//Caption:Calculate (a)No load power factor (b)Core and friction loss (c)r_m (d)power factor on short circuit (e)Equivalent impedance in series circuit (f)Rotor resistance referred to stator (g)Stator leakage reactance (h)Rotor leakage reactance referred to stator //Exa:12.1 clc; clear; close; P=3000//Power of motor(in watt) V=415//Voltage supplied(in volts) f=50//Frequency(in hertz) p=6//Number of poles pf=0.8//Power factor I_n=3.5//No load current(in A) P_n=250//Power input on no load test(in watt) r_s=1.5//Stator resistance per phase(in ohm) V_r=115//Reduced voltage applied at short circuit test(in volts) I_s=13//Current supplied on short circuit test(in A) P_s=1660//Voltage applied at short circuit test(in watt) pfn=P_n/(sqrt(3)*V*I_n) disp(pfn,'(a)Noload power factor=') P_wf=P_n-(3*(I_n^2)*r_s) disp(P_wf,'(b)Core and friction loss(in watt)=') r_m=(V/sqrt(3))/(I_n*pfn) disp(r_m,'(c)Resistance(in ohms)=') pfs=P_s/(sqrt(3)*V_r*I_s) disp(pfs,'(d)Power factor on short circuit=') Ze=(V/sqrt(3))/((I_s*V)/V_r) disp(Ze,'(e)Equivalent impedance in series circuit(in ohms)=') R=(Ze*pfs)-r_s disp(R,'(f)Rotor resistance referred to stator(in ohm)=') X=(sqrt((Ze^2)-((Ze*pfs)^2))) disp(X,'(g)Stator leakage reactance(in ohms)=') x=X/2 disp(x,'(h)Rotor leakage reactance referred to stator(in ohms)=')