmission angle using snells law in degrees teta2 =') disp(Tp,'Reflection coefficient for p-polarization Tp=') disp(Reflected_Fraction_P,'Fraction of incident power that is reflected for p-polarization =') disp(Transmitted_Fraction_p,'Fraction of power transmitted for p-polarization =') disp(Ts,'Reflection coefficient for s-polarization Tp=') disp(Reflected_Fraction_s,'Fraction of incident power that is reflected for s-polarization =') disp(Transmitted_Fraction_s,'Fraction of power transmitted for s-polarization =') //Result //Transmission angle using snells law in degrees teta2 = // 20.171351 //Reflection coefficient for p-polarization Tp= // - 0.1444972 //Fraction of incident power that is reflected for p-polarization = // 0.0337359 //Fraction of power transmitted for p-polarization = // 0.9791206 //Reflection coefficient for s-polarization Tp= // - 0.2222748 //Fraction of incident power that is reflected for s-polarization = // 0.0494061 //Fraction of power transmitted for s-polarization = // 0.9505939