//Caption:Find (a)Equivalent rotor current (b)Stator current (c)Power factor (d)Stator input (e)Rotor input (f)Efficiency //Exa:11.13 clc; clear; close; V=440//Voltage supplied(in volts) f=50//frequency(in hertz) Z_s=1.5+(%i*3)//Stator impedance per phase(in ohms) Z_r=1.6+(%i*1)//Rotor impedance per phase(in ohms) Z_m=3+(%i*40)//Magnetising impedance per phase(in ohms) P_wf=300//Friction and winding loss(in watt) s=0.04//Slip Z=40+(%i*1) z=Z*Z_m/(Z+Z_m) Zt=z+Z_s I1=(V/sqrt(3))/Zt E=(V/sqrt(3))-(I1*Z_s) I2=E/Z disp(I2,'(a)Equivalent Rotor current(in A)=') disp(I1,'(b)Stator current(in A)=') pf=cosd(atand(imag(Zt)/real(Zt))) disp(pf,'(c)Power factor=') P_s=sqrt(3)*V*sqrt(I1*conj(I1))*pf disp(P_s,'(d)Stator input(in watt)=') P_r=3*(I2*conj(I2))*(real(Z_r)/s) disp(P_r,'(e)Rotor input(in watt)=') P_ro=P_r*(1-s) P_me=P_ro-P_wf e=(P_me/P_s)*100 disp(e,'(e)Efficiency(in%)=')