//Caption:Estimate terminal voltage for (a)same excitation (b)Load current at 0.8 power factor lagging //Exa:13.13 clc; clear; close; P=1000//Power of alternator(in KVA) V=3300//Voltage of alternator(in volts) ph=3//Phase of alternator pf=0.8//Power factor lagging r=0.5//Resistance per phase(in ohms) x=6.5//Reactance per phase(in ohms) V_ph=V/sqrt(3) I=(P*1000)/(sqrt(3)*V) Eo=sqrt(((V_ph+(I*r*pf)+(I*x*sind(acosd(pf))))^2)+(((I*x*pf)-(I*r*sind(acosd(pf))))^2)) disp(Eo,'(a)Required terminal voltage(in volts)=') v=sqrt((Eo^2)-(((I*r*sind(acosd(pf)))+(I*x*pf))^2))+((I*x*sind(acosd(pf)))-(I*r*pf)) disp(v,'(b)Required voltage at given load current(in volts)=')