//Graphical// //Example 12.1.2 //Evaluating power spectrum of a discrete sequence //Using N-point DFT clear; clc; close; N =16; //Number of samples in given sequence n =0:N-1; delta_f = [0.06,0.01];//frequency separation x1 = sin(2*%pi*0.315*n)+cos(2*%pi*(0.315+delta_f(1))*n); x2 = sin(2*%pi*0.315*n)+cos(2*%pi*(0.315+delta_f(2))*n); L = [8,16,32,128]; k1 = 0:L(1)-1; k2 = 0:L(2)-1; k3 = 0:L(3)-1; k4 = 0:L(4)-1; fk1 = k1./L(1); fk2 = k2./L(2); fk3 = k3./L(3); fk4 = k4./L(4); for i =1:length(fk1) Pxx1_fk1(i) = 0; Pxx2_fk1(i) = 0; for m = 1:N Pxx1_fk1(i)=Pxx1_fk1(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk1(i)); Pxx2_fk1(i)=Pxx1_fk1(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk1(i)); end Pxx1_fk1(i) = (Pxx1_fk1(i)^2)/N; Pxx2_fk1(i) = (Pxx2_fk1(i)^2)/N; end for i =1:length(fk2) Pxx1_fk2(i) = 0; Pxx2_fk2(i) = 0; for m = 1:N Pxx1_fk2(i)=Pxx1_fk2(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk2(i)); Pxx2_fk2(i)=Pxx1_fk2(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk2(i)); end Pxx1_fk2(i) = (Pxx1_fk2(i)^2)/N; Pxx2_fk2(i) = (Pxx1_fk2(i)^2)/N; end for i =1:length(fk3) Pxx1_fk3(i) = 0; Pxx2_fk3(i) = 0; for m = 1:N Pxx1_fk3(i) =Pxx1_fk3(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk3(i)); Pxx2_fk3(i) =Pxx1_fk3(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk3(i)); end Pxx1_fk3(i) = (Pxx1_fk3(i)^2)/N; Pxx2_fk3(i) = (Pxx1_fk3(i)^2)/N; end for i =1:length(fk4) Pxx1_fk4(i) = 0; Pxx2_fk4(i) = 0; for m = 1:N Pxx1_fk4(i) =Pxx1_fk4(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk4(i)); Pxx2_fk4(i) =Pxx1_fk4(i)+x1(m)*exp(-sqrt(-1)*2*%pi*(m-1)*fk4(i)); end Pxx1_fk4(i) = (Pxx1_fk4(i)^2)/N; Pxx2_fk4(i) = (Pxx1_fk4(i)^2)/N; end figure title('for frequency separation = 0.06') subplot(2,2,1) plot2d3('gnn',k1,abs(Pxx1_fk1)) subplot(2,2,2) plot2d3('gnn',k2,abs(Pxx1_fk2)) subplot(2,2,3) plot2d3('gnn',k3,abs(Pxx1_fk3)) subplot(2,2,4) plot2d3('gnn',k4,abs(Pxx1_fk4)) figure title('for frequency separation = 0.01') subplot(2,2,1) plot2d3('gnn',k1,abs(Pxx2_fk1)) subplot(2,2,2) plot2d3('gnn',k2,abs(Pxx2_fk2)) subplot(2,2,3) plot2d3('gnn',k3,abs(Pxx2_fk3)) subplot(2,2,4) plot2d3('gnn',k4,abs(Pxx2_fk4))