//clear// //Example10.9:Inverse Z Transform:ROC |z|>1/3 z = %z; syms n z1;//To find out Inverse z transform z must be linear z = z1 X =z*(3*z-(5/6))/((z-(1/4))*(z-(1/3))) X1 = denom(X); zp = roots(X1); X1 = z1*(3*z1-(5/6))/((z1-(1/4))*(z1-(1/3))) F1 = X1*(z1^(n-1))*(z1-zp(1)); F2 = X1*(z1^(n-1))*(z1-zp(2)); h1 = limit(F1,z1,zp(1)); disp(h1,'h1[n]=') h2 = limit(F2,z1,zp(2)); disp(h2,'h2[n]=') h = h1+h2; disp(h,'h[n]=') ////Result //h[n]= (1/4)^n+(2/3)^n