//Caption:Find (a)Equivalent rotor current per phase (b)Stator current per phase (c)Power factor (d)Rotor input (e)Rotor copper losses (f)Torque (g)Mechanical power output from rotor (h)Stator input (i)Efficiency //Exa:11.11 clc; clear; close; V=440//Voltage supplied(in volts) p=8//Number of poles f=50//Frequency(in hertz) r1=0.2//Stator resistance(in ohm) x1=1.2//Stator reactance(in ohm) r2=0.3//Equivalent resistance of rotor referred to stator(in ohm) x2=1.2//Equivalent reactance of rotor referred to stator(in ohm) r_m=150//Magnetising resistance(in ohms) x_m=18//Magnetising reactance(in ohms) P_wf=750//Winding and friction losses(in watt) s=0.04//Slip n_s=(f*120)/(p*60) y1=1/r_m y2=1/(%i*x_m) y3=1/((r2/s)+(%i*x2)) Y=y1+y2+y3 Z=1/Y Z_t=Z+(r1+(%i*x1)) E=V*Z/(Z_t) z3=1/y3 i2=E/z3 disp(i2,'(a)Rotor current per phase(in A)=') i1=V/Z_t disp(i1,'(b)Stator current per phase(in A)=') pf=cosd(atand(-(imag(Z_t))/real(Z_t))) disp(pf,'(c)Power factor=') P_r=(i2*(conj(i2)))*(r2/s) disp(P_r,'(d)Rotor input(in watt)=') P_rc=(i2*(conj(i2)))*r2 disp(P_rc,'(e)Rotor copper loss(in watt)=') T=3*P_r/(2*%pi*n_s) disp(T,'(f)Torque(in N-m)=') P_me=P_r-P_rc-(P_wf/3) disp(P_me,'(g)Mechanical output from rotor(in watts per phase)=') P_st=V*(sqrt(i1*(conj(i1))))*pf disp(P_st,'(h)Stator input(watts per phase)=') eff=(P_me/P_st)*100 disp(eff,'(i)Efficiency(in %)=')