//clear// clear; clc; //Example 8.3 //Given vdot = 180; //[ft^3/min] pa = 14; //[lbf/in.^2] pb = 900; //[lbf/in.^2] Ta = 80+460; //[K] q0 = 0.063; //[m^3/s] Cp = 9.3; //[Btu/lbmol-F] gama = 1.31; delta_Tw = 20; // [F] //(a) neta = 0.80; //For a multistage compressor the total power is a minimum if each stage doed the same amount of work //Hence using same copression ration for each stage //Using Eq.(8.25) //For one stage comp_ratio = (900/14)^(1/3); //Using Eq.(8.29), the power required by each stage Pb = (Ta*q0*gama*vdot)*(comp_ratio^(1-1/gama)-1)/(520*(gama-1)*neta); // [hp] //Total Power Pt = 3*Pb // [hp] //(b) //Using Eq.(8.22), the temperature at the exit of each stage Tb = Ta*comp_ratio^(1-1/gama) // [R] //(c) Since 1 lb mol = 378.7 std ft^3, the flow rate is vdot = vdot*60/378.7; //[lb mol/h] // Heat load in each cooler is Hl = vdot*Cp*(Tb-Ta) // [Btu/h] //Total heat loss Htotal = 3*Hl; //[Btu/h] //Cooling water requirement cwr = Htotal/delta_Tw // [lb/h]